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A Random Effect in the Analysis 
Need Not Imply 

A Random Draw in Data Generation 
 
 
 
The term "random effect" has come to be used more 
broadly than it was, say, 50 years ago.   
 
Analyses that are now described as including 
random effects apply to situations qualitatively 
different from those originally analyzed using 
random effects.   
 
As usage of “random effect” has broadened, fewer 
people seem to recognize a related distinction that 
has important consequences, both conceptual and 
practical.   
 
This lecture is about that distinction. 
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Briefly, I'm going to make this argument:  
 
As analysis of richly-parameterized models become 
unified in the MLM framework (as in RWC), more 
analyses take the form of a random-effects analysis.   
 
An analysis including an effect with the form of a 
random effect does not necessarily imply that, out in 
the world, any random mechanism produced that 
effect. 
 
The form of the analysis should not be confused 
with the process in the world that produced the data.   
 
I make this argument using examples, most of which 
you’ve seen before.   
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Older, narrower notion of a random effect:  
 

-- A random effect represents draws from a 
population, either a real finite population or a 
hypothetical infinite one, and 

 
-- The draws are not of interest in themselves, but 

only as samples from the larger population.   
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Example 1:  Draws from a real finite population.   
 
William Kennedy’s neurology lab uses new methods 
to count nerve fibers in skin and GI mucosa, an 
objective way to measure e.g., diabetic neuropathies.   
 
Recent dataset: 
 
25 “normal” subjects;  from each they took 
-- two types of skin samples: biopsies and blisters;  
-- each taken at two locations:  calf and foot.   

 
The analysis involves three random effects:   

-- subjects,  
-- method-by-subject int (method = blister/biopsy);  
-- location-by-subject int (location = foot/calf).   

 
These random effects arise from sampling subjects.   
 
The analysis also includes a residual error = method-
by-location-by-subject interaction.   
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Example 2:  Draws from a hypothetical infinite 
population.   
 
Dwight Anderson's lab in the dental school has done 
path-breaking studies working out, in molecule-by-
molecule detail, the structure of the phi-29 virus. 
 
One of their measurement processes has three steps:   
 

-- producing, decomposing a batch of viral shells,  
-- separating the molecules by weight on a gel,  
-- burning blobs from each gel to give a measured 

weight for each blob.   
 
To get 98 measurements for one molecule, they used  
 

-- 9 batches, 11 gels, 7 oxidizer runs,  
-- 98 measurements grouped irregularly into 

batches, gels, and oxidizer runs.   
 
I treated batches, gels, and oxidizer runs as three 
random effects, with a residual error term for each of 
the 98 measurements.   
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In these examples, it makes sense to talk about these 
persons or measurements as at least plausibly 
random draws from a population, from which more 
draws could be made.   
 
In either case, making new measurements would 
require drawing new samples from the random 
effects.   
 
 
Also, these specific subjects or measurements 
clearly have no intrinsic interest, but are only 
interesting as representatives of a larger population 
of humans or viral measurements.   
 
 
 
To do a simulation study relevant to methods used 
for either problem, it would be necessary to generate 
a simulated dataset by  
 

-- first making a draw of each random effect  
-- then drawing a residual error.   
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Now for examples not included in the old usage 
 
Example 3:  Global mean surface temperature, 
smoothed with a penalized spline.   
 
Historically, penalized splines arose from the 
following kind of reasoning (as in RWC).   
 
Each year t had a true global mean surface 
temperature (GMST).  We represent these true 
GMSTs as a function f(t), which is fixed, but which 
could not be observed directly.   
 
Instead, we have measurements y_t with error:  
 
      y_t = f(t) + error_t,         t = 1, . . . , T. 
 
The fixed but unknown function f is presumed to be 
smooth. 
 
The error is treated as arising by a random draw;  
assume error_t are independent of each other.   
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To estimate f at the observed t  
 

-- put a spline basis in the columns of matrix H, 
  
-- specify vector f = Hc for some coefficients c.   
 
-- in choosing c, penalize roughness in c;   

 
 
For a particular penalty this implies the following 
optimization problem :   
 
   min{in c}( (y - Hc)'(y - Hc) )    where  c'Dc <= K. 
 
 
which turns out to be equivalent to: 
 
   min{in c}( (y - Hc)'(y - Hc)  + alpha* c'Dc ) 
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That optimization problem can in turn be re-cast in 
the form of a random effect analysis: 
 
   y = Xb + Zu + e   e ~ N(0, v I_T), u ~ N(0,S),  
 
with v a variance and S a covariance matrix.   
 

-- the design matrix X and its coefficients b 
capture the non-penalized columns of H,  

 
-- the design matrix Z and its coefficients u 

capture the penalized columns of H,  
 
-- S is the inverse of the non-zero part of D.   

 
The penalized spline method of analysis now has the 
form of a random effect analysis,  
 
We can implement this method using tools 
developed for random effect analyses. 
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This analysis has the form of a random effects 
analysis, BUT  
 
f(t) is NOT a draw from a random mechanism.  
Rather, f(t) is fixed but unknown.   
 
 
Bayesian terminology is delicate here,  
 

-- f is fixed and unknown;   
 
-- Your uncertainty about f is described using a 

probability distribution;  it describes Your 
uncertainty about f, not something inherent in f.   

 
 
Although we may call f a random variable in doing 
Bayesian theory and computations,  
 
This does not imply that f was, in any sense, drawn 
from some random process.   
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This is the key conceptual distinction:   
 
The analysis method formally treats f as a random 
effect,  
 
BUT 
 
The process that generated the data does not involve 
drawing f from a distribution.   
 
 
 
 
This differs from the older notion of “random effect”: 
 
Here, it makes no sense to draw f or u again.   
 
We are interested in this specific u and f, not in other 
conceivable realizations.   
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Possible counterargument: 
 

-- When f was generated out there in the world, it 
did involve draws from a random mechanism 

 
(Note:  This argument would work better if the 
analysis had been a dynamic linear model.) 
 
 
 
In some cases, it may make sense to think that in 
producing the now fixed but unknown f, a random 
draw was made on one occasion. 
 
BUT having once made that draw,  
 

-- the specific value of that single draw is of 
intrinsic interest, and  

 
-- it makes no sense to think of further draws. 
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Also, penalized splines are used in situations where 
it does not make sense to think of f as having been 
drawn even once: 
 
RWC examples: 
 

-- LIDAR:  f describes log ratio of light received 
from two laser sources, as a function of distance 
traveled before reflection back to source. 

 
-- Janka hardness:  a structural property of wood 

which is a function of density. 
 
--NOx in engine exhaust, as a function of 

compression ratio. 
 
These functions are implied by physical/chemical 
laws;  the spline merely approximates them. 
 
 
Also, I have used S spline functions to approximate 
complicated deterministic mathematical functions.   
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Immediate practical consequence of distinguishing 
between a random effect in the analysis method and 
a random draw in the data-generation process 
 
In generating data for a simulation experiment 
involving p-splines  
 

-- It makes no sense to simulate data by drawing f 
from Xb + Zu, u ~ N(0,S).   

 
-- Data should be generated by repeatedly drawing 

vectors of errors e and adding them to specific 
fixed true fs,  

 
-- The true fs should be chosen depending on what 

we want to learn from the experiment.   
 
Simulating a dataset by drawing f ~ Xb + Zu, u ~ 

N(0,S) and adding an error e . . . 
 

obliterates precisely the relevant features of the 
data being analyzed.   
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Example 4:  Generic geostatistical data.   
 
Classic spatial problem:   in a given region, estimate 
X, say, fraction of iron in rock at 1000 m depth. 
 
Each location s has a true value of X, X(s) which is 
fixed but unknown.   
 
We measure X(s) with error at specific locations s_i, 
y(s_i) = X(s_i) + error(s_i), error(s_i) independent   
 
We could estimate X(s) using a 2-D spline, in which 
(per RWC) X(s) has the form of a random-effect.   
 
The previous argument applies:  giving X(s) the 
form of a random effect in the analysis does not 
imply any practical sense in which X(s) is a draw 
from a random mechanism.   
 
 
However, I’d like to do this more closely to 
traditional spatial analysis.  To do so, I must first 
take a step back. 
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A probability distribution can be used as a 
descriptive device.   
 
-- Measure the heights of all US-born 50-year-old 
males employed by the U of MN  
-- Those heights could be described as following a 
Gaussian density with a particular mu and sigma2.   
 
This does not imply my height is a random draw 
from N(mu, sigma2).   
 
Rather, this is an aggregate statement about the 
heights of a group of men.   
 
If we randomly selected one man and measured his 
height, the height we reported could meaningfully be 
represented as a draw from N(mu, sigma-squared) 
 
The selected individual's height is fixed;  we create 
the randomness by our method of selecting him.   
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Returning to the geostatistical example: 
 
We may describe the true X(s) by saying that at 
locations {s_i}, {X(s_i)} follows N with mean mu 
and covariance W({s_i},theta), W being some 
parametric form.   
 
 
As above, one might argue that the process that 
produced X(s) was indeed random, so that X(s) 
represents a draw from a random process.   
 
If so, however, that fact is now irrelevant:  X(s) is 
now fixed, it makes no sense to contemplate further 
draws, and the actual X(s) are of intrinsic interest. 
 
 
We merely choose to describe aggregate features of 
X(s) using a probability distribution.   
 
As with the heights of 50-year-old men, it makes no 
sense to behave as if the X are a random draw from 
that distribution.   
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We may now choose to use that description in trying 
to estimate true X(s_i) from measurements y(s_i).   
 
 
Non-Bayesian:  That description is simply a part of 
an analytic method. 
 
Although the analytic method has the form of a 
random effect, X(s) is in no useful sense generated 
by a draw from a random distribution.   
 
 
 
Bayesian:  That probability distribution is a piece of 
information You choose to use, describing how the 
unknown X(s) tend to be related to each other.   
 
That probability distribution does not imply that 
X(s_i) is not fixed, or that a new X(s_i) could be 
drawn.   
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We can immediately draw the same implication we 
drew for the penalized splines:   
 
Simulation experiments should not draw X(s_i) from 
the distribution we use to describe X(s).   
 
Instead, they should use fixed true X(s), preferably 
several sets of them chosen to serve the purposes of 
the simulation experiment.   
 
Simulating a dataset by drawing an X(s) from the 
random effect distribution used to describe it 
obliterates precisely the features of X(s) that a 
simulation experiment would be used to test.   
 
Geostatistical models often include a spatial 
covariance matrix with a "nugget" of measurement 
error on top of spatial correlation in underlying X(s).   
 
This mixes together two very different things. 
 
This may be harmless in analyzing a dataset, but it is 
a serious error if it motivates simulations in which a 
new X(s) is drawn for each simulated dataset.   
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There are cases of spatial analysis where it does 
make sense to consider true but unknown values as 
generated by draws from a probability distribution.   
 
Hypothetical example: 
 

-- In a given square mile of the Atlantic Ocean, at 
1000 meters depth,  

-- Every 30 minutes in a given week, we measure 
water temperature at fixed locations.   

 
It is meaningful to describe the different times as 
representing draws from a probability distribution.   
 

-- More such draws could be made 
-- The draws themselves have no intrinsic interest.   

 



II Extra 21 4/6/2008 

Suppose, however, we are interested in the specific 
week in which we made these measurements.   
 
The square mile of interest has, for the study’s week, 
a smooth spatial temperature gradient;  the half-
hourly temperatures vary around it.   
 
The smooth spatial gradient is a fixed feature of our 
square mile for the study’s week, which we happen 
not to know.   
 
 
Thus, if we did a simulation experiment comparing 
methods for estimating this gradient, it would defeat 
the experiment's purpose to generate each simulated 
dataset by drawing a new gradient.   
 
 
There is a meaningful sense in which this fixed (for 
the study week) but unknown feature of our square 
mile was drawn from a probability distribution, but 
that sense is not relevant to the problem of studying 
this particular week 
.   
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Confession:   
 
The alternative derivation of the Slovenia result 
(“add the random effect and the fixed effect goes 
away”) put the CAR structure in the error covariance.   
 
This contradicts the point I’m making today: 
 

-- Municipality i’s mean x_i beta + S_i is 
meaningfully described as looking like a CAR 
random effect,  

 
-- But it is senseless to treat S_i as a draw from a 

random distribution.  The true S_i is fixed, but 
unknown.   

 
-- Putting the CAR structure in the error 

covariance implies the true S_i is a random draw 
that could be re-drawn.   
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Thus:  In a simulation experiment relevant to Vesna 
Zadnik’s problem,  
 
If we simulate cancer counts n_i by  
 

-- drawing S_i from a CAR distribution then  
-- drawing n_i from a Poisson distribution with 

mean exp(x_i b + S_i),  
 
the estimate of b will be unbiased in an analysis with 
a CAR-distributed S_i.   
 
But this, I’ve argued, makes no sense. 
 
Instead, the process that produced the actual cancer 
counts begins with a fixed but unknown collection 
of x_i b + S_i and then for municipality i makes a 
Poisson draw with mean x_i b + S_i.   
 
If we generate simulated data this way, the estimates 
produced by the same analysis will be biased.   
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This fact is understood, to some extent, for regular 
random models.   
 
RWC discusses a related point on p. 139-140.   
 
 
Their treatment raises some interesting issues –
because one part if it is, in my view, erroneous – but 
that goes beyond the scope of the present paper, and 
I will stop here.  


