Supplement to “Statistical methods research done as
science rather than mathematics”

James S. Hodges

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota USA 55414
email: hodge003Qumn.edu

May 18, 2019

The predictor of p = —1, reproduced from the main paper’s equation (10), is
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1 The predictor of p = —1 is positive

In the expression for the predictor in equation (1) above,
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for all finite positive N, s, and r and p € (—1,1). It follows immediately that the predictor

is positive for these N, s, r and p.

2 The predictor of p = +1

The predictor for p = +1 is derived by the same sequence of steps used to derive the predictor

for p = —1, which gives
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Comparison to equation (1) above shows that equation (3) above differs because of three
sign changes: a minus sign at the far left of equation (3) and changes in the signs of the
summands including p in the numerator and denominator of the complicated fraction at the
far right of equation (3).
In the main paper’s tables, to make this predictor more similar to the predictor for

p = —1, the minus sign at the far left of equation (3) has been omitted.
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3 Three bullets early in the main paper’s Section 3

The three bullets are:

e Given N, s, and p, as r increases — i.e., as the error variance o2 increases relative to

2

the random-effect variance o, — the predictor goes to zero.

e Given p and r, as either IV or s increases, the predictor goes to infinity.

e Given N, s, and r, as p goes to —1, the predictor goes to zero.

3.1 Increasing r
In equation (1) above, as r increases,
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so the expression in square brackets goes to a finite positive number for given legal values
of N, s, and p. However, as r increases, the expression in round brackets at the far left of

equation (1) goes to 0, so the predictor goes to zero.

3.2 Increasing N

In equation (1) above, inside the square brackets are three fractions involving N, and as N

increases, each such fraction goes to a finite, positive number:
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Therefore, the expression in square brackets goes to a finite, positive number. However, as
N increases, the expression in round brackets at the far left of equation (1) increases without

bound, so the predictor does as well.

3.3 Increasing s

Because s = 2m + 1 and ¢ = (2m? + 3m + 1)/3m, as s increases, so does ¢q. As s increases,

N(s

N(s=2)[(1+r/s)(1+r/q) —1] = 8_2)[(5 +7)(1+7/q) —s] = Nr, (6)

so the expression in square brackets in equation (1) goes to a finite, positive number. How-
ever, as s increases, the expression in round brackets at the far left of equation (1) increases

without bound, so the predictor does as well.



3.4 Letting p go to —1

As p — —1,
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Thus the expression in square brackets in equation (1) goes to zero and so does the predictor.

4 Section 5’s results for p = +1 and p = NalN

Figures 1 and 2 below are analogous to the main paper’s Figure 2, showing the percent of
simulated datasets giving p = +1 and p = NaN respectively as a function of r and each of
the other factors. Note that the vertical scales in these plots are 0 to 60% and 0 to 40%,
while Figure 2’s vertical scale is 0 to 100%. The Monte Carlo standard error for each plotted

percent is less than 0.8 percentage points.



Figure 1: Percent datasets giving p = £1 as a function of log;, 7.

Percent +/-1 estimates as a function of r, for different N
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% NaN estimates

% NaN estimates
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Figure 2: Percent datasets giving p = NaN as a function of log;, .

Percent NaN estimates as a function of r, for different N
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