
Biometrics 74, 863–873 DOI: 10.1111/biom.12848
September 2018

Toward a Diagnostic Toolkit for Linear Models with Gaussian-Process
Distributed Random Effects

Maitreyee Bose,1,* James S. Hodges,2,** and Sudipto Banerjee 3,***

1Department of Biostatistics, University of Washington, Seattle, Washington 98195, U.S.A.
2Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

3Department of Biostatistics, University of California, Los Angeles, California 90095, U.S.A.
∗email: bosem2@uw.edu

∗∗email: hodge003@umn.edu
∗∗∗email: sudipto@ucla.edu

Summary. Gaussian processes (GPs) are widely used as distributions of random effects in linear mixed models, which are fit
using the restricted likelihood or the closely related Bayesian analysis. This article addresses two problems. First, we propose
tools for understanding how data determine estimates in these models, using a spectral basis approximation to the GP under
which the restricted likelihood is formally identical to the likelihood for a gamma-errors GLM with identity link. Second,
to examine the data’s support for a covariate and to understand how adding that covariate moves variation in the outcome
y out of the GP and error parts of the fit, we apply a linear-model diagnostic, the added variable plot (AVP), both to the
original observations and to projections of the data onto the spectral basis functions. The spectral- and observation-domain
AVPs estimate the same coefficient for a covariate but emphasize low- and high-frequency data features respectively and thus
highlight the covariate’s effect on the GP and error parts of the fit, respectively. The spectral approximation applies to data
observed on a regular grid; for data observed at irregular locations, we propose smoothing the data to a grid before applying
our methods. The methods are illustrated using the forest-biomass data of Finley et al. (2008).

Key words: Added variable plot; Gaussian process; Lack of fit; Linear mixed model; Missing predictor; Spectral
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1. Introduction
Gaussian processes (GPs) are widely used in longitudinal,
functional, and spatial data analysis because the properties
they inherit from the normal distribution make them easy
to work with. Fitting a GP to data involves estimating the
process parameters, most commonly the process variance and
range, along with an error variance. One way to do this is by
writing the GP as a component of a linear mixed model and
maximizing the restricted likelihood, which is identical to the
marginal posterior from a Bayesian analysis with particular
priors. It is, however, unclear how the resulting parameter
estimates are influenced by features in the data like out-
liers or non-stationarities in the mean or covariance function.
Fuglstad et al. (2014) argue that even if non-stationarity is
present, it is difficult to model properly and fitting a station-
ary model usually gives satisfactory predictions. Also, GPs
are now easily accessible to non-specialists (e.g., in SAS Inc.’s
JMP package), so it is useful to know how a given form of
non-stationarity affects the fit of a stationary isotropic GP.

To elucidate further, consider an example from Finley et
al. (2008). Data on forest biomass and some covariates were
available over a specific region; prediction of forest biomass at
unmeasured locations was of interest. For over 30 years, tools
have been available that completely characterize independent-
errors linear models fit to such datasets, but analogous tools

do not exist for models with spatially correlated random
effects, which are commonly modeled using GPs. To bet-
ter understand fits of the latter models, we need a simple,
interpretable form of the restricted likelihood. This article
proposes such a form, which leads to tools for examining fits
of linear mixed models with GP-distributed random effects
and for choosing covariates. Section 7 demonstrates the tools
using this example.

This article addresses two challenging and hitherto untack-
led problems. First, using the spectral approximation to
a GP, we propose tools to help understand exactly how
the data determine estimates of variance-structure parame-
ters in a mixed linear model with a GP-distributed random
effect (MLM/GP). Phenomena like spatial confounding (e.g.,
Paciorek, 2010; Hodges and Reich, 2010) make it clear that
we cannot simply assume that a model, in its role as a like-
lihood, behaves according to its face-value interpretation as
a probability model; rather, our tools must directly display
the influence of data on estimates, as do tools for linear mod-
els. Some methods exist for MLM/GPs but they are weak.
One approach, popular in geostatistics, is informally examin-
ing residuals using exploratory tools such as variograms (see,
e.g., Chiles and Delfiner, 2009; Banerjee et al., 2014; Cressie,
2015), which describe the degree of dependence (spatial
range) and extent of variability (sill and nugget) in the data.
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Variograms are useful but do not provide specific information
about how functions of the data determine estimates. Also,
variograms are most useful for stationary, even isotropic, pro-
cesses and will not help much in ascertaining the effects of
nonstationarity on stationary isotropic GP fits. Exploratory
analysis of residuals themselves generally does not provide
specific information about how functions of the data deter-
mine estimates, and residuals in MLM fits are biased (e.g.,
Hodges 2014, Chapter 8) with the largest bias in parts of the
fit most affected by shrinkage/smoothing.

Our second objective is to help analysts understand how
adding a fixed effect to an MLM/GP moves variation in the
outcome y into the fixed-effect part of the fit and out of the
GP and error parts of the fit. As we will see, the GP and
error variance fits are determined mostly by, respectively, low-
and high-frequency data features not captured in fixed effects.
Adding a fixed effect to a MLM/GP can “take” variation
mostly from the GP part of the fit, mostly from the error part
of the fit, or substantially from both. The methods developed
to understand an MLM/GP fit suggest using a diagnostic tool
from linear models, added variable plot (AVPs), which show
the data’s information, observation-by-observation, about the
coefficient of a fixed effect, enabling a modeler to understand
whether the information about that fixed effect’s coefficient is
broadly distributed through the data or arises from a few func-
tions of the data. The spectral basis we use permits an AVP on
the spectral scale; one can also make an AVP using the origi-
nal observations. The two AVPs estimate the same coefficient
for the added variable (modulo the spectral approximation)
but the spectral-domain AVP emphasizes the contribution
of low-frequency data features and thus highlights the effect
a candidate predictor will have on the GP part of the fit,
while the observation-domain AVP gives more emphasis to
the contribution of high-frequency data features (while avoid-
ing the spectral approximation). These two AVPs thus adapt
a linear-model diagnostic to MLM/GPs in a way that pro-
vides information about why the GP and error parts of the
fit change the way they do when a fixed effect is added.

In pursuing these goals, we hew to Weisberg’s (1983) prin-
ciples for diagnostics, in particular, looking at the data as
directly as possible and providing a plot to go with each
diagnostic so the effect of individual observations can be
assessed. To meet our objectives, we need a tractable form
of the restricted likelihood, which we obtain using a basis
approximation to the GP-distributed random effect, the spec-
tral approximation (Wikle, 2002; Paciorek, 2007). With this
choice, the restricted likelihood for the MLM/GP’s variance
structure unknowns becomes formally identical to the likeli-
hood arising from a gamma-errors GLM with identity link,
so familiar data-analytic intuition and tools can be brought
to bear. The spectral approximation applies to data observed
on a regular grid; for data observed at irregular locations,
we will assume the data have been mapped to a regular grid
(Paciorek, 2007; Reich et al. 2011). We do not see this as a
major drawback because our focus is understanding GP fits
rather than enhancing the model’s richness and flexibility.

We emphasize that the choice of the spectral approximation
is predicated on properties of its basis functions that serve our
purposes. This article is not about the spectral approximation
per se or its properties as a model. Others have proposed the

spectral approximation to speed computation (e.g., Fuentes
2006, Paciorek 2007), but that is also not our purpose.
We know of no other approximation (e.g., Karhunen–Loève
expansions, wavelet basis, kernel convolutions, or predictive
processes) that would work in the subsequent development.

The rest of this section describes an approach to fitting lin-
ear mixed models when the random effect is a one-dimensional
GP. Section 2, then, details the spectral approximation for
intercept-only GPs in one dimension observed at equally
spaced locations, and derives the simple restricted likelihood,
which Section 3, then, uses to make conjectures about how
data features affect parameter estimates, which simulation
experiments support. Section 4 extends the approach to mod-
els with covariates. Section 5 then proposes tools for model
building based on the foregoing. Section 6 extends the tools to
data observed on two-dimensional regular grids, and Section 7
applies them to the forest-biomass data. The GP has been
well investigated as a probability model and as an interpo-
lator given parameter values; we focus on the GP as part of
a likelihood used to estimate parameters. Finally, we discuss
only finite sample inferences.

1.1. One Dimensional Gaussian Process Fitting

Given data y(s) at location s for s ∈ {s1, s2, . . . , sM}, we want
to fit the model

y(s) = x(s)β + w(s) + ε(s) (1)

where w(s) is a stationary GP with mean 0 and isotropic
covariance function σ2

sK(d; ρ), and ε(s) is normal with mean
0 and variance σ2

e , independent between locations s and inde-
pendent of w(s). K(d; ρ) is a correlation function; d is the
distance between two locations s; ρ is an unknown range
parameter; and d, ρ, and s have the same units (distance). The
row p-vector x(s) contains covariates including the intercept
and the column p-vector β contains fixed effects.

Parameters that need to be estimated are β, σ2
s (process

variance), ρ (range), and σ2
e (error variance). One way to fit

this model is to write it as a linear mixed model

y = Xβ + IMγ + ε, (2)

where y = (y(s1), y(s2), . . . , y(sM))′, X’s rows are the x(s),
γ ∼ N(0, �) with � = σ2

sK(d; ρ), and ε ∼ N(0, R) with R =
σ2

e IM . Defining V = � + R, the unknowns in � and R are
commonly estimated by maximizing the log restricted likeli-
hood

const−0.5(log|V |+log|X′V−1X|+y′[V−1−V−1X(X′V−1X)−1X′V−1]y).

(3)

The restricted likelihood (3) has non-closed form terms
involving the GP covariance matrix �, so it is a black box. The
key to the desired simple form of (3) is to diagonalize V , lead-
ing to a simple matrix-free form that can be used to develop
intuition about how the GP model is fit to data. (Closed form
expressions for V−1 exist for the Ornstein–Uhlenbeck process
(Finley et al. 2009, Section 2.1.1) but they are not diago-
nal.) To this end, we approximate the GP using orthogonal
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basis functions. The result is an approximation but it can be
used to conjecture about how the exact GP behaves, and the
conjectures can be tested in simulations and used as a basis
for diagnostic tools. The approximation’s accuracy is not of
inherent interest but rather only to the extent that less accu-
racy means poorer understanding of the exact GP and less
useful tools. In this regard, we note that all diagnostics for
non-normal generalized linear models and for Cox regression
are based on approximations.

2. Approximating the Gaussian Process

This section develops a simple approximate form of the
log restricted likelihood (3) using spectral basis functions.
Section 3, then, interprets that approximate restricted like-
lihood as the likelihood for a particular generalized linear
model and uses it to make conjectures about how features
in the data, like outliers or mean-shifts, affect GP fits.

2.1. Linear Mixed Model Representation

An intercept-only GP model, with β the intercept, can be
approximated as

y ≈ 1Mβ + Zu + ε (4)

where two key conditions hold: Z is an M × (M − 1) matrix
of basis functions that is not a function of any unknown
parameters, and u is a zero-mean normal random vector with
a diagonal covariance matrix, G = σ2

sDiag(bj(ρ)), where the
bj(ρ)’s are known functions of ρ. Z and bj(ρ) are chosen so
Cov(Zu + ε) ≈ Cov(y).

To yield the desired simplified restricted likelihood, Z must
have these properties: Z′1M = 0 and Z′Z is diagonal with
diagonal entries c1, c2,. . . , cM−1. For such a Z, premultiplying
(4) by (Z′Z)−1/2

Z′ gives v = δ + ε, where

δ = (Z′Z)
1/2

u∼N(0, σ2
sDiag{bj(ρ)cj}) forj=1, 2, . . . , M−1, and

ε = (Z′Z)
−1/2

Z′ε ∼ N(0, σ2
e IM−1).

Then v = (Z′Z)−1/2
Z′y is normal with E(v) = 0 and diagonal

covariance σ2
sDiag{bj(ρ) cj} + σ2

e IM−1. The distribution of the
vj’s gives the log restricted likelihood for (σ2

s , σ
2
e , ρ):

const − 1

2

M−1∑
j=1

(
log(σ2

saj(ρ) + σ2
e ) + v2

j (σ
2
saj(ρ) + σ2

e )
−1

)
,

(5)
where aj(ρ) = bj(ρ) cj. The columns of Z(Z′Z)−0.5 are
orthonormal and the v2

j ’s are the squared lengths of projec-
tions of y onto these columns. Thus, the vj decompose the data
into components corresponding to these orthonormal predic-
tors; in the spectral approximation described in Section 2.3,
these components correspond to frequencies.

2.2. The Generalized Linear Model Form

Given ρ, the approximate restricted likelihood (5) is identi-
cal to the likelihood arising from a gamma-errors generalized
linear model with identity link, as in Hodges (2014, Ch. 15)
and Henn and Hodges (2014). As such, the v2

j are the data,
the gamma shape parameter is 1/2, E(v2

j ) = σ2
saj(ρ) + σ2

e ,

and Var(v2
j ) = 2(σ2

saj(ρ) + σ2
e )

2
. Thus the v2

j ’s and aj’s in the
approximate restricted likelihood are the keys to understand-
ing how the GP’s parameters are fit to data, giving a way to
examine the model’s fit that is immune to the fact that a GP
can fit any y perfectly. The v2

j ’s and aj’s are, in effect, the
data and predictors in a regression model that provides the
information about the unknowns σ2

s , σ2
e , and ρ.

2.3. The Spectral Approximation

The spectral basis is a powerful tool, widely used for corre-
lated processes. We develop the spectral approximation of a
GP following Royle and Wikle (2005) and Paciorek (2007).

Assume observations have been made at locations sj ∈
S = {1, 2, . . . , M}, j = 1, 2, . . . , M, where M is a multiple of 2.
Define

g(sj) =
M−1∑
m=0

ϕm(sj)um (6)

where um = am + ibm, m = 0, 1, . . . , M−1, are the M spectral
coefficients. The ϕm(sj) = exp(i2πωmsj) are basis functions
having frequency ωm ∈ {0, 1

M
, . . . , 1

2
, − 1

2
+ 1

M
, . . . ,− 1

M
}, m =

0, 1, . . . , M − 1. To apply this approximation to real-valued
Gaussian processes, assume u0, u1, . . . , u M

2
are jointly inde-

pendent; u0 and u M
2

are real valued (b0 = b M
2

= 0); and

u M
2 +1 = ū M

2 −1, . . . , uM−1 = ū1. This makes g(sj) real valued:

g(sj) = a0 + 2

M
2 −1∑
m=1

(am cos(2πωmsj) − bm sin(2πωmsj))

+ a M
2

cos(2πω M
2
sj), (7)

where the am’s and bm’s have independent mean zero Gaussian
distributions with variances V(a0) = 1

M
σ2
sφ(ω0; ρ); V(a M

2
)

= 1
M

σ2
sφ(ω M

2
; ρ); and V(am) = V(bm) = 1

2M
σ2
sφ(ωm; ρ) for

m �= 0 or M/2, where σ2
sφ(.; ρ) is the spectral density of the

covariance function σ2
sK(d; ρ). For large M, this approximate

process is a Gaussian process with mean zero and covari-
ance function close to that of the GP it approximates (Web
Appendices A and E).

For data observed at locations s1 = 1, s2 = 2, . . . , sM = M,
then, model (2) becomes

y = 1Mβ + Zu + ε (8)

where ε ∼ N(0, R), R = σ2
e IM ,

� β is the coefficient for the intercept, the only fixed effect,
� u = (a1, b1, a2, b2, . . . , a M

2 −1, b M
2 −1, a M

2
)′ is the vector of ran-

dom effects, and
� Z is an M × (M − 1) matrix with jth column zj given by(

2 cos(ω j+1
2

2π), 2 cos(ω j+1
2

2π2), . . . , 2 cos(ω j+1
2

2πM)
)′

;

j ∈ {1, 3, . . . , M − 3},(
−2 sin(ω j

2
2π), −2 sin(ω j

2
2π2), . . . ,−2 sin(ω j

2
2πM)

)′
;

j ∈ {2, 4, . . . , M − 2},
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Figure 1. Left panel: aj(ρ) for Matérn ν = 0.5 and Matérn ν = ∞, for two values of ρ, for j ∈[1, 2,. . . , 63, 64]. Center panel:
aj(ρ) for Matérn ν = 0.5 for different values of ρ for j ∈[1, 2,. . . , 199, 200]. Right panel: Circles: vj

2’s for data simulated from
GP with σ2

s = 2, σ2
e = 5 and ρ = 5; line: σ2

saj(ρ) + σ2
e .

(
cos(ω j+1

2
2π), cos(ω j+1

2
2π2), . . . , cos(ω j+1

2
2πM)

)′
;

j = M − 1.

Finally, u ∼ N(0, G)

for G = σ2
sDiag(

1

2M
φ(ωm(1); ρ),

1

2M
φ(ωm(2); ρ), . . . ,

1

2M
φ

(ωm(M−2); ρ),
1

M
φ(ωm(M−1); ρ)),

with m(j) = j/2 for even j and m(j) = (j + 1)/2 for odd j.
The coefficient a0 in (7) is not identified if an intercept is
included in the model, so it has been omitted.

Z does not depend on unknowns; Z′Z = Diag(2M, 2M

, . . . , 2M, M) and Z′1M =0, that is, Z’s columns are orthog-
onal to each other and to the constant vector (proofs are in
the Web Appendix A). The successive columns capture trends
in the data corresponding to increasing frequencies, with the
elements of u being the weights for these trends.

In the spectral approximation, the aj(ρ)’s defined in
Section 2.1 are given by

aj(ρ) = φ(ωm(j); ρ),

with m(j) = j/2 for even j and m(j) = (j + 1)/2 for odd j, j =
1, 2, . . . , M − 1. For example, for the exponential correlation
function (Matérn with smoothness parameter ν = 0.5),

K(si, sj; ρ) = exp(−
√

2|si − sj|/ρ), (9)

and φ(ω; ρ) has the form of a Cauchy density

φ(ω; ρ) = 1√
2
ρ

(
1 + (πρ)2

2
ω2

)−1

. (10)

For any ν, the Matérn(ν) correlation function corresponds to a
particular function aj(ρ). Figure 1’s left panel shows aj(ρ) for
the Matérn(ν) for ν = 0.5 and ∞. Given ρ, the aj(ρ) for dif-
ferent ν hardly differ, indicating how little information about
ν the data can provide. This corroborates the well-known fact
that ν is generally difficult to estimate from data.

A known aspect of the spectral approximation is that aj(ρ)
is non-increasing in j and approaches zero for large j. The aj’s
start higher and decline faster as ρ increases (Figure 1 center
panel).

Empirically, we observe that the spectral approximation
causes the correlation, as a function of the distance between
observations, to decrease to zero at a faster rate than it should
(Figure 2 and Web Appendix E). In one dimension, maxi-
mizing the approximate restricted likelihood compensates by
making the estimate of ρ (range) larger than the estimate
from the exact restricted likelihood. Also, the approximate
process is periodic: g(0) = g(2π) (Figures S1 and S2 in Web
Appendix B show examples). To mitigate this, Royle and
Wikle (2005) use a grid larger than the observation domain,
known as padding. Paciorek (2007) pads by mapping the peri-
odic domain (0, 2π) to (0, 2) and then mapping the observa-
tion domain onto (0, 1). For our purpose, vj must be a function
of the data, so we cannot pad in this way. This is, admittedly,
a weakness of the approximation but does not imply that
it is useful only for analyses of periodic functions; as noted,
the approximation’s utility arises from its ability to provide
insight, which is reasonably unimpaired, as we now argue.

3. Conjectures About Parameter Estimates

Recall from Section 2.2 that for fixed ρ, the approximate
restricted likelihood (5) is identical to the likelihood from a

Figure 2. Left: exact 2-D exponential covariance (includ-
ing the iid errors). Right: approximate covariance. σ2

s = 2,

σ2
e = 0.1, ρ = 5. Observation domain [1, 2,. . . , 20]×[1, 2,

. . . , 20].
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gamma-errors GLM with identity link. This gives a way to
generate conjectures about how parameter estimates are fit
to data.

The matrix Z is the same for all GPs on a given location
set so given y, the v2

j ’s are also the same for all GPs; the only
thing distinguishing GP models for u is their aj(ρ)’s. The
v2

j ’s are the “data” and the parameters are fit for a model
with E(v2

j |σ2
s , ρ, σ2

e ) = σ2
saj(ρ) + σ2

e and Var(v2
j |σ2
s , ρ, σ2

e ) =
2 (σ2

saj(ρ) + σ2
e )

2
.

Because aj(ρ) approaches 0 for large j, E(v2
j |σ2
s , ρ, σ2

e ) ≈ σ2
e

for large j; heuristically, v2
j ’s for large j are more informative

about σ2
e and v2

j ’s for small j are more informative about σ2
s

and ρ. Because aj(ρ) is non-increasing in j, the “data” v2
j have

higher variance for smaller j, so the data provide more infor-
mation about σ2

e than about σ2
s or ρ. For Matérn correlation

functions like (10), σ2
saj(ρ) has the form σ2

sρf (ρ, ω); σ2
s and

ρ are identified in the approximate restricted likelihood (5)
only by f (ρ, ω), which describes how aj(ρ) declines with j,
and ρ̂ and σ̂2

s are chosen to fit this rate of decline to the v2
j ’s.

The noise in v2
j is a function of j so σ2

s and ρ are not always
well identified; this and lack of consistency in joint estimates
of σ2

s and ρ on a fixed domain are well-known problems (Ying
1991, Zhang 2004).

Figure 1’s right panel shows the v2
j ’s and σ2

saj(ρ) + σ2
e for

a dataset simulated with exponential correlation function (9)
and true σ2

s = 2, σ2
e = 5, and ρ = 5. As described, σ2

s , σ2
e , and

ρ are estimated so that the σ̂2
saj(ρ̂) + σ̂2

e fit the v2
j as best they

can. (The estimates are in Web Appendix C, Table S1.) Thus,
the GLM formulation (5) allows us to visualize how features
in the data produce the parameter estimates. Sections 3.1–3.2
present and test some conjectures about how features of the
data affect the parameter estimates.

To do this, data were simulated from a GP with mean 0 and
correlation function (9) and normal(0, σ2

e ) errors using each of
Table 1’s eight combinations of true parameter values, with
observations at locations {1, 2,. . . , 199, 200}. 100 datasets
were simulated for each combination. We call these simulated
datasets uncontaminated data. Parameter estimates were
obtained by maximizing the exact log restricted likelihood;
estimates were also obtained by maximizing the approximate
log restricted likelihood. Table 1 presents averages of the esti-
mates over these 100 datasets with Monte Carlo standard
errors.

We then re-fit the GPs to two kinds of contaminated data,
contaminating by:

� an outlier: the 100th observation was replaced by 18
(Section 3.1);

� a mean shift: 5 was added to the last 100 observations
(Section 3.2).

Web Appendix C, also shows simulation results for a contam-
ination in which the GP’s range parameter ρ was changed
halfway through the series.

3.1. Outlier

How does an ordinary outlier affect the estimates of the GP
parameters?

We conjecture that an outlier will inflate the v2
j ’s for larger

j’s, corresponding to high frequencies. Because σ̂2
e is driven

largely by those v2
j ’s, σ̂2

e will be inflated. The v2
j ’s for smaller

j’s (low frequencies) will be comparatively unaffected, so the
outlier will have little effect on σ̂2

s and ρ̂. These two effects
lead to a smoother fit.

For all eight true parameter combinations, the most strik-
ing effect of the outlier contamination is in fact an inflated σ̂2

e

(Table 1), as conjectured (Figure S19a in Web Appendix C
shows this for one dataset). Figure S19b in Appendix C shows
that the fit is indeed smoother when the outlier is present
(Appendix C, Table S1 gives the estimates). An outlier at the
end of the data series has a similar effect (not shown).

3.2. Mean Shift

Consider the data in Figure 3’s left panel, a draw from a GP
with a shift in the mean halfway through the series. How
does this mean shift affect the stationary GP’s parameter
estimates?

The contaminated data look most like the 2nd column of
the Z matrix (Figure 3 center panel’s upper right), so we
conjecture that the v2

j arising from this column, v2
2, will be

greatly increased, which in turn will inflate σ̂2
s . The large v2

2

will cause the v2
j ’s to decline more sharply in j, so ρ̂ will

be inflated to capture that decline (recall Figure 1’s center
panel). The mean shift, a low frequency data feature, will not
affect the v2

j ’s for large j’s, so σ̂2
e should change little.

The v2
j arising from Z’s second column, v2

2, is indeed
affected most by the mean-shift contamination (Figure 3’s
right panel shows this for one simulated dataset) leading, as
conjectured, to inflated σ̂2

s and ρ̂ (Tables S1 and S2 in Web
Appendix C).

4. Regressing Out Covariates

The spectral representation above is for an intercept-only
GP model. If the fixed-effect design matrix X is not just a
vector of ones, we propose first regressing it out as follows,
and then applying Section 2’s spectral representation. Let
PX = X(X′X)−1

X′ be the orthogonal projector onto X’s col-
umn space. Premultiply both sides of (2) by (IM − PX) to give

y∗ = γ∗ + ε∗, (11)

where y∗ = (IM − PX) y is the residual from a regression on
X, γ∗ = (IM − PX) γ, and ε∗ = (IM − PX) ε, with Cov(γ∗) =
(IM − PX) � (IM − PX) and Cov(ε∗) = σ2

e (IM − PX). The like-
lihood arising from (11) is the restricted likelihood of the
original model (2).

If rank(X) is small compared to M, these approximations
are reasonable: Cov(γ∗) ≈ �, and Cov(ε∗) ≈ σ2

e IM = R, that
is, ignore changes in Cov(y∗) induced by the residual projec-
tion, as standard linear-model diagnostics do. Priestley (1981,
Ch. 7) discusses fitting stationary processes to residuals from
least-squares fits. If the residuals arise from a polynomial fit,
then the spectral densities estimated from y∗ and y have the
same asymptotic properties.

Thus, we assume the residuals γ∗ after regressing
on the covariates can be approximately modeled by a
GP having the same covariance form as γ and the
errors ε∗ approximately modeled by the same form
as ε, with possibly different parameter values. With the
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Table 1
Average over 100 simulated datasets of estimates maximizing the exact and approximate restricted likelihoods; contamination

by an outlier. Standard errors are in parentheses.

Exact RL Approximate RL

σ2
s σ2

e ρ σ2
s σ2

e ρ

Actual values 2 5 5 2 5 5
Uncontaminated 2.29 (0.11) 4.75 (0.11) 6.89 (0.82) 2.39 (0.16) 4.90 (0.09) 13.51 (1.74)
Contaminated 2.44 (0.10) 5.99 (0.11) 7.25 (0.60) 2.48 (0.18) 6.04 (0.11) 12.76 (1.21)

Actual values 2 5 16.67 2 5 16.67
Uncontaminated 2.16 (0.09) 4.89 (0.07) 26.12 (4.32) 2.17 (0.09) 4.91 (0.06) 38.11 (2.53)
Contaminated 2.23 (0.11) 6.14 (0.09) 20.11 (1.84) 2.39 (0.11) 6.07 (0.08) 33.99 (2.74)

Actual values 2 0.1 5 2 0.1 5
Uncontaminated 1.94 (0.03) 0.099 (0.01) 4.97 (0.13) 1.97 (0.04) 0.232 (0.01) 10.24 (0.25)
Contaminated 1.98 (0.05) 1.36 (0.03) 5.46 (0.24) 2.03 (0.05) 1.45 (0.03) 10.94 (0.94)

Actual values 2 0.1 16.67 2 0.1 16.67
Uncontaminated 2.09 (0.07) 0.093 (0.00) 18.07 (0.84) 2.01 (0.08) 0.144 (0.00) 34.84 (1.67)
Contaminated 2.08 (0.06) 1.33 (0.02) 17.69 (1.04) 2.03 (0.08) 1.39 (0.02) 34.57 (1.76)

Actual values 10 5 5 10 5 5
Uncontaminated 10.17 (0.20) 4.99 (0.13) 5.58 (0.18) 9.98 (0.21) 5.63 (0.10) 10.87 (0.41)
Contaminated 10.02 (0.22) 6.01 (0.15) 5.59 (0.24) 10.12 (0.22) 6.70 (0.13) 10.24 (0.40)

Actual values 10 5 16.67 10 5 16.67
Uncontaminated 10.44 (0.37) 4.80 (0.06) 17.57 (0.83) 10.54 (0.43) 5.08 (0.06) 35.60 (2.05)
Contaminated 9.65 (0.29) 6.24 (0.09) 17.99 (1.01) 10.27 (0.39) 6.59 (0.08) 37.32 (2.64)

Actual values 10 0.1 5 10 0.1 5
Uncontaminated 9.70 (0.17) 0.21 (0.03) 5.26 (0.13) 9.65 (0.17) 0.76 (0.03) 10.34 (0.28)
Contaminated 10.17 (0.19) 1.36 (0.08) 5.19 (0.13) 9.55 (0.19) 2.09 (0.07) 10.12 (0.32)

Actual values 10 0.1 16.67 10 0.1 16.67
Uncontaminated 9.99 (0.34) 0.11 (0.01) 17.29 (0.67) 10.02 (0.37) 0.32 (0.01) 32.70 (1.37)
Contaminated 10.52 (0.31) 1.39 (0.05) 18.14 (0.76) 10.30 (0.35) 1.59 (0.05) 34.29 (1.29)

approximation Cov(y∗) ≈ � + R, the model becomes

y∗ = IMγ∗ + ε∗, (12)

where y∗ = (IM − PX) y, γ∗ = (IM − PX) γ
approx∼ GP(0, �),

ε∗ = (IM − PX)ε
approx∼ N(0, R).

It is helpful to see what this approximation does in practice.
When X is a column of 1’s and Z is Section 2.3’s spectral basis

matrix, vj is the unshrunk projection of y onto the jth column
of W = Z(Z′Z)1/2. If we add fixed effects to X and proceed as
proposed, replacing y with y∗ = (IM − PX)y but keeping the
same Z, then the unshrunk projections of y∗ onto the columns
of W , that is, the W ′y∗, are

W ′(IM − PX)y=(Z′Z)1/2Z′y−(Z′Z)1/2Z′PXy=v−(Z′Z)1/2Z′PXy

(13)

Figure 3. Left panel: Data simulated from GP with σ2
s = 2, σ2

e = 5, and ρ = 5 with mean shift from 0 to 5 midway. Center
panel: First four columns of Z, the spectral basis matrix, on the domain [1, 2,. . . , 199, 200]. Right panel: Dots: vj

2’s from
uncontaminated simulated data; triangles: vj

2’s from data with mean shift.
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= v − [PXZ(Z′Z)1/2]′y. (14)

Each vj is reduced by an amount depending on how much
of it “goes away” when y is projected onto the orthogonal
complement of X’s column space, as in (13), or by an amount
determined by the projection of Z’s jth column onto X, as in
(14). The approximation Cov(y∗) ≈ � + R reduces y’s projec-
tion onto Z’s jth column to an extent depending on how X

(collectively) is correlated with Z’s jth column. Note that in
computing the exact restricted likelihood, all of y’s variation
in X’s column space is attributed to X; the approximation
retains this key feature.

For another view, consider the Kullback–Leibler distance
between the densities N(0, � + R) and N(0, P�P + R),

0.5 log[det(P�P+R)/det(�+R)]−M+trace[(P�P+R)−1(�+R)],

where P is an M × M projector of rank M − p. If (P�P +
R)−1(� + R) is approximately the identity, this distance is
small, as is the case here.

Figures S3–S18 in Web Appendix B show Cov(y∗) and
Cov(y) for various M, σ2

s/σ
2
e , ρ, correlation functions, and X.

These figures show that the structure of Cov(y∗) is (for our
purposes) satisfactorily approximated by the functional form
of Cov(y).

5. A Small Toolkit for Assessing Goodness of Fit
and Considering Covariates

Conventional residuals can highlight a few extreme outliers in
data space but cannot identify lack of fit, especially in the GP
part of the model. Indeed, any model of this type can be made
to fit any y arbitrarily well by setting ρ small and σ2

s large.
This section shows how to use the tools from earlier sections
to avoid this problem, in particular highlighting lack of fit
in the GP part of the model. When covariates are available,
we present tools for considering which covariates to add. If
no covariates are available, the tools identify properties of
potential covariates, to aid in seeking them.

When covariates (potential fixed effects) are available, a
modeler must make a choice: either let the fitting machinery
interpret strong low-frequency data features as evidence of
stationary GP errors with large σ2

s and ρ, or attribute those
features to covariates to the extent possible. Whatever your
view on this matter, it is essential to know whether such fea-
tures are present so a well-informed choice can be made. A
plot with v2

j on the vertical axis and j on the horizontal
axis (henceforth “the v2

j plot”) shows such prominent low-
frequency data features as large v2

j for small j. If, in the same
plot, some v2

j are large for large j, that is evidence of outliers
(high frequency trends). Generally, a large v2

j suggests a miss-
ing covariate with high power at the frequency corresponding
to j. A polynomial or sinusoidal curve of that frequency could
be added and this may be defensible in some cases, for exam-
ple, a linear term parallel to a coordinate axis or an annual
cycle. However, adding substantively meaningful covariates is
generally more satisfactory.

The v2
j plot is visually dominated by low frequency j; out-

lying yi or high frequency trends in y will be spread out
among high-frequency v2

j and may not be visible in the v2
j

plot. If potential covariates are available, however, a modest

adaptation of the familiar added variable plot can be used
to examine covariates irrespective of their prominent frequen-
cies. We now describe added variable plots in the observation
and spectral (frequency) domains.

5.1. Added Variable Plots

In an ordinary linear model, the added variable plot for a
candidate predictor C is drawn as follows (Cook and Weisberg
1982, p. 44; Atkinson, 1985, Section 5.2):

(1) Compute residuals from regressing the outcome y on
all predictors except C.

(2) Compute residuals from regressing C on all predictors
other than C.

(3) Plot the residuals from steps 1 and 2 on the vertical
and horizontal axes, respectively.

(4) Fit a regression through the origin to the plotted data;
this estimates the coefficient of C if it were included in
the model.

This usual added variable plot assumes errors are independent
with constant variance. A linear mixed model with a GP ran-
dom effect has neither property; for this model, we describe
how to adapt added variable plots in both the observation
and spectral domains. Both plots estimate the same slope for
the covariate C.

5.1.1. Observation domain. Consider adding C to give
the model y = Xβ + Cα + γ + ε, where X contains predic-
tors already in the model including the intercept, γ is a
GP-distributed random effect, and ε is iid normal errors.
Pre-multiply both sides of the model equation by V̂−0.5,
where .̂ denotes estimates from fitting the model without Cα.
Then pre-multiply both sides of the model equation by P̂ =
I − V̂−0.5X(X′V̂−1X)

−1
X′V̂−0.5 to give P̂V̂−0.5y = P̂V̂−0.5Cα +

P̂V̂−0.5(u + ε). The added variable plot shows P̂V̂−0.5y vs
P̂V̂−0.5C.

5.1.2. Spectral domain. For the same model equa-
tion, pre-multiply both sides by (I − PX), then
pre-multiply by (Z′Z)−0.5

Z′, then pre-multiply by

D̂ = Diag(1/
√

σ̂2
sa(ρ̂) + σ̂2

e ), to give D̂v∗ = D̂v∗
Cα +

D̂(Z′Z)−0.5
Z′(γ + ε), where v∗ = (Z′Z)−0.5

Z′(I − PX)y are the
vj from the residuals y∗ and v∗

C = (Z′Z)−0.5
Z′(I − PX)C are vj

from the residuals for C. This added variable plot shows D̂v∗

vs D̂v∗
C.

A common method for assessing the effect of a predictor
is to fit the model with and without the predictors and com-
pare the fits; the model is fit twice, which may be inefficient
depending on the cost of a model fit. In contrast, added vari-
able plots do not require re-fitting the model for each predictor
and also show the effect of individual observations.

In the example below and the Web Supplement, we demon-
strate the model building tools described here, that is, the v2

j

plot and the added variable plots. (Web Appendix G uses
a simulated example; Appendices H, I, and J use Finley
et al’s (2008) forest biomass data.) These examples show
how a low-frequency covariate can have a weak signal in the
observation-domain added variable plot but a strong signal
in the spectral-domain added variable plot; similarly, the two
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Figure 4. After intercept-only fit; leftmost figure in top line is v2
j vs j. All other figures are spectral-domain added vari-

able plots; Top line second-left to right: Elevation, Slope, SpringTC2; Bottom line left to right: SpringTC3, SummerTC1,
SummerTC3, FallTC2.

added variable plots may have signals of differing strength for
a covariate with power mainly in high frequencies.

6. Gaussian Process on Two Dimensions

Section 2 described the spectral basis and GLM interpreta-
tion of the approximate restricted likelihood for observations
at locations in one dimension. Spatial data are commonly
observed at two-dimensional locations; this section outlines
derivation of the 2-dimensional (2-D) approximate restricted
likelihood; Web Appendix D gives details.

For observations on an equally spaced M1 × M2 grid, the
restricted likelihood has the same form as (3) and as in the
1-D case, we approximate the intercept-only GP using spec-
tral basis functions. If the model includes fixed effects X, we
proceed as in Section 4’s 1-D case, that is, assume (approxi-
mately) that the residuals follow a linear mixed model with
a GP-distributed random effect, then approximate this GP
using the spectral basis. For the 2-D model, the approximate
log restricted likelihood has the matrix-free form

ALR(σ2
s , σ

2
e , ρ) = const − 1

2

M1M2−1∑
j=1

(
log(σ2

saj(ρ) + σ2
e ) + v2

j (σ
2
saj(ρ) + σ2

e )
−1

)
; (15)

the aj(ρ) are sorted to be non-increasing in j; it is easy to
prove this order is invariant to ρ.

We can now ask for the 2-D case how GP fits respond to fea-
tures in the data. As in the 1-D case, by construction sin/cos
column pairs of the spectral basis matrix Z decompose the
data into frequency components. Thus a high frequency fea-
ture, for example, an outlier, falls in the space spanned by
columns of Z with large j and inflates v2

j for larger j, which
in turn inflates σ̂2

e . A low frequency feature in y, for example,

a linear trend, inflates v2
j for smaller j, which in turn inflates

ρ̂ and σ̂2
s .

For data observed on a regular grid, we have made two
approximations: approximating (IM1M2 − PX) � (IM1M2 − PX)
+ σ2

e (IM1M2 − PX) by � + R, and the spectral approxi-
mation. If the observation locations are not on a regular
grid, we suggest first smoothing the data onto such a grid,
as follows.

6.1. Smoothing Observed Data onto a Regular Grid

Construct a rectangular uniformly spaced grid on the obser-
vation domain; the grid size must be a multiple of 2 in
each dimension. Label the grid locations {1, 2, . . . , M1} ×
{1, 2, . . . , M2} and re-scale the actual observation domain to
[1, M1] × [1, M2]. To minimize space in the grid with no
observations, the map of observation locations may need
to be rotated to make it more nearly rectangular, and
M1/M2 should be close to the aspect ratio of the observa-
tion locations. Then for each location on the grid, we suggest
constructing an artificial datum using inverse distance weight-
ing (IDW) (Shepard 1968, Zimmerman 1999): if the data are
(y1, y2, . . . , yn)

′ at 2-D locations (s1, s2, . . . , sn)
′, the value at

grid location � is

∑n

k=1
tk yk∑n

k=1
tk

, where tk = 1

d(�, sk)λ
, (16)

where d is Euclidean distance and λ is a tuning constant.
In Section 7’s example, we chose M1, M2, and λ so σ2

s , σ2
e ,

and ρ would have estimates as similar as possible from the
artificial and actual data. Other choices of M1, M2, and λ

would give results qualitatively similar to those we present.
Web Appendix K describes a simulation experiment showing
the consequences of different M1, M2, and λ. Broadly, IDW
largely preserves y’s low-frequency trends while sacrificing
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Table 2
Slopes of spectral-domain added variable plots, after the intercept-only fit

Candidate covariate Slope p-value j with top 5 Cook’s dist

Elevation −3.17 10−10 1,182,9,181,434
Slope −2.24 10−9 1,182,463,70,65
SpringTC2 −0.60 0.03 20,499,354,268,369
SpringTC3 0.59 0.02 1,506,196,403,463
SummerTC1 −0.77 0.007 248,463,20,268,327
SummerTC3 0.92 0.0004 1,258,378,358,248
FallTC2 −0.69 0.004 182,463,1,212,280

power at high frequencies, less so for larger λ. Thus σ̂2
e is

smaller for the artificial data than for the actual data, ρ̂ is
inflated slightly, and σ̂2

s is affected but not in a systematic way.
Added variable plots in the observation domain preserve y’s
high-frequency information; spectral-domain plots lose some
of it. IDW’s main virtue for our purpose is computing speed;
an ideal method, if one exists, would minimally affect power
at all frequencies.

7. Application to Data

We illustrate use of the tools with the 2002 forest
inventory data analyzed by Finley et al. (2008) and
included with the R package spBayes (BEF.dat; Finley
et al. 2007). The outcome y is red maple total basal
area (RM 02BAREA × BAREA02 TOT) and potential pre-
dictors are ELEV, SLOPE, SPR 02 TC2, SPR 02 TC3,
SUM 02 TC1, SUM 02 TC3, and FALL 02 TC2, all mea-
sured at 437 locations. The data were smoothed to a grid
using IDW with grid size 28 × 20, with λ = 7 for y and λ = 9
for the predictors. We fit an intercept-only model in which the
GP had the exponential covariance function, that is, Matérn
with ν = 0.5, then used the tools to examine the fit and
consider adding predictors. Section 7.1 considers the spectral-
transformed data and spectral-domain added variable plots
for selecting predictors, Section 7.2 considers observation-
domain added variable plots and Section 7.3 shows fits and
tests for added variables using the exact restricted likeli-
hood and the original data. Here, we show just the first of
a sequence of model-building steps; Web Appendices H, I,
and J give all of the steps. We present this only to illustrate
how the tools could be used; we make no claim that these
steps are optimal.

Table 3
Slopes of observation-domain added variable plots, after the

intercept-only fit

Candidate covariate Slope p-value

Elevation −2.02 0.07
Slope −1.45 0.004
SpringTC2 −0.28 0.42
SpringTC3 0.96 0.002
SummerTC1 −0.98 0.002
SummerTC3 1.25 10−5

FallTC2 −0.83 0.004

7.1. Model-Building in the Spectral Domain

The questions are: does the intercept-only model suffice to
explain variation in y or should covariates be added and if so,
which ones? A stationary GP model is flexible enough that the
fit to y is never bad but we presume that apparent deviations
from stationarity are better modeled using covariates than
with the GP.

Consider Figure 4’s leftmost figure in the top panel, the v2
j

plot from the intercept-only fit; the plotting symbol is j. The
point j = 1 corresponds to a cubic or linear north-south trend
(the spectral basis has no linear-like component), so the huge
v2
1 indicates a north-south trend. Adding a covariate could

remove this trend. Figure 4 shows spectral-domain added vari-
able plots for the candidate covariates, each of which (after
pre-smoothing to the grid) has been standardized by sub-
tracting its average and dividing by its standard deviation, so
the covariates’ slopes are comparable. Table 2 suggests that
adding covariates will improve the fit. Note that for elevation
and slope, Figures 4’s top panel second and third figures from
left, the signal for adding the covariate is concentrated in few
transformed observations with extreme values on the horizon-
tal axis, including the lowest frequencies j = 1 and 2, while
the signal for the other covariates is more diffuse in j.

The natural impulse is to add the covariate with the largest
slope, which is Elevation. However, because v2

1, a north-south
trend, is the most prominent v2

j , we also want the added
covariate to explain some of this trend, the more the better.
To this end, we calculated Cook’s distance, describing the
influence of each point on the regression slope; we want j = 1
to have a large Cook’s distance. Among the candidate covari-
ates, Elevation has the smallest p-value for its added variable
plot’s slope and j = 1 has the largest Cook’s distance. There-
fore, we add Elevation to the model. (Slope has results similar
to Elevation so we could have added Slope instead. Had we
done so, then applying the same considerations in the next
step would lead to adding Elevation next.)

Web Appendices H, I, and J show further model-building
steps. Again, we make no claim this is an optimal sequence of
steps but merely intend to illustrate how the tools can be used.

7.2. Added Variable Plots in the Observation Domain

Added variable plots in both domains estimate the same
slope (apart from effects of the approximations used for the
spectral-domain plot) but they emphasize different aspects of
the outcome y and the candidate predictors. Table 3 shows
slopes and p-values for observation-domain added variable
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Table 4
Exact restricted likelihood maximized for the raw data: estimated coefficient and Wald-test p-value for each candidate

covariate, added individually (one at a time) to the model, and resulting estimates of σ2
s , σ2

e , and ρ.

Coefficient Variance parameters

Candidate covariate slope p-value σ̂2
s σ̂2

e ρ̂

Intercept-only – – 29.62 16.20 5.96
Elevation −2.52 <10−12 21.96 13.82 2.85
Slope −1.63 10−6 20.31 16.11 3.97
SpringTC2 −0.28 0.16 29.69 16.35 6.13
SpringTC3 0.99 10−5 26.80 17.15 6.93
SummerTC1 −1.03 10−5 30.98 17.54 8.88
SummerTC3 1.25 10−7 26.91 16.19 6.14
FallTC2 −0.87 0.0001 26.50 17.33 6.98

plots, comparable to Table 2. The most striking differ-
ences are for Elevation and Slope: their strong low-frequency
components are emphasized by the spectral-domain added
variable plot but de-emphasized by the observation-domain
plot. Thus, although in the observation-domain plots these
two predictors have the largest slopes in absolute value
(Table 3), they have much larger p-values than in the
spectral-domain plots, reflecting lower power in the obser-
vation domain. Among the other predictors, Spring TC3,
Summer TC1, and Summer TC3 have somewhat larger slopes
and somewhat smaller p-values in the observation domain,
reflecting their relative strength in high frequencies.

7.3. Fits Using the Raw Data and Exact Restricted
Likelihood

Table 4 shows estimates of coefficients of the candidate
covariates using the original data y and maximizing the
exact restricted likelihood to estimate σ2

s , ρ, and σ2
e . These

estimates are almost exactly equal to the slopes of the
observation-domain added variable plots (Section 7.2), as
might be expected given that the latter plot involves less
approximation. The p-values in Table 4 are from Wald tests
that treat estimates of σ2

s , ρ, and σ2
e as if they are known to

be true, as is typical in non-Bayesian analyses, which ignores
variability accounted for in the p-values for both added vari-
able plots.

Table 4 also shows σ̂2
s , σ̂2

e , and ρ̂ for the intercept-only
model and for models adding each candidate covariate. Eleva-
tion and Slope, which have strong low-frequency components
and low p-values in the spectral-domain added variable plots,
have the biggest impact on σ̂2

s and ρ̂. Entering either moves
substantial variation out of the GP part of the fit and into the
fixed effects, leaving the GP part of the fit with less variation
(σ2
s ) and spatial correlation range (ρ). The other candidate

covariates have much smaller effects on estimates of the GP
parameters. Elevation is the only candidate covariate with
a noteworthy impact on σ̂2

e . Web Appendices H, I, and J
show analogous estimates for later steps in the model-building
process.

8. Discussion

This article is a step toward tools for doing data-analysis with
linear mixed models with a random effect distributed as a sta-
tionary Gaussian process, specifically tools for model-building

and understanding model fits. We used the spectral approxi-
mation for stationary isotropic GPs on regularly spaced grids
to give a linear mixed model in which the random effect has a
design matrix with orthogonal columns not depending on any
unknowns and a diagonal covariance matrix. The resulting
approximate restricted likelihood is formally identical to the
likelihood from a GLM with gamma errors and identity link.
The transformed observations v2

j and the functions aj(ρ)—
the spectral density of the GP’s covariance—are the keys to
understanding the restricted likelihood as a function of the
unknowns. The spectral approximation could also contribute
to understanding spatial confounding; this is secondary to the
present purpose but is discussed in Web Appendix L.

The approximate restricted likelihood fits the v2
j ’s to

σ2
saj(ρ) + σ2

e , so a prominent v2
j , especially for small j, sug-

gests a missing covariate with substantial power at the
corresponding frequency. If covariates are available, added
variable plots in the observation and spectral domains can
be used to examine the support in the data for adding each
potential covariate.

The spectral representation requires data observed on an
regular grid; we suggested a way to apply these methods
to data observed at irregularly spaced locations but other
approaches are possible. We view the present work as a begin-
ning, not a definitive approach. Finally, we used a dataset
to sketch how to use the model building tools developed
here. A future publication will include a more fully worked
example.

9. Supplementary Materials

Web Appendices A, E, F, referenced in Section 2; Web
Appendix B, referenced in Sections 2 and 4; Web Appendices
C, D, G, K, L, referenced in Section 3, Section 5, Section 6,
Section 8, respectively, and Web Appendices H, I, J, refer-
enced in Sections 6 and 7 are available with this article at the
Biometrics website on Wiley Online Library. R code imple-
menting the spectral approximation and constructing added
variable plots for 2-D data is available with this article at the
Biometrics website on Wiley Online Library.
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