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CHAPTER 44

The Effect of Partial-Ordering
Utilities on Bayesian Design of
Sequential Experiments

James S. Hodges
Division of Biostatistics, School of Public Health, University of
Minnesota

1. INTRODUCTION

The archetypal experimental design allocates a fixed number of units to the
conditions under study. Sequential experiments, by contrast, can stop early if
the results are extreme enough, so their design includes a stopping rule. Se-
quential experiments are well suited for comparing Bayesian and frequentist
methods because the sample space, on which frequentists focus, is so different
from the parameter space, on which Bayesians focus.

This chapter discusses an issue in the Bayes-frequentist debate about se-
quential experiments. Section 2 summarizes that debate, emphasizing a feature
of frequentist designs: the stopping boundaries at interim analyses depend on
the number of interim analyses. Many Bayesians see this property as inherently
frequentist and thus deficient, but Sections 3 through 6 argue that it is not.
Sections 3 and 4 catalogue the differences between Bayesian and frequentist
sequential designs, a key difference being that Bayesians usually use loss func-
tions imposing a complete ordering on the space of outcomes, while non-
Bayesians usually use losses imposing only a partial ordering. Sections 5 and
6 show that the dependence of stopping boundaries on the number of interim
analyses arises from this difference, obtaining frequentist designs from Bayesian
machinery by weakening the complete-ordering axiom. Thus, the dependence
of stopping boundaries on the number of interim analyses is not a consequence
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516 THE EFFECT OF PARTIAL-ORDERING UTILITIES ON BAYESIAN DESIGN

of a deep Bayes-frequentist split, but rather of an axiom about which reasonable
people can differ. It is also a reminder that there is no free lunch: complete-
ordering losses are more informative than partial-ordering losses, and the ad-
vantages of the former come at the price of having to supply the extra infor-
mation.

There is a large literature about design, monitoring, and analysis of sequen-
tial trials. This paper cannot do justice to such innovations as, for example,
Freedman and Spiegelhalter (1992) or Carlin et al. (1995). Interested readers
can consult these papers or others cited below. '

2. FREQUENTIST DESIGNS AND THE BAYESIAN CRITIQUE

2.1. Frequentist Designs: Interim Analyses Have a Price

Suppose a sequential experiment has at most n observations. If the sample size
is fixed at n and the probability of falsely rejecting the null hypothesis—Type
1 error—is also fixed, the usual derivation yields a critical value for rejecting
the null. If the experiment can be stopped early, the nominal Type I errors at
the interim analyses must be smaller than the overall Type I error, and thus
smaller than the Type I error of the single test in the fixed-sample-size design.
That is, interim analyses have a price: the more looks, the larger the critical
value at each look. The frequentist design problem might then be abstracted
as

® Fix the maximum sample size n and the desired overall Type I error a.
¢ Compute stopping boundaries with Type I error o and (say) one, two, or
four analyses.

* Pick the best design according to other criteria, such as expected sample
size or power.

The first sequential designs for clinical trials (Pocock, 1977; O’Brien and
Fleming, 1979) fixed the number and timing of interim analyses. Lan and
DeMets (1983) did not require the interim analyses to be fixed in advance,
psing instead a function that describes the rate at which the overall Type 1 error
is “‘spent.”’

2.2. The Bayesian Critique: Do Interim Analyses as Often as Possible

By the likelihood principle, at any stage of an experiment it is permissible to
stop, compute the posterior distribution for the parameter of interest, and use
it to evaluate designs for the rest of the experiment. Accordingly, Bayesian
designs are constructed by

¢ Specifying a model for observations
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* Specifying a loss function incorporating all the elements of value
e Deriving the decision criterion at each stage of the trial by backward
induction

Interim analyses need not be foregone and foregoing them in clinical trials may
be unethical because it can increase the expected number of patients in the
trial. In particular, the frequentist focus on Type I error and the resulting
costliness of interim analyses is arbitrary and inappropriate.

Theoretical arguments against the frequentist approach and for the Bayesian
approach are given by Berry (1989) and papers cited there. A fully developed
example of a Bayesian sequential design is given by Berry et al. (1992).

3. HOW DO BAYESIAN AND FREQUENTIST DESIGNS DIFFER?

The process of designing an experiment takes inputs—assumptions and pro-
cedures—and produces an output, a design. Section 2 discussed differences
between the output of frequentist and Bayesian design processes, the difference
of interest being that interim analyses have a price in frequentist design. The
object of this chapter is to trace the differences in Bayesian and frequentist
designs to differences in inputs, using the terminology of decision theory for
the various inputs.

Two inputs to design are not matters of dispute by Bayesians and frequen-
tists: the model for observations given the parameters of interest, and the action
space (i.e., stop the trial or continue, and if stopped, chose the null or the
alernative).

Another issue, the flexibility of a sequential design, is a matter of dispute.
Many Bayesians are not troubled by changing the design during an experiment,
relying on the likelihood principle. In frequentist theory, Lan-DeMets designs
permit flexibility in the timing of analysis, but otherwise computation of p-values
and confidence intervals rely fundamentally on the design, so it is
sacrosanct. (In frequentist reality, designs are changed routinely and certain
rigors of the theory are ignored.) This difference between the theories is real
and cannot be addressed here; however, this chapter will show that it is in-
dependent of the issue of whether interim analyses have a price.

Sections 4 through 6 treat three other differences between the inputs to design
used by frequentists and Bayesians. The first of these is the loss function. An
axiom of Bayesian decision theory asserts that the decision maker’s utility
function imposes a complete ordering on the possible outcomes (DeGroot,
1970, p. 87). That is, there is a utility function U such that for any two
outcomes X and Y, either U(X) > U(Y), UX) = U(Y), or UX) < UT).
Loss functions typically used in Bayesian designs embody this axiom by com-
bining all aspects of utility in a single function. (Berry et al., 1992, give a nice
example.)

Weaker axioms are possible, for example, that the utility function imposes
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only a partial ordering on outcomes. An example is a lexicographic utility
(e.g., Abrams, 1980), in which the decision maker’s utility has distinct com-
ponents that she is unwilling to combine into a single function, but which she
can rank in order of importance. If two choices are indistinguishable on the
most important component of utility—the first echelon of the utility—then the
choices are compared on the second most important component—the second
echelon—and so on through the echolons of the utility function. The key feature
of lexicographic utilities is that some pairs of outcomes can be compared and
others cannot. Suppose a lexicographic utility function has two components
and that the utility for an outcome is expressed as (1, u,) if the first component
of utility is u; and the second component is u,. Then two outcomes having
utilities (x,, x) and (y,, y;) are commensurable if and only if one of the
following four conditions holds:

* X =
* X =n
* Both x; > y, and x, > y,.
* Both x; < y; and x, < y,.

If none of these four conditions holds, then (x|, x,) and (y,, y,) are incom-
mensurable; that is, no preference between them can be stated. The general-
ization to lexicographic utility functions with more components of utility is
straightforward.

In frequentist designs, as abstracted in Section 2.1, the components of loss
are Type I error, Type II error, and expected sample size. Type 1 error is
usually the first echelon of the loss function, although the occupant of the
second echelon is less standardized.

The second remaining difference between inputs to design used by Bayesians
and frequentists is that frequentists build in restrictions on the stopping bound-
aries and Bayesians do not. These restrictions leave a single ‘‘degree of free-
dom’’ in the stopping boundary, which is specified by the overall Type I error.
Bayesian design imposes no a prior restrictions on the stopping boundary,
which instead is purely a consequence of the model, the prior, and the loss
function. The final remaining difference is that Bayesians use explicit priors
and frequentists do not. This difference is real, primarily because it allows
Bayesians to introduce information from sources outside the current experi-
ment.

The rest of this chapter examines these last three differences, focusing mainly
on the effect of partial-ordering loss functions. Section 4 discusses the use of
partial-ordering losses. Section 5 sets up a sequential experiment permitting
consideration of the issues. Section 6 examines Bayesian sequential designs
constructed using lexicographic loss functions built from Type I error, Type II
error, and expected sample size. For these designs, the number of looks matters
regardless of which of the three components of loss is assigned to the first
echelon. Thus, it is not the traditional focus on Type I error that implies that
the number of looks matters, but rather the partial order imposed by the loss.
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It would seem, then, that this Bayes-frequentist difference arises from the axiom
that utilities impose a complete ordering on the outcome space. Section 6 also
shows that the frequentist restriction on decision rules has no foundational
content and that the prior distribution is of no consequence for the result.

4. USING PARTIAL-ORDERING LOSS FUNCTIONS

Using complete-ordering loss functions in sequential design is conceptually
simple: select the design that minimizes expected loss by backward induction.
Using partial-ordering loss functions is less straightforward because the com-
ponents of the loss must be handled separately, making backward induction
impossible. This section discusses ways of using partial-ordering loss functions
and then considers whether such losses are, in fact, merely excuses.

It is helpful to distinguish two groups of partial-ordering loss functions:

e ““No-trade’’ loss functions, for which optimizing on any component of
loss yields an absurd test. The abstracted frequentist test in Section 2.1
has this property: optimizing on Type I or II error or on expected sample
size yields an absurd test.

* ““Trade’’ loss functions, for which optimizing on at least one component
of loss yields a plausible test. An example has as its first echelon a loss
function carrying a penalty of 1 for a Type I error and v for a Type 1l
error, and as its second echelon expected sample size.

““No-trade’’ loss functions can be used in two ways. One way is to select a
cutoff value for each echelon such that any procedure must attain at least that
value. Many papers describing frequentist tests read as if this were their pro-
cedure: for example, a test must have size 0.05 and power 0.8, implying a
particular sample size. Another way to use no-trade losses is to reduce the
second echelon of loss until the first echelon reaches an unacceptable value,
and use the resulting test.

““Trade’’ losses allow a different use. If the first echelon allows an explicit
trade-off, as in the example above, one can minimize the first-echelon loss
function and use the second echelon to select among procedures that minimize
the first echelon.

Why not insist on a complete-ordering loss function? Bayesians often cite
as a virtue of their approach that it forces a user to be explicit, in this case,
about trade-offs among the different echelons of loss. But if someone says that
he considers Type I error and expected sample size incommensurable, need we
question his integrity? A complete ordering does not come for free: one must
add information to the loss in the form of a numerical trade of each kind of
loss for the others, throughout the range of their possible values— a difficult
and sometimes specious task. It would not be surprising that if one declined
to add such information to the loss, one would lose something. The next two
sections show that this is the case.
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5. A CANONICAL SEQUENTIAL EXPERIMENT

Decision theory problems have four parts: probability model, loss function,
action space, and decision rules.

5.1. The Probability Model

Consider a trial with n observations; in Section 6, n will be 2 or 4. Fixed
sample-size designs require all n observations to be taken, while sequential
designs can stop earlier. The parameter of interest is 8, the difference between
a new treatment and the standard, the null hypothesis being 6 < 0 (new is no
better than standard) and the alternative being 6 > 0 (new is better than stan-
dard). The statistical model is X;{6 ~ N((S D,j=1,2,...,n, with a
N, 77) prior distribution for . Lettmg T approach infinity permxts frequentist
procedures to be obtained as limiting cases. This formulation or an equivalent
one was used in Pocock (1977), O’Brien and Fleming (1979), and Lan and
DeMets (1983), among others.

5.2. The Loss Function

The loss function is lexicographic with three components: Type 1 error, Type
Il error, and expected sample size. The Bayesian definitions for these are

Type I error = Som Pr(reject null|8) f(5) dé 44.1)
Type I error = g: Pr(accept null |5) f(8) db
= S: {1 — Pr(reject null|8)} f(8) dé 44.2)
Expected sample size = S“’m { 0 JPr(trial stops at j [5)} f(6)dé (44.3)

where f(8) is the prior density of 6. (The frequentist definitions of these com-
ponents of loss are conditional on §, as they must be in the absence of a prior
distribution.)

5.3. The Action Space and Decision Rules

The action space is: at each observation, stop or take the next observation; if
you stop, choose the standard or the new treatment. By symmetry, the decision
rules can be expressed as (7, &, . . . , #,), where ¢; = 0 is defined as follows:

i
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eForj=1,...,n—1

Stop after X; and accept the null if 4; + #;5; < 0.

Stop after X; and reject the null if d; — 45, > 0.

Take the next observation if neither of the above conditions is satisfied.
e After X,, reject the null if d, — 7,5, > 0 and accept it otherwise.

Here d; and s; are the posterior mean and standard deviation of 8. Fixed-sample-
size designs are included by allowing infinite 4 for j < n.

6. BAYESIAN DESIGN OF SEQUENTIAL EXPERIMENTS USING
LEXICOGRAPHIC LOSS FUNCTIONS

Section 6.1 considers the lexicographic loss in which Type I error occupies the
first (most important) echelon of the loss function, Section 6.2 puts Type I
error in the first echelon, and Section 6.3 puts expected sample size in the first
echelon. All give the same qualitative result: interim analyses have a price.

6.1. Type I Error as the Most Important Component of Loss

Let n = 2. The result is familiar, but is included because it sets a patiern for
Sections 6.2 and 6.3. First consider the fixed sample size test. For the as-
sumptions given in Section 5, if two observations are taken, the size of the test
as a function of £, is

0.5 — SO <fs2 f5> x(8) db

where & is the standard normal distribution function. Fixing the size at o
specifies an equation in #,; call its solution t(a). Define t(c) analogously to
be the value of #, such that if a single observation were taken, {(cr) would be
the critical value yielding a test of size o.

Now consider the sequential test. Fixing the size of the test at « defines an
equation in ¢, and f,, so infinitely many sequential designs can be specified
with the right size. All of these designs have the familiar jproperty of frequentist
sequential designs, by the following argument. If #; = r{(«) and 1, < oo, then
the size of the resulting sequential test is clearly greater than «, so f; must be
increased above tf (a) if the test is to remain a sequential test. (That is, the
only alternative 1s to set z, = oo, in which case it is not a sequential test any
more.) If 1, = ¢ (a) and t; < oo, then the size of the resulting sequential test
is

a4+ P(rl Na2|6 <0)—Pal Nr2ls <0
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where

* rl = {(x;, x)|d, — sy > 0}, observations such that the first is large
enough to stop the trial and reject the null.

o al = {(x;, xp)|d, + s;7; < 0}, observations such that the first is small
enough to stop the trial and accept the null.

* r2 = {(x), xp)|d; = spt, > 0}, observations such that the posterior mean
after two observations is outside the boundary for rejecting the null.

® a2 = {(x;, xp)|d, —~ 5,1, = 0}, observations such that the posterior mean
after two observations is not outside the boundary for rejecting the null,
so the null is accepted.

If P(r1 N a2|6 < 0) — P(al N r2|d< 0) is positive, then the size of the
sequential test is greater than « and ¢, must be increased above th(e) if the test
is to remain a sequential test. By writing P(rl N a2]6 < 0) — P(al N r*s
< 0) as two triple integrals (in 8, x,, and x,), integrating out &, transforming
toy = (x; + xz)/«/i and z = (x; — xz)/\/i, and integrating out z, one is left
with

uz/\/i.
K ” o(—2 $,y) ga, y) dy
—aaiN2

~aaiN2
+ S R&(~2 S,y) — 1] glay, y) dy} (44.4)

-

where K is a constant, g(a,, y) = tﬁ(—\/ia, + y), ¢(cy) is positive, ¢ is the
standard normal density, a; = 1;/s;, and ¢ = s,/t;. Both terms are positive, so
the design has the familiar feature of frequentist designs: the more looks, the
larger the critical values.

The choice between the fixed-sample test and the infinity of sequential tests
is then based on the second echelon of loss. If n is larger than the number of
echelons of loss, infinitely many tests will be equally satisfactory. This is why
frequentists impose conditions on sequential stopping boundaries: it reduces
the problem and permits a relatively easy selection of a test, but it has no
foundational content.

6.2. Type II Error as the Most Important Compenent of Loss

Let n = 2 and consider the fixed-sample-size test with Type II error 5. By
Equation (44.2),

05 -8 = XO Pr(r2|8) £(5) dé
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where r2 was defined earlier. If Type II error is fixed at (3, this specifies an
equation in f,; denote the solution as lé(;S). Define tf,(ﬁ) analogously to be the
value of ¢, such that if a single observation were taken, r(8) would be the
critical value yielding Type II error 3.

Now consider the sequential test. As in Section 6.1, fixing Type I error at
$3 defines an equation in ¢, and 5. If 1, = () and t, < oo, the Type Il error
of the resulting sequential test is clearly smaller than 3, so ¢, must be increased
above 4(B) if the test is to remain a sequential test. On the other hand. if
L = t{(B) and t; < oo, then Type II error satisfies

o

05-8= So Pr(r2|6) f(8) db + So Pr(rl N a2|8) f(8) dé

— g Pr(al N r2|8)f(8) d6
0

If the sum of the last two terms is positive, the Type II error of the sequential
test is smaller than 8 and ¢, must be increased above t’;(ﬁ) if the test is to
remain a sequential test. To show this, apply to the last two terms the same
sequence of operations that was used to obtain Equation (44.4), yielding

—az/\/E
M) ﬂ 28(V2 S,y) — 1] dlcy)hiay, y) dy

—ao

a2
+ S/ 5 82 Say)eehia, y) dy}

where M is positive, h(a;, y) = <b(—«/§a, + y)/@(—\/ia, - az/\/i), and
the other symbols were defined near Equation (44.4). Of the two terms inside
the bra}ces the first is negative and the second is positive. For 1, = r4(3) and
tl = tl(B)?

® Fory < —ay/V2, h(a,, y) is in the interval (0, 1) and monotonically
decreasing as a function of ¢,.

® Fory > —-az/\/z, h(a,, y) is greater than 1 and monotonically increasing
as a function of #,.

But the expression in braces is positive for 1, = #/(8); therefore, it is positive
for finite t; = r}(8), and the result follows.

Thus, when the first echelon—the most important—of the loss function is
Type II error, more interim analyses mean larger critical values.
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6.3. Expected Sample Size as the Most Important Component of Loss

To show the result for expected sample size (ESS), the maximum sample size
n must be greater than 2. If n = 2 and the probability of stopping at the first
observation is positive, all sequential tests beat the fixed-size test on ESS. So
let n = 4, and consider two sequential tests: one allowing stopping after the
second and fourth observations, and the other allowing stopping after all four
observations. (The fixed-sample-size test is dominated by the sequential tests.)
Define ¢]" to be the value of 4 in the sequential test with m analyses; that is,
12 is the value of #, for the test that permits stopping after the second and fourth
observations.

Fix the ESS at S. This and E(iuation (4.3) define a single equation in t3 and
¢ and a single equation in @t 3, 1, t3). Suppose 1= I < 13, the test
with four analyses will have ESS < §, so 1= 3 If 1= t% and either of
14 or 13 is finite, the test with four analyses will have ESS < S. In other words,
compared to the test with two analyses, the test with four analyses must give
up something at either observation 2 or observation 4: more look implies larger
critical values.

6.4. The Effect of the Prior Distribution

In Sections 6.1 through 6.3, the prior for 6 was N(0, 7%). What happens with
more general priors? When the first echelon of loss is expected sample size,
the argument in Section 6.3 works without change. When the first echelon of
Joss is Type I error, it is easy to show that P(rl N a2|8) —P(al N r2ié) is
nonnegative for all 8, so the result holds for general priors on 6. 1 have not
been able to extend the result in Section 6.2 to general priors for &, but I
conjecture that it is true. g

7. DISCUSSION

This chapter’s purpose was to explore the difference between Bayesian and
frequentist solutions to a problem arising in sequential experiments. It showed
that Bayesian machinery generates frequentist designs for sequential experi-
ments if the loss function is a lexicographic loss involving Types I and Il error
and expected sample size—in other words, that part of the clash between fre-
quentists and Bayesians can be traced to a single axiom of Bayesian decision
theory. This axiom is about utility, not probability, so one may accept Savage’s
axioms of subjective probability and still obtain ‘‘frequentist”” designs in se-
quential experiments.

This result reaffirms that there is no free lunch: to gain the benefits of a
complete-ordering loss, one must pay with information inserted into the loss
function. Others have also argued that the apparent free lunch of Bayesian
sequential design has some costs. Rosenbaum and Rubin (1984) and Rubin
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(1984) show that the use .of data-dependent stopping rules and informative
Priors can cause posterior intervals to be out of calibration. That result is, of
course, only of interest to those who think that frequencies matter sometimes.

The result here does not require acce; i 1
he rest ptance of anything foreign to -
alistic view of probability . Yo ¢ . penen
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