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1 Web Appendix A. Spectral approximation in one dimension:

technical details

1.1 Distribution of u,, from a,, and b,,

Given the assumed normal prior distributions for the a,,’s and b,,’s, it can be shown that the u,,’s

have complex normal distributions as follows.
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Assume g, ~ N(0, —Uf(b(wm;p)), bm ~ N(0
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ap ~ N(0, 7:06(w0; p), ass ~ N(0, -05é(was; p)), bo = by = 0.

Therefore, u,, = a,;, + ib,, has a complex normal distribution with

1. E(um) = E(am) + iE(by) = 0;

2. covariance matrix: V(um) = Vag + Vip + 1(Vap — Vi) = ﬁai.?(b(wm; p) Ym;
3. relation matrix: C(um) = Vaa — Vip + (Vg + Vap) = 0.

S0, E(tm) = 0, E(umuyn) = 0 for m # n and E| uy, |* = Lo2¢(wWm; p).-

Note that in all the following proofs, the specific choices of the values of the s;’s and the wy,’s

have a crucial role.

1.2 Proof that the spectral approximation is valid

We prove the approximate equality Cov(g(s;), g(s; +d)) ~ 02K (d; p).
Definition of spectral density (Priestley 1981, p. 199, 211). Let R(d) be the covariance

function of a continuous parameter stationary process. If R(d) is absolutely integrable and isotropic,



then its spectral density is defined as

h(w) = /OO exp(—2miwd)R(d) dd.
When the process is observed only at a discrete set of integer locations, then R(d) is defined only
for integer values of d and the above integral has to be replaced by a discrete sum (Priestley 1981,
b. 222) h(w) = i exp(—2miwd)R(d), -

d=—o00

<w<

N —
N | —

Now, exp(—2miwd) is a periodic function of w with period 1, so the components in the observed
discrete parameter process with frequencies w — 1, w4+ 1, w — 2, w + 2,.... will all appear to have
frequency w. The frequency w is then said to be the alias of the frequencies w + 1, w +2,..... Since
every frequency outside [—%, %] has an alias inside this range, the spectral density is defined only
for w in the range [—%, %]

Then .
/2 exp(2miwd)h(w) dw = R(d).

[NIES

Proof: 1 1 o0
/ exp(2miwd)h(w) dw = / ) > exp(—2miw(s — d))R(s) dw
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using the definition of spectral density
%
= Z R(s) / exp(—2miw(s — d)) dw
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because sin of any integer multiple of 7 is 0.

1

oL K(d; p) = /2 exp(2miwd)og ¢(w; p) dw,

Thus we have

N[

where d is the distance between two locations belonging to S and our proof of Cov(g(s;), g(sj+d)) ~



02K (d; p) is complete if we can show

Cov(g(sj),g(sj +d)) ~ /2 exp(2miwd)o2p(w; p) dw.

NI

Spectral representation theorem (Gelfand et al. 2010, p. 60). Suppose Yy, Y7, ..., Y31 are
mean zero complex random variables with E(Y;Y,,) =0 for l #m =0,1,...., M and E|Y,, \2 = fm
for each m, and suppose wg, w1, ...,wp—1 € R, —% <wpy < %Vm.

Consider M-1
Z(s) = exp (127w, s) Y, se S el

Then Z(s) are realizations of a weakly stationary process in R with covariance function
M-1
C(d) =Y exp(i2mwpmd) fm
m=0

where d is the distance between two locations belonging to the set of locations S.
Thus, for our approximation, by the spectral representation theorem, {g(s;);s; € S} is a weakly

stationary process in # with covariance function Cov(g(s;), g(s; + d)) given by
M-1
C(d) =) exp(i2rwpd) E| up, [°

m=0

= exp (127w d) o2 d(wWm; p)

where the last step follows from the Riemann sum formula for the definite integral.

1.3 Orthogonality of columns of Z
For z; the 4% column of Z, we need three results:
L 2iz;=2M, for j€{1,2,.,.M -2}, 2. 2iz;=M, for j=M—1

2. Z;Zl:07 for l#]€{1,27,M—1}



We prove 1 below; 2 and 3 can be proved similarly.

Proof: For j € {1,3,....M — 3}
M 2m
252 = 2; (cos 0 + cos( CU]Jer % 2k)) (1)

because cos(mz) cos(nz) = (cos(m — n)z cos(m + n)z). Then equation (1)

M

Ak B ) 4
= 2M+2]§1 cos(w% i )= 2M+,§1(60k +e Ck), for c = zw%ﬂ,
c( ,Mc —Mc( Mc Mec c —Mc
—1 -1 —1
_ong 4 £l ) e ) _on 4 € N+ ™) on
e —1 e —1 e —1
S
because eM¢ = ¢ F T = cos(wjt14m) + i sin(wjti1dr) =14+0=1.
2
For j € {2,4, ..., M — 2} o )
T

=2 — — 2
kg_l (cos 0 — cos(w i 2k)) (2)

because sin(maz) sin(nz) = 3(cos(m — n)z — cos(m + n)z). Then equation (2)

4 k Mc_l c —Mc 4
=2M — 22005 wj il 2M—(€ Z(eje ),c:iw- 7T:2]\/j
2 eC —

iw j 4T
because eM¢ = ¢ 3 = cos(w;4m) 4+ i sin(w;dm) =1+0= 1.
2 2

Orthogonality of X=1 and Z

We show below that the odd-numbered columns of Z sum to 0. It can be shown similarly that the
even-numbered columns also sum to 0.

Proof: For j € {1,3,..., M — 3}, the sum of j** column is

M o M o
oLoen _ ck —ck _a e
QECOS(wTMk)—kzl(e +e ), forc—zou%]w7
B ec(eMc_ 1) N e—Mc(eMc o 1) B (GMC— 1)(€c+6—Mc) 0
N e —1 e —1 B e —1 N
w412
because eMe = ¢ H " = cos(wj+12m) +isin(w;j127r) =140=1.
2 2



For j = M — 1, the sum of j*" column is

M M
2
=2 E cos(w%ﬂﬂk) =2 E cos(7k), since Wy =
k=1 k=1

M

M Mc c -M
1 +
= E (e”k+6_7Tk),—— (e 2(61 © ), forc=im,=0
et —

because eM¢ = ¢M™ = cos(Mn) + i sin(M7) =140 = 1.

2 Web Appendix B. Covariance matrices

Figures 1 and 2 show some exact, approximate, and estimated covariance matrices for our model
[GP + iid Normal error| with the spectral approximation, as discussed in the last paragraph of

Section 2.3 in the main paper.
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Figure 1



50 100 150 50 100 150
| | | | | | — | | 1 1 1 1

Lo F 20

150 4 r r5 150 -
rl5

100 1 r F3 100 - 1.0

r 05

ro0 r 0.0
T T T T T T u T T T T T T u
50 100 150 50 100 150

(a) Left: Fitted exact covariance matrix for (b) Left: Fitted exact covariance matrix for
data with 02=2, 02=5 and p=>5 using estimates  data with 02=2, 02=0.1 and p=16.67 using esti-
from the exact restricted likelihood (RL). Right:  mates from the exact restricted likelihood (RL).
Fitted approximate covariance using estimates  Right: Fitted approximate covariance using es-
from the approximate RL. timates from the approximate RL.
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2.1 Cov(y) and Cov(y*) for M=100, and M =200

In Section 4 of the main paper, we claim that the covariance of the residuals from a regression of the
data on the fixed effects in the model is reasonably well approximated by the assumed covariance
structure of the data y, and implicitly argue that this approximation should be better, for a given
rank of fixed-effect design matrix X, if the number of observations M is larger. Denote the residuals
by y*. Note that it is enough that Cov(y*) resembles the covariance structure of y; it need not be

the same in value as Cov(y), because the values of the parameters o2,

o2 and p will be different
for y and for y*. This appendix shows covariance matrices for y and for y* (plotted using the
same color scale), for the scenarios described below. Figures 3 to 6 use the exponential covariance
(Matérn with v=0.5), and X has two columns, namely a column of ones and a column of random
draws from N(0,1). Figures 7 to 10 also use the exponential covariance, but the second column of
X is now the first column of the spectral basis matrix Z which is an extreme case because the effect
of the residual transform would be concentrated on the column of Z with the largest eigenvalue.
Figures 11 to 14 use the Matérn with v=3.5 covariance, and X has two columns, namely a column
of ones and a column of random draws from N(0,1). Figures 15 to 18 also use the Matérn with

v=3.5 covariance, but now the second column of X is the first column of the spectral basis matrix.

We consider two sets of parameter values for the two variance parameters: o2 = 2, 02 = 5, and



02 = 2, 02 = 0.1, the object being to have two different ratios 02/02. The two parameter values

considered for the range parameter are p=>5, and p=16.67.

Figure 3
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d) Cov(y*). o2 =
2, 02=0.1, p=16.6T,

a) Cov(y). o2 = 2, (b) Cov(y*). o2 =2, (c) Cov(y). o2 = 2, (d) Cov(y*). o2 = 2,
02=5, p=5, M=100 o2=5, p=5, M=100. 02=5, p=5, M=200 a2=5, p=5, M=200.
Figure 7
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(a) Cov(y). o2 = 2, (c) Cov(y). o2 = 2, (d) Cov(y*).
0

02=0.1, p=5, M=200.  o2=0.

Figure 9
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2, 02=0.1, p=16.67, 2, o2=0.1, p=16.67, 2, 02=0.1, p=16.67, 2, o02=0.1, p=16.67,
M=100. M=100. M=200. M=200.
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(a) Cov(y). o2 = 2, (b) Cov(y*). o2 =2, (c) Cov(y). o2 = 2, (d) Cov(y*).
02=0.1, p=5, M=100.  02=0.1, p=5, M=100.  02=0.1, p=5, M=200.  o2=0.

Figure 13
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(a) Cov(y). o2 = 2, (b) Cov(y*). o2 =2, (c) Cov(y). o2 =2, (d) C
02=0.1, p=5, M=100.  02=0.1, p=5, M=100.  02=0.1, p=5, M=200.  o>=0.

Figure 17
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a) Cov(y). o2 = (b) Cov(y*). o2 = (c) Cov(y). o2 = (d) Cov(y*). o2 =
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M=100. M=100. M=200. M=200.

Figure 18

3 Web Appendix C. Simulation results

This appendix supplements the simulation results reported in the main paper regarding the effects
of contaminating data simulated from an intercept-only linear mixed model with GP-distributed
random effect and iid Normal errors, for two contaminations: adding an outlier (Section 3.1 in the
main paper; Table 1 and Figure 19a,b below) and adding a mean shift in the data series (Section 3.2
of the main paper; Tables 1 and 2 below). This appendix also presents conjectures and simulation
results regarding contamination by replacing a part of the data series by data simulated from a GP
with a different range parameter (p), which is not discussed in the main paper. Section 3.0.1 below
gives these conjectures and discusses simulation results presented in Figure 19c¢ and Tables 1 and

3 below.
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Figure 19: (a) and (b) show effects of contamination by an outlier; (c) shows effects of contamination
by GP with a different range. Parameter values: o2=2, 02=5 and p=>5. Estimates from exact
restricted likelihood maximization.

Table 1: Estimates of GP parameters maximizing the exact and approximate restricted log likeli-
hoods (“exact RL” and “apprx RL” respectively) for two simulated datasets. Also presented are
estimates after the data is contaminated by an outlier in the middle, by a mean-shift midway, or
by replacing a subseries of observations by observations from a GP with a different p.

exact RL apprx RL
actual values used in simulation 2 5 5 2 5 5

estimates from simulated data 1.76  4.66 4.00 1.71 484 833
from data contaminated by outlier 1.07  7.02 11.11 1.07  7.06 25.00
from data contaminated by shift 13.05 5.63 58.82 14.51 5.71 106.38
from data contaminated by another GP  1.69 4.24 3.04 1.56  4.51 7.09
actual values used in simulation 2 0.1 16.7 2 0.1 16.7
estimates from simulated data 1.95 0.11 16.7 1.94 0.15 33.33
from data contaminated by outlier 1.59 1.93 12.50 1.62 1.96 25.00
from data contaminated by shift 11.51 0.03 55.56 10.99 0.12  93.46
from data contaminated by another GP  1.60 0.09 8.55 1.56 0.18 17.86
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Table 2: Average over 100 simulated datasets of estimates maximizing the exact and approximate
restricted likelihoods: contamination by mean shift. Monte Carlo standard errors are in parentheses.

exact RL approximate RL
A o; p i o; P
actual values 2 5 2 5 5
uncontaminated  2.29 (0.11) 4.75 (0.11) 6.89 (0.82) 2.39 (0.15) 4.90 (0.09) 13.51 (1.74)
contaminated 11.50 (0.36)  5.61 (0.06) 106.48 (6.06) 11.60 (0.41) 5.33 (0.07) 122.0 (6.49)
actual values 2 5 16.67 2 5 16.67
uncontaminated  2.16 (0.09) 4.89 (0.07) 26.12 (4.32) 2.17 (0.09) 4.91 (0.06) 38.11 (2.53)
contaminated 12.56 (0.59)  5.22 (0.07)  140.13 (8.31) 15.14 (0.83)  5.01 (0.05) 169.7 (11.2)
actual values 2 0.1 5 2 0.1 5
uncontaminated  1.94 (0.03)  0.099 (0.01) 4.97 (0.13) 1.97 (0.03)  0.232 (0.01) 10.24 (0.25)
contaminated 9.82 (0.17)  0.260 (0.01)  34.89 (1.29) 10.05 (0.20) 0.346 (0.01) 63.89 (2.21)
actual values 2 0.1 16.67 2 0.1 16.67
uncontaminated  2.09 (0.07)  0.093 (0.00) 18.07 (0.84) 2.01 (0.08) 0.144 (0.00) 34.84 (1.67)
contaminated  10.04 (0.29) 0.117 (0.00) 72.84 (2.96) 14.16 (0.79) 0.176 (0.00) 153.7 (9.00)
actual values 10 5 5 10 5 5
uncontaminated 10.17 (0.20)  4.99 (0.13) 5.58 (0.18) 9.98 (0.21) 5.63 (0.10)  10.87 (0.41)
contaminated 16.26 (0.49) 5.84 (0.13) 15.60 (1.32) 17.39 (0.39) 6.18 (0.11)  26.22 (1.27)
actual values 10 5 16.67 10 5 16.67
uncontaminated 10.44 (0.37)  4.80 (0.06) 17.57 (0.83) 10.54 (0.43)  5.08 (0.06)  35.60 (2.05)
contaminated 18.89 (0.84)  5.09 (0.07) 39.18 (3.05) 19.29 (0.87) 5.28 (0.06) 66.12 (4.24)
actual values 10 0.1 5 10 0.1 5
uncontaminated  9.70 (0.17) 0.21 (0.03) 5.26 (0.13) 9.65 (0.17) 0.76 (0.03)  10.34 (0.28)
contaminated 16.09 (0.35)  0.52 (0.04) 10.30 (0.34) 16.66 (0.37)  1.05 (0.04) 21.14 (0.64)
actual values 10 0.1 16.67 10 0.1 16.67
uncontaminated  9.99 (0.34) 0.11 (0.01) 17.29 (0.67) 10.02 (0.37) 0.32 (0.01) 32.70 (1.37)
contaminated 17.96 (0.77)  0.16 (0.01) 29.99 (1.32) 19.70 (1.13)  0.37 (0.01) 61.49 (5.08)

3.0.1 Contamination by changing p partway through the series

Suppose a draw from an intercept-only mixed linear model with GP-distributed random effect is
contaminated by replacing a substantial subseries with a draw from another GP with the same o2
and o2 but with a different range p. How does this contamination affect the estimates of the GP
parameters? Recalling how a;(p) depends on p, we conjecture that:

1. When the contamination is by a GP with higher p, the vjz’s for small j’s (low frequency columns
of Z) will be inflated, which will inflate 52. The UJQ-’S for larger j’s will be comparatively unaffected,
so 62 will be comparatively unaffected. Also, the vjz’s will decline more sharply with j, inflating p.
2. When the contamination is by a GP with smaller p, the v]z’s for large j’s (high frequencies) will
2

be inflated, leading to an inflated 62. The UJQ-’S for smaller j will be comparatively unaffected, so 6

will be unaffected too. p will be diminished to capture the more gradual decline of the v?’s with j.
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In the simulated data, on average contamination by a GP with higher p inflates p, contamination

by a GP with a smaller p diminishes p, and 62 and 62 are largely unaffected, all as expected (Table

3 below). Figure 19c above shows the change in the vjz’s for one simulated dataset, for which it is

not clear what the net effect on the estimates will be (Table 1 above).

Table 3: Average over 100 simulated datasets of estimates maximizing the exact and approximate
restricted likelihoods: contaminated by GP with p=5 and p=16.67 for uncontaminated GP with
p=16.67 and p=5 respectively. Monte Carlo standard errors are given in parentheses.

exact RL approximate RL
A o: P o A p
actual values 2 5 5 2 5 5
uncontaminated  2.29 (0.11)  4.75 (0.11)  6.89 (0.82) 2.39 (0.15)  4.90 (0.09) 13.51 (1.74)
contaminated 2.22 (0.11) 4.79 (0.09) 14.62 (3.45) 2.28 (0.09) 4.94 (0.08) 13.42 (0.66)
actual values 2 5 16.67 2 5 16.67
uncontaminated  2.16 (0.09) 4.89 (0.07)  26.12 (4.32) 2.17 (0.09) 4.91 (0.06)  38.11 (2.53)
contaminated 2.19 (0.08) 4.90 (0.06) 18.17 (2.42) 2.28 (0.09) 4.69 (0.07) 18.65 (1.39)
actual values 2 0.1 5 2 0.1 5
uncontaminated  1.94 (0.03)  0.099 (0.01) 4.97 (0.13) 1.97 (0.03)  0.232 (0.01) 10.24 (0.25)
contaminated 1.93 (0.04) 0.116 (0.01) 6.15 (0.18) 2.03 (0.04) 0.223 (0.01) 12.99 (0.36)
actual values 2 0.1 16.67 2 0.1 16.67
uncontaminated ~ 2.09 (0.07)  0.093 (0.00) 18.07 (0.84) 2.01 (0.08) 0.144 (0.00) 34.84 (1.67)
contaminated 2.00 (0.06)  0.110 (0.01) 11.62(0.44) 1.95 (0.06)  0.183 (0.00) 22.55 (0.92)
actual values 10 5 5 10 5 5
uncontaminated 10.17 (0.20)  4.99 (0.13)  5.58 (0.18) 9.98 (0.21)  5.63 (0.10) 10.87 (0.41)
contaminated 10.11 (0.24)  4.89 (0.12) 6.74 (0.31) 10.16 (0.23)  5.48 (0.10)  13.55 (0.49)
actual values 10 5 16.67 10 5 16.67
uncontaminated 10.44 (0.37)  4.80 (0.06)  17.57 (0.83) 10.54 (0.43)  5.08 (0.06)  35.60 (2.05)
contaminated 10.19 (0.31)  5.09 (0.09) 12.49 (0.66) 9.92 (0.32) 5.43 (0.08)  24.39 (1.03)
actual values 10 0.1 5 10 0.1 5
uncontaminated ~ 9.70 (0.17) 0.21 (0.03) 5.26 (0.13) 9.65 (0.17) 0.76 (0.03) 10.34 (0.28)
contaminated 9.70 (0.19) 0.27 (0.03) 6.66 (0.18) 9.50 (0.20) 0.73 (0.03) 12.67 (0.38)
actual values 10 0.1 16.67 10 0.1 16.67
uncontaminated ~ 9.99 (0.34) 0.11 (0.01)  17.29 (0.67) 10.02 (0.37)  0.32 (0.01)  32.70 (1.37)
contaminated 9.67 (0.29) 0.19 (0.02)  11.29 (0.38) 10.22 (0.29)  0.49 (0.02)  23.69 (1.01)

4 Web Appendix D. Two dimensional Gaussian process model

1s (the fixed-effect design column for the intercept).

This section describes the spectral representation of GPs in two dimensions and develops the
2-dimensional (2-D) approximate restricted likelihood. Web Appendix E gives proofs that the

approximation is valid and that the columns of Z are orthogonal to each other and to a vector of

Suppose observations are made on a 2-D grid with grid points at [{s11, 51,2, ..., S1,:m, } X
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{821,522, ..., 52,m, }| and suppose the vector of observations is given by

Yy = (y(8171,8271),y(8171,82’2),...,y(81’1,827M2), ....... ,y(817M1,827M2))/. (3)

Given data y(s) at location s € {(s1,1,52.1), (51,1,52,2)5 -5 (81,15 52,M5), o vee- , (s1,:y 5 S2,M5) }» We want

to fit the model
y(s) = x(s)B +w(s) + €(s)

where all variables are defined analogously to the 1-dimensional (1-D) model. Similarly, the linear

mixed model to be fit to y is
y=XB+ Iy + e (4)

The restricted likelihood has the same form as in the 1-D case, and we obtain a matrix-free ap-
proximation to it by approximating the intercept-only GP using spectral basis functions. If the
model includes fixed effects X, we regress them out as in the 1-D case, assume (approximately)
that the residuals follow a linear mixed model with a random effect having a GP covariance, and
then approximate the GP in this model using spectral basis functions. Section 4.1 below describes
the spectral approximation following Wikle (2002) and Paciorek (2007); Section 4.2 below derives
the simple approximate restricted likelihood arising from applying the spectral approximation to

the intercept-only GP.

4.1 The spectral approximation in 2-D

1 2 12 1 1, 1 1, 2 1 12 1 1, 1 1
Define (wml,wmQ) < {O,E,E,..., 5 —§+E,—§+E,,—E}X{O7 m,m,...,i,—§+m,—§+
MLQ,...,—ﬁQ}, my = 0,1,..,My —1; mg = 0,1,..., My — 1. At observation location (s1,,s2;),

s1, € {1,2,.., My}, so; € {1,2,.., Mz}, v = 1,..., My, j = 1,..., M, the mean zero stationary

isotropic GP can be approximated, using spectral basis functions, by

Mi1—1 Ma—1
9(51,2752,]') = Z Z @ml,mg(Qﬂ'Sl,u27r52,j)um1,m2

mi1=0 mo=0

d fMl—lMg—l 1 )

(S . .

= Z Z exp(127r(w77115171 + wm252,j))(a7m7m2 + mehmz)
mi1=0 mo=0

where the a,,’s and by,’s have independent mean zero Gaussian prior distributions with V(am, m,)

12 12 . . .
= V(bmime) = mafczﬁ(wml,wmQ;p), where ¢(Wp,,Wm,; p) is the spectral density function of
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K(d;p), described further below. Note that the observation locations s1, € {1,2,..,M;}, s2; €

{1,2,.., M2} lie on a uniformly spaced rectangular 2-D grid and the grid sizes in the two dimensions,

M7 and Ms, must be even integers.

To approximate real valued processes (Wikle 2002, Paciorek 2007), assume

Umy,ma = UMy —my,Ma—m2

for
® My = 1,2,..,M1/2— 1, mo = 1,2,..,M2/2

& M) = 1,2,..,M1/2, mo = M2/2+ 1,M2/2—|—2,..,M2 — 1.
Finally, assume w0 = Ty My—my, for my =0, mg =1,2,.., Mp/2 — 1

and Uy my = UMy —my ma, fOr m1 =1,2,.., M1/2 —1, ma = 0.

Also assume
boo = bo,nz/2 = Oy /2,0 = baayj2,05/2 = 0.

) 12 o
Then defining w = (W, ,wWm,)" and s = (s1,, s2.j)’, the approximation g(si,, s2,;) becomes

g(s1,4,525) =2 Z (@my ms €OS(27TW'8) — by, ms, Sin(27w's))
(m1,m2)€Q
+ apo

1 2 1 2
+ a1, /2 €08(27 (W0S1, + Wary j252,5)) + anr, j2,0 €S2 (War, 2514 + WoS2,5))

1 2
+ ang, 2,0 /2 €08 (27 (Whry /2514 + Wity /252,5)),
where Q = Q1 U Q2 U Q3 U Q4, with
Ql = {(m17m2) cmy = 172> 7M1/2 - 1am2 = 1>27 "'>M2/2}a
Q2 ={(m1,ma) :my =1,2,.... M1/2;mgo = My /2 + 1, M3/2 + 2,..., My — 1},
Qg = {(ml,mg) tmyp = O;mQ = 1,2, ...,M2/2 — 1},
Qs = {(m1,mg) :my =1,2,..., M1 /2 — 1;mg = 0}.

Then (9(51,17 82,1)79(51,17 82,2)7 "'79(31,17 82,M2)7 -"79(81,M17 52,M2))/ = 1M1M26* + ZU,

where 8* is the intercept, Z is an My My x (My Ms—1) matrix described below, v = (a11, b11, a12, b12,

.Q e M My, b M
b _ 9 bl M1 M2HyY M1 4 M2
1,1 1, M 1,2

)

1 MZJ)1 Mg y weveens ,a by
72 72 2

My

S LY

aL%Jrl;bL%Jrl,CLL%JFZ,bL%JFQ,..,a17M2_1,b17M2_1, ....... s
IR IRV NIRRT I VI VAP EL 2 I PARE

Y
2’2+1 272

ao1, bot, a2, b02; -y @0, 01y /215 Do, My /215
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a10,b10, @20, b20; -5 ang, 72—1,0, bty y2-1,05

/
a0, My )25 AN, /2,00 A0, /2,Mp /2) 5 and

12
L. V(am,ms) = V(bmymse) = QM}Mzafqb(wml,wmQ;p) form; =0,1,..,M1—1,me =0,1,.., Mo—1,
(mlﬂmQ) ¢ {(an)v (07 M2/2)’ (M1/270)7 (M1/27M2/2)}

1 2 1 2
2. V(ag s, 2) = ﬁ%%(wovwz\@/mp)a V(an j2,0) = ﬁafﬁf)(wm/zawo;ﬂ)'

1 2
3. V(anm, j2,072) = ﬁ052¢(WM1/2,wM2/2;P)~

Constructing G
In this construction, the covariance of the random effect vector u is a matrix G with all off-diagonal
elements zero and diagonal elements given by the above variances.

The function ¢(w;p) is the spectral density, in two dimensions, of the correlation function of
the GP being approximated. For example, the Matérn correlation function with smoothness v, for

Euclidean distances d, is

K50) = <€d> " <€d> v

and it has spectral density

P(w; p,v) =

9

T(v+ D/2)(4v)" [ 4v , O\ TP
D20 (1) (mp) > ((m? e w)

where D is the dimension of the process (Paciorek 2007). For the exponential correlation function

(Matérn with v = 0.5) in two dimensions, the spectral density is a Cauchy density

02 )2 —3/2
d(w;p) = Tp <1 + (;))w’w> . (7)

The elements of u are ordered so that ¢(wj;p) is a non-increasing function of j (this ordering will
be the same irrespective of the value of p).

Constructing 7

After constructing u, the matrix Z is constructed conformably from (5) as follows.

Consider the vector of length (M;/2 — 1)Ms/2

1 2 .
[2 cos(wWimy 2810 + Wing 2782, 5) lmy=1,2,...M1 /2~ 1;ma=1,2,..,Ma /2, Where mg varies fastest.
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Construct one such vector for each (s1,,s2 ) combination; this gives us M;jM; such vectors. Let
these vectors be Ay, Aa, ..., Apr, ar, respectively. Next, similarly to the above, consider the vector of
length (M1/2 — 1)M2/2

. .1 2
[—2 sin(Wm, 2751, + Wiy 2m52.5) |y =12

1Ly

Mi/2—1;ma=1,2,.., M /2, Where mg varies fastest.
Construct one such vector for each (s1,, 52,]-) combination; this gives us M; My such vectors. Let
these vectors be By, By, ..., By, v, respectively. Now construct a matrix P} with the rt row of Py
given by (A1, Br1, Ar2, Bra, ooy A (M, /2-1)Ma /25 Bry(ay j2—1) M5 j2)» Where A,y denotes the tth element
of the vector A,, r =1,2,...,M1Ms, t = 1,2,...,(M1/2 — 1)M5/2. The matrix P; constitutes the
first (M,/2 — 1)Ms columns of Z.

Next, consider the vector of length M;/2(My/2 — 1)

1 2
[2 COS(Wml 27T81,Z + Wy 27r$2,j)]m1:1,2,..,M1/2;m2:M2/2+1,M2/2+2,..7M2—17
where mg varies fastest. Construct one such vector for each (517,,52,j) combination. Let these

vectors be C4,Cy,...,Crar, respectively. Next, similarly to the above, consider the vector of

length M;/2(Ms/2 —1)

[—2 Sin(i)ml 2781, + z’mg 2752,5) lmy=1,2,.., M1 /25ma=Mo /241, Ma j242,.., Ma—15
where mg varies fastest. Construct one such vector for each (si,, sz,j) combination; this gives us
Mj My such vectors. Let these vectors be Dy, Da, ..., Dy, ar, respectively. Now construct a matrix
P, with the 7" row of P, given by (Cy1, Dy1,Cr2, Dya, ..., Cyoaty j2(Ms j2—1)s Droary j2(02—1)), Where
C,¢ denotes the ' element of the vector C,, r = 1,2, ..., MyMs, t = 1,2, ..., My /2(M/2 — 1). The
matrix P, constitutes the next M;(Mz/2 — 1) columns of Z.
Next, consider the vector
[2 cos(2m(wos1, + 57712327j))]m2:1,2,..,M2/271-
Construct one such vector for every (s1,,s2 ;). Call them Fi, Fy, ..., Far, p, respectively. Consider

the vector ' 1 9
[—28in(27m(Wos1,1 + Wmy52,5))lma=1,2,.., Mz /2—1-

Construct one such vector for every (s1,,s2;). Call them Hy, Ha, ..., Hyr, a, respectively. Construct

a matrix P3 with My — 2 columns as: if 7 is odd the 7" column of Pj is given by (izlth element of
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th th e L
Fi, % element of Fo,..., 7“%1 element of Fyy az,)"; if 7 is even the r*" column of Pj is given by

(%th element of Hy, %th element of Hs,..., %th element of Hyy, ar,)'. Then, the next My — 2 columns
of Z are Ps.
Consider the vector
1 2
[2 cos(2m (Wi, 81,4 + W052,j))]m1:1,2,,.,M1/2—1-

Construct one such vector for every (si,,s2,;). Call them Ay, Aa, ..., Ay, 1, respectively. Consider

the vector ' 1 9
[—2sin (27 (Win, 51,4 + w082,j>)]m1:1,2,..,M1/2—1'

Construct one such vector for every (s1,,s2;). Call them Ay, Ao, ..., Ay, ar, respectively. Construct

a matrix Py with M; — 2 columns as: if 7 is odd the 7" column of Pj is given by (%lth element of

r+1th

t
A1, 5= element of Ag,..., %

" element of A g if @ is even the 7t column of Py is given by

(%th element of Ay, %th element of Ag,..., ™" element of Ay, az,). Then, the next M — 2 columns

r
2
of Z are Py.

Finally, construct three more vectors Ps, Pg, and P as follows. Construct the vector Ps
1 2 ..
[cos(wo2ms1, + Wary 22782, 5)i=1,2,.. My :j=1,2,... My, Where j varies fastest.
Construct the vector Py
1 2 o
[cos(wWar, 22751, + W027S2,5)i=12,...M1;j=1,2,.., My, Where j varies fastest.
Construct the vector P;
1 2 . .
[cos(wWhr, /227814 + Wi, /22782,5)li=1,2,... My :j=12,.. My, Where j varies fastest.

The last 3 columns of Z are Ps, Pg, and Pr respectively.
Now order the columns of Z so that ¢(wj; p) is a non-increasing function of j (this ordering will

be the same irrespective of the value of p).

4.2 The simple approximate restricted likelihood

With the definitions given above, the approximate model to be fit to the data y, if X in Section 4
above is just a column of 1’s, or to be fit to the residuals y*, if X in Section 4 also includes observed

covariates, is
yory =~ Iy, a8+ Zu+ €, (8)
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with e an Mj Mj x 1 vector of iid N(0,02) errors. (If the left-hand side of equation (8) is y*, 8* is nec-
essarily be zero.) Z has these properties: (i1)Z'1ys, 0,=0, and (ii)Z'Z = M; MsDiag(2,2,...,2,1,1,1),
i.e., the columns of Z are orthogonal to each other and to the constant vector (proofs are in
Web Appendix E). Premultiplying (8) by (Z'Z)”®Z’, under the assumed model, the transformed
data vector v = (2'2)"%°Z'y or (2'Z)"%°Z'y* has a Normal distribution with E(v) = 0 and
Cov(v) = o2Diag(a;(p)) + 02Inms—1, for a;(p) = ¢(wj;p). From the distribution of vj, the

approximate log restricted likelihood has the matrix-free form

M My—1
ALR(02,02, p) = const — B li (log(afaj(p) +02) + vjz(afaj(,o) + ag)_l) . (9)
j=1

By convention, we sort the a;j(p) so they are in non-increasing order as j increases and the
columns of Z in the same order. It is easy to show that this order does not depend on p. By
construction, the successive column pairs of the spectral basis matrix Z decompose the data into
successive frequency components, as in the 1-D case. Thus a high frequency feature, e.g., an outlier,
will fall in the space spanned by the columns of Z corresponding to large j and will affect UJQ- for
larger j, which in turn will affect 62. A low frequency feature, for example, a linear or quadratic
trend in the data, will fall in the space spanned by the columns of Z corresponding to small j and
thus will affect v? for smaller j, which in turn will affect 42 and p. A prominent low-frequency
feature will inflate both 62 and p, which have opposite effects on the fit’s smoothness, so the net

effect of a low frequency feature will depend on the specifics of the data and model.
Note that to get to this point, we have made two approximations: approximating (Iysnr, —
Px) Y (Ingyn, — Px) + 02(Ing v, — Px) by ¥ + R, and the spectral approximation. Web Appendix

F shows some examples of these covariance matrices.
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5 Web Appendix E. 2-D spectral approximation: technical details

5.1 Proof that it is a valid approximation

The correlation of the approximate process is approximately equal to that of the actual GP for
M1 — 00, M2 — Q.
Proof: For two dimensional frequencies w and two dimensional locations s, the spectral density

¢2(w; p) of the correlation function K (s;p) (correlation of the actual GP) is defined as

p2(w;p) = /R2 exp(—2miw’s)K (s; p) ds.

For a process observed only a discrete uniform integer grid locations, the integral has to be replaced

by a sum. Because every frequency outside [—%, %] has an alias in [—%, %], the spectral density is

].

N[ =

)

N[ =

only defined for w in [—1,1] x [—

Then
/ exp(2miw’s)pa(w; p) dw = K (s;p).

w\»—A
1\3\»—‘

By the spectral representation theorem, g(s) follows a Normal distribution with mean 0 and

. Mi—1Ma—1 9 L 9
correlation K(s;p) = M1M2 > exp(z27r(wml,wm2) V2 (Wi, Wmy ); p). As My — oo, My —

mi1=0 mo=0

00, this sum is approximately

/ / exp(2miw’s)do(w; p) dw, which is equal to K(s;p).
1 1
3773

5.2 Orthogonality of columns of 7, and of X =1 and Z

For s11 = 1,812 = 2,...,81,m, = My, and s21 = 1,822 = 2,...,80 0, = Mo, Z satisfies the
properties: (1)Z'1 =0, (ii)Z'Z = Diag(2M; My, 2M; My, ..., 2M1 Mo, My Ms, My My, My M,).

Proof of (i): We show below that the first element of Z’1 is 0; the other elements are also 0 by
similar arguments.
The first element of Z'1 is Aj1 + Ao + ... + Arr Mo

My Ms

=4> > cos(w127r31 .+ w127732])
1=1j5=1
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My My 1 2 1 2
—9 Z Z ez(w127r81,1+w127r52,j) + e—’L(W127T8172+W127T82’j)

1=1j=1
My My My M
—9 Z Z e7, w127r51 1+W12ﬂ‘82]) +2 Z Z e —i( w127r51 2—i-w127r82])
1= 1] 1 1= 1] 1
cik cok —c1k cok .1 .2
—226 Ze —1—226 Ze , €1 = 1w12m, ¢y = iW12T

k=1
]\/Ilcl_l ec2 MZCQ_1 71\4101 ]chl_l —Mgco M2C2_1
_2( Leter ))( (c)acs >)+2( 1 ))( 2 (e ))

= 0, since M1 = COS(MIL%MQ’/T) + isin(MlulJﬂW) =1+0 =1, and eM22 = COS(MQ(E)127T) +

isin(Mo@12m) =140 = 1.
Proof of (ii): We show below that the (1,1) element of Z'Z is 2M; My, and the (1,2) element
of Z'Z is 0; the other elements of Z'Z will be 2M7 Ms, or My Msy, or 0 by similar arguments.

The (1,1) element of Z'Z is A2, + A2, + ... + A?\41M2 1
M Mo 2
Z Z (cos( (uJ127TS1,z + wi12msyj)) + 1)
- My My 1 2
=2M My +23" " cos(2(wi2msy, + w1272 5))
1=15=1
My Mo M; M

— 2M1M2 + Z Z 6 w127r81 z+w12ﬂ'82] 4 Z Z 8—22 w127r81 1+w127r323)
1=1j5=1 1=1j=1

LR g 2 k 1 2
=2M 1My + > €% " e2F 4 Y em AR Y 7R o) = 24w 27, cg = 2iw127T
k=1 k=1 k=1 =1

(Mlcl 1) €c2(6]\/12¢:2—1) e—IMlcl(eMlcl—l) e—A42c2(€A{2c2—1)
= 2M1M2 + ( 1 ) ( ef2 —1 + 67]\/[1(;1_1 €7M252_1

— : Micr — M1i5?1147r — Maco MQZ'L%147T —
2M7 Ms, since e e 1, and e e 1.

The (1,2) element of Z'Z is A11Bi1 + A21Ba1 + ... + Aviy Mo 1 Bar Mo 1
Mi Mo

1
=—45%" > cos(wi2ms1, + w127r.92j) sm(w127T81 .+ w127752])
1=1j=1
My My 1 2
= -2 Zl lem(2(w127rsl,z + w127sy 5))
=1
M1 Mo My Mo
—_1 Z Z 2 w12ﬂ'31 Z—Q—o.;ﬂﬂ'szj 1 Z Z 6—12(W127T51 1+w127r52])
1= 1] 1 1=1j=1
— 1 E ezcﬂc Z ezczk l J‘Z/[:l e—iclk J‘Z/[f e—iCQk’
i

k= 1
o 1 Cl(eMlcl l) cg( Moco— 1) 1 efMlcl(eMlclfl) e*]VIQCQ(eMchfl) _ 0
_; el —1 e2—1 ; e—]\/flcl_l e—]VI2c2_1 — Y.
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6 Web Appendix F. Covariance matrices in 2-D

The figures in this appendix show some exact, approximate, and estimated covariance matrices

for our model in 2-D with the spectral approximation, referred to in the last paragraph of Web

Appendix D.
100 200 300 100 200 300

1 1 1 1 1 1 P 1 1 1 1 1 1 —

r20 2.0
300 - 300 -

L1s F1s
200 r F10 200 r F10
100 - r 05 100 | - 05
0.0 00

T T T T T T u T T T T T T u

100 200 300 100 200 300

(a) (b) Left: Fitted exact covariance matrix using

Left: exact covariance matrix (including the iid  estimates from exact RL. Right: Fitted approxi-
errors). Right: approximate covariance matrix.  mate covariance matrix using estimates from ap-
02=202=0.1,p=5. proximate RL.

Figure 20: 2-D GP’s covariance matrices.

7 Web Appendix G. Demonstration with simulated data

This section uses a simulated dataset to show how the plot of v]2- vs j and added variable plots
can be used to examine goodness of fit and potential covariates. We simulate data that depend on
covariates, then omit those covariates from the fitted model to see how the missing covariates show
themselves in the U]2~ plot and the added variable plots in the observation and spectral domains.
Consider the data in Figure 21a. Observations were simulated at integer locations on a 20 x 20
regularly spaced grid from a GP with the Matérn v = 0.5 correlation function with the GP’s variance
and range parameters being 02 = 12 and p = 5 and with errors distributed as iid Normal(0, 02 = 5).
Then two features (covariates) were added as fixed effects to give the simulated data: The first is a
north-south linear trend spanning the entire grid; the second feature is addition of the value 12 to
ten randomly selected locations. Thus the first and second covariates have low and high frequency

respectively.
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We fit to the data an intercept-only model with the same correlation function used to simulate
the data. This fit gave estimates 62, 62, and p equal to 21.94, 8.52, and 13.19 respectively. All

three estimates are inflated: The omitted low-frequency feature inflates 62 and p and the omitted

2

high-frequency feature inflates 6. Figure 21b is the v]2~ plot with j as the plotting character. In
this plot, the smooth line denotes the fit of the UJZ-, &gaj (p) + 62, where the estimates are obtained
by maximizing the exact restricted likelihood. In Figure 21b, the v]2~ plot has a prominent point
for j = 1, indicating a strong north-south linear trend. The observation-domain added variable
plot for the first covariate (Figure 21c), only weakly detects this missing covariate and does not
have a significant slope (P = 0.18). In contrast, the spectral-domain added variable plot (Figure
21d) gives a strong signal that this covariate belongs in the model (P = 0.0005) and shows the
frequencies where the covariate’s signal is concentrated.

Now consider the second covariate. This missing high-frequency covariate, with no spatial
pattern, is not visible in the UJQ- plot (Figure 21b). However, both added variable plots, in the
observation domain (Figure 21e) and in the spectral domain (Figure 21f), show that the covariate
should be included (P < 1071 for both), although the former identifies the few observations (outlier
locations) that drive the fit while the spectral-domain added variable plot distributes the effect of
the outliers diffusely over the v; corresponding to high frequencies.

Figure 21g is the ’UJQ- plot when both covariates have been included in the model. This plot
shows no sign of lack of fit; Af, 62 and p are now 11.98, 4.03, and 5.28 respectively, close to the
values used to simulate the data.

We have shown how a missing high-frequency covariate, i.e., outliers in y, can be detected from a
observation-domain added variable plot or a spectral-domain added variable plot for that covariate,
but is not visible in the vjz plot. On the other hand, missing large-scale trends, i.e., non-stationarity
in the form of a linear or quadratic trend, can be visible in the ’UJQ- plot. Once detected, these latter
trends may be included as covariates, and if a covariate is available that captures such trends, then

an added variable plot for that covariate should have a large slope. The added variable plots in

the two domains estimate the same slope for the candidate covariate but have different power for
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testing the slope. For low-frequency trends, the spectral-domain added variable plot appears to
have more power than the observation-domain plot.

For each kind of missing covariate considered above — which were pure types used for demon-
stration — one kind of added variable plot shows how the signal in the data is concentrated in some

y; or vj. In real datasets, a potential covariate may be a mix of low- and high-frequency features.

3202

2
2000 3000

1000

(a)
Simulated data with co-
variates.

(b)
v? vs j for intercept-

only fit.

(¢) Added variable plot
in observation domain
for low frequency co-
variate.

(d) Added variable plot
in spectral domain for
low frequency covariate.

(e) Added variable plot
in observation domain
for high frequency co-

variate.

ate.

(f) Added variable plot  (g)
in spectral domain for
high frequency covari-

v? vs j for fit with both
covariates.

Figure 21: Plots for the analysis of the simulated data.

8 Web Appendix H. Model building in the spectral domain

The main paper’s Section 7 showed the first of a sequence of model-building steps, illustrating how

to use the tools. This appendix and Appendices I and J show the full sequence of steps considering

both the spectral and observation domains.

Again, we make no claim that this is an optimal

sequence of steps; we merely intend to illustrate how the tools can be used.

Step 1: First, fit the intercept-only model. Consider the resulting plot of the ’sz- (Figure



22a) in which the plotting symbol is j, corresponding to a particular frequency. For example, the
point numbered 1 corresponds to a cubic or linear north-south trend in the data (the spectral
approximation has no linear-like component), so the prominent v indicates non-stationarity likely
in the form of a north-south trend. This deviation from stationarity may be addressed by including
an appropriate covariate in the model, so we draw spectral-domain added variable plots for all the
covariates (Figure 22). In the added variable plots, the colors are: black for 7 in 1 to 100, red for
4 in 101 to 200, for 7 in 201 to 300, blue for j in 301 to 400, pink for j in 401 to 559. Each
covariate (after being pre-smoothed onto the regular grid) has been standardized by subtracting
its sample mean and dividing by its sample standard deviation, so the slopes for the covariates are
comparable. The p-values for the added variable plot slopes suggest that the fit can be improved
by adding covariates (Table 4). The natural impulse is to include first the covariate having the
largest slope in its added variable plot, in this case Elevation. However, since the 1)]2» plot for the
data has v% as the most prominent point, corresponding to a north-south trend, we also want the
added covariate to explain at least some of this trend, the more the better. For this purpose we
calculate Cook’s distance for points in the added variable plot, describing their respective influence
on the regression slope; we want the point numbered 1 to have one of the largest Cook’s distances.
Among the potential covariates, Elevation has the smallest p-value for the added variable plot’s
slope, and point number 1 has the largest Cook’s distance for the coefficient of Elevation, i.e., it is
most highly influential in determining the slope of Elevation’s added variable plot. Therefore we
add Elevation as a covariate.

Slope has results similar to Elevation’s, so we could have added Slope to the model at this stage.
If we had, it turns out that applying the same considerations we would add Elevation in the second
step, so it does not matter if we add Elevation or Slope first.

Step 2: Now fit the model with one covariate, Elevation. In Figure 23a’s plot of the ’U]Q-, the vjz- for
low j (low frequences) are not as striking as for the intercept-only model, but some are outstanding,
suggesting deviation from stationarity; it seems the model still attributes some low-frequency data

components to the GP and perhaps they can be captured using explicit covariates instead. The
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spectral-domain added variable plots (Figure 23) have large slopes for several candidate covariates
(Table 5). Because Ug is the largest vjz, we prefer to include a covariate for which the added variable
plot’s slope is large and which is also influenced substantially by the point j = 8, corresponding to

a quartic (4"

degree polynomial) trend. The covariate SummerTC1 has the smallest p-value for
its slope, but the point j = 8 does not have a large Cook’s distance for SummerTC1. The point
j = 8 does have a large Cook’s distance for the covariate Slope. Thus, in this step we add both
covariates, SummerTC1 and Slope, to the model that includes Elevation.

Step 3: Now fit the model including Elevation, Slope, and SummerTC1. The sz plot again
shows low-frequency trends suggesting deviation from stationarity (Figure 24a); the point j = 4,
corresponding to a quadratic north-south trend, is most prominent. Added variable plots for
the remaining covariates (Figures 24) show that SpringTC2 has the smallest p-value but j = 4
is not particularly influential for its slope (Table 6). The indication of non-stationarity cannot
be explained by SpringTC2, so we add a quadratic north-south trend as a covariate along with
SpringT'C2. This is tolerable because a quadratic tend has very low frequency; were we collaborating
with subject matter experts, such a simple trend might suggest a potential covariate that could be
used instead of the non-substantive quadratic.

An alternative may be to add FallTC2 instead of the north-south quadratic trend. If we do
that, the point j = 4 comes down in the result sz plot but is still prominent (Figure 25), so we add
the north-south quadratic trend instead of FallTC2.

Step 4: Fit the model to the smoothed data including Elevation, Slope, SummerTC1, SpringTC2,
and the north-south quadratic trend. The vjz plot now has no prominent points (Figure 26a). Fig-
ure 26 shows added variable plots for the remaining covariates; based on the p-values (Table 7), we
add the covariate SummerTC3.

Step 5: The best-fitting model includes Elevation, Slope, SummerTC1, SpringTC2, a north-
south quadratic trend, and SummerTC3. The v]2~ plot has no prominent points (Figure 27a) and
the remaining covariates appear unable to absorb variation currently relegated to the GP or error

parts of the model (Table 8, Figure 27).
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(e) SpringTCs3. (f) SummerTCI. (g) SummerTC3. (h) FallTC2.

Figure 22: Step 1 After intercept-only fit; (b) to (h) are spectral-domain added variable plots.

Candidate covariates | slope | p-value | j with top 5 Cook’s dist
Elevation -3.17 [ 10719 1,182,9,181,434
Slope -2.24 [ 1079 1,182,463,70,65
SpringTC2 -0.60 0.03 20,499,354,268,369
SpringTC3 0.59 0.02 1,506,196,403,463
SummerTC1 -0.77 | 0.007 248,463,20,268,327
SummerTC3 0.92 | 0.0004 1,258,378,358,248
FallTC2 20.69 | 0.004 182,463,1,212,280

Table 4: Step 1 Slopes of spectral-domain added variable plots iafter the intercept-only fit. The
covariate chosen to be added at the next step is in bold.
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(e) SummerTCI.

Figure 23: Step 2 After fit with covariate Elevation; (b) to (g) are spectral-domain added variable

(f) SummerTC3.

(g) FallTC2.

plots.
Candidate covariates | slope | p-value | j with top 5 Cook’s dist
Elevation - - -
Slope -1.63 | 1077 65,8,20,463,3
SpringTC2 -1.04 | 107° 20,354,8,13,499
SpringTC3 0.54 0.03 506,196,463,327,403
SummerTC1 -1.27 | 1076 20,248,463,9,327
SummerTC3 0.92 | 0.0003 9,1,378,378,358,489
FallTC2 -0.72 | 0.002 463,20,441,8,13

Table 5: Step 2 Slopes of spectral-domain added variable plots after the fit with covariate Elevation.
The covariates chosen to be added at the next step are in bold. The symbol “~” denotes covariates

already in the model.

(a) UJQ- Vs J. (b) SpringTC2.

Figure 24: Step 3 After the fit with covariate Elevation, Slope, SummerTC1; (b) to (e) are

spectral-domain added variable plots.

(c) SpringTC3.
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(d) SummerTC3.

(e) FallTC2.



Candidate covariates | slope | p-value | pts with top 5 Cook’s dist
Elevation - - -
Slope - - -
SpringTC2 -1.02 107° 354,41,499,25,369
SpringTC3 -0.29 0.29 4,506,354,369,280
SummerTC1 - - -
SummerTC3 0.18 0.57 499,2,378,111,358
FallTC2 -0.49 0.03 4,65,441,14,26

Table 6: Step 3 Slopes of spectral-domain added variable plots after the fit with covariates Ele-
vation, Slope, SummerTC1. The covariate chosen to be added at the next step is in bold. The
symbol “~” denotes covariates already in the model.
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Figure 25: v]2~ vs j for the fit with
FallTC2.

(a) vF vs j. (b) SpringTC3. (¢) SummerTC3. (d) FallTC2.

Figure 26: Step 4 After the fit with covariates Elevation, Slope, SummerTC1, SpringTC2 and
north-south quadratic trend; (b) to (d) are spectral-domain added variable plots.
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Candidate covariates | slope | p-value | pts with top 5 Cook’s dist

Elevation - - -
Slope - - -
SpringTC2 - - -

SpringTC3 0.87 0.02 2,15,280,506,7
SummerTC1 - - -

SummerTC3 0.99 0.002 2,499,518,489,12
FallTC2 -0.34 0.15 65,15,26,14,55

Table 7: Step 4 Slopes of spectral-domain added variable plots after the fit with covariates Slope,
Elevation, SpringTC2, SummerTC1 and north-south quadratic trend. The covariate chosen to be
added at the next step is in bold. The symbol “~”’ denotes covariates already in the model.

(a) v? vs j. (b) SpringTC3. (c) FallTC2.

J
Figure 27: Step 5 After the fit with covariates Elevation, Slope, SummerTC1, SpringTC2, north-
south quadratic trend, and SummerTC3; (b) to (c) are spectral-domain added variable plots.

Candidate covariates || slope | p-value | pts with top 5 Cook’s dist
Elevation - - -
Slope - - -
SpringTC2 - - -
SpringTC3 0.72 0.06 15,506,403,489,7
SummerTC1 - - -
SummerTC3 - - -
FallTC2 -0.37 0.11 15,65,26,14,55

Table 8: Step 5 Slopes of spectral-domain added variable plots after the fit with covariates Slope,
Elevation, SpringTC2, SummerTC1, north-south quadratic trend, and SummerTC3. The symbol
“~ denotes covariates already in the model, in addition a north-south quadratic trend is also in
the model.
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9 Web Appendix I. Observation-domain added variable plots

This Appendix shows the observation-domain added variable plots, with five steps adding covariates
in the same order as they were added when considering the spectral domain in Appendix H. For
each step, a figure and table below summarize the step’s observation-domain added variable plots;
following are comments comparing these added variable plots to those in the spectral domain.
Elevation and Slope have strong low-frequency components, as shown in plots of these covariates in
Figures 28a and 28b). Thus, their signal is weaker in the observation-domain added variable plots
for the intercept-only model (Figure 29) than in their earlier spectral-domain added variable plots
(Figure 22); compare slopes of spectral-domain added variable plots in Step 1, Table 4 with the
observation-domain analogs, Table 9. Compare also the spectral-domain added variable plots for
Step 2, Table 5 with the observation-domain analogs, Table 10. The p-values for Elevation and Slope
are much smaller in the spectral-domain added variable plots than in the observation-domain plots;
because these two covariates have relatively large power at low frequencies, they are more easily
detectable in the spectral domain. SpringTC2 also has relatively large power in low frequencies so
it behaves similarly: the spectral-domain added variable plot has greater power to detect its slope
(compare the spectral-domain added variable plots in Step 3, Table 6 with the observation-domain
analogs, Table 11). SummerTC1 has both low- and high-frequency features so it gives a rather
strong signal in the added variable plots in both domains: compare the spectral-domain added

variable plots in Step 2, Table 5 with the observation domain analogs, Table 10.

(a) Elevation. (b) Slope. (¢) SummerTC1. (d) SpringTC2.

Figure 28: Plots of four of the covariates.
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(a) Elevation. (b) Slope. (c) SpringTC2. (d) SpringTC3.

(e) SummerTCI. (f) SummerTC3. (g) FallTC2.

Figure 29: Step 1 Observation-domain added variable plots after the intercept-only fit.

Candidate covariates || slope | p-value
Elevation -2.02 0.07
Slope -1.45 | 0.004
SpringTC2 -0.28 0.42
SpringTC3 0.96 | 0.002
SummerTC1 -0.98 | 0.002
SummerTC3 1.25 | 107
FallTC2 -0.83 | 0.004

Table 9: Step 1 Slopes of observation-domain added variable plots after the intercept-only fit.
Covariate selected to be added on the basis of these plots is in bold.
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(a) Slope. (b) SpringTC2. (¢) SpringTC3. (d) SummerTC1.

(e) SummerTC3. (f) FallTC2.

Figure 30: Step 2 Observation-domain added variable plots after the fit with covariate Elevation.

Candidate covariates || slope | p-value
+
Elevation — —

Slope -1.31 0.01
SpringTC2 -0.41 0.23
SpringTC3 0.94 | 0.002
SummerTC1 -1.07 | 0.0008
SummerTC3 1.23 | 107°
FallTC2 -0.90 | 0.002

Table 10: Step 2 Slopes of observation-domain added variable plots after the fit with Elevation.
covariates selected to be added on the basis of these plots are in bold. The symbol “~” denotes
covariates already in the model.

(a) SpringTC2. (b) SpringTC3. (¢) SummerTC3. (d) FallTC2.

Figure 31: Step 3 Observation-domain added variable plots after the fit with covariates Elevation,
Slope, and SummerTC1.
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Candidate covariates || slope | p-value
d
Elevation - -
Slope - -
SpringTC2 -0.47 0.16
SpringTC3 0.39 0.30
SummerTC1 - -
SummerTC3 0.84 0.03
FallTC2 -0.74 0.01

Table 11: Step 3 Slopes of observation-domain added variable plots after the fit with Elevation,
Slope, and SummerTC1. covariate selected to be added on the basis of these plots is in bold. The
symbol “~” denotes covariates already in the model.

03 w2 1 o0 01 02

(a) SpringTC3. (b) SummerTC3. (c) FallTC2.

Figure 32: Step 4 Observation-domain added variable plots after the fit with covariates Elevation,
Slope, SummerTC1, SpringTC2, and north-south quadratic trend.

Candidate covariates || slope | p-value

7

Elevation - -

Slope - -

SpringTC2 - -
SpringTC3 1.28 | 0.009
SummerTC1 - -
SummerTC3 1.38 0.001
FallTC2 -0.71 0.02

Table 12: Step 4 Slopes of observation-domain added variable plots after the fit with covariates
Elevation, Slope, SummerTC1, SpringTC2, and north-south quadratic trend. covariate selected to
be added on the basis of these plots is in bold. The symbol “~”’ denotes covariates already in the

model.
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(a) SpringTC3. (b) FallTC2.

Figure 33: Step 5 Observation-domain added variable plots after the fit with covariates Elevation,
Slope, SummerTC1, SpringTC2, SummerTC3, and north-south quadratic trend.

Candidate covariates || slope | p-value

7

Elevation — —
Slope - -
SpringTC2 - -
SpringTC3 1.16 0.02
SummerTC1 - -
SummerTC3 - -
FallTC2 -0.73 0.01

Table 13: Step 5 Slopes of observation-domain added variable plots after the fit with covariates
Elevation, Slope, SummerTC1, SpringTC2, SummerTC3, and north-south quadratic trend. The
symbol “~” denotes covariates already in the model.

10 Web Appendix J. Fits of the raw data using the exact re-

stricted likelihood

The spectral-domain added variable plots used the data smoothed on a grid to select covariates.
This appendix shows the improvement of the fit to the actual (not smoothed) data, when fits are
made using the exact restricted likelihood. We repeat: this Appendix involves no approximations
of any kind. Figure 34 shows the actual data, while Figure 35 shows the estimated fixed-effect fits
at each of the five steps discussed above, on the same color scale as the observed data. Figure
36 shows the residuals obtained by subtracting the estimated fixed effects from the data at each
step. Table 14 shows quantiles of absolute values of the residuals with respect to the fixed effects,

which become somewhat smaller as we add covariates, with most of the change arising from adding
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Elevation, Slope, and SummerTC1. Changes in the residuals are small and thus not very visible
in the residual plots (Figure 36). However, it is clear from Table 14 that the fit to the data has
indeed improved.

Tables 15 and 16 contain estimated coefficients of the covariates when they are added to the
model and the model is re-fit at each step. The estimated coefficients are almost exactly equal to
the slopes of the corresponding observation-domain added variable plots in Appendix I. However

the p-values from ordinary Wald tests of these coefficients (taking as known the estimates of o2,

2

2, and p, as is typical in non-Bayesian software) are not similar to the p-values for significance

o
of the added variable plot slopes in either the observation or spectral domain. Table 17 shows the
estimates of 02, 02, and p at each step. The covariates Elevation, Slope, and Summer TC1 have
the largest effect on 62, reducing it by almost half, as we might expect given the relatively strong

low-frequency components in these covariates. Adding Elevation to the model had the largest effect

on p, with modest reductions from adding further covariates, and adding Elevation produced most

2

of the reduction in &7.

nnnnnnnn
eeeeeeeeeeeeee

(a) (b) (c) (d) Fit with Elev, (e) Fit with Elev,

Intercept-only Fit Fit with Eleva- Slope, SumTC1l, Slope, SumTCl,

fit. with Elevation. tion, Slope, Sum- SprTC2, north- SprTC2, n-s quad
merTC1. south quad trend.  trend, SumTC3.

Figure 35: Estimated fixed effects part of the fit for each of the five steps.
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(a) (b) (c) Residuals from  (d) Residuals  (e) Residuals from

fit with from fit with Elev, fit with Elev,
Residuals from  Residuals from Elevation, Slope, Slope, SumTC1l, Slope, SumTCl1,
intercept-only fit. fit with Elevation.  SummerTCI. SprTC2, north- SprTC2, n-s quad

south quad trend.  trend, SumTC3.

Figure 36: Residuals, i.e., data minus estimated fixed effects, for each of the five steps.

covariates in model minimum | 25% | 50% | 75% | maximum
Step 1: Intercept-only 0.01 2.69 | 4.95 | 5.40 30.81
Step 2: Elevation 0.00 2.10 | 4.20 | 6.70 26.79
Step 3: Elev, Slope, SumTCl1 0.00 1.76 | 3.93 | 5.96 24.48
Step 4: Elev, Slope, SumTC1,

SprTC2, n-s quad trend 0.03 1.71 | 3.77 | 5.91 24.09
Step 5: Elev, Slope, SumTCl1,

SprTC2, n-s quad, SumTC3 0.00 1.68 | 3.63 | 5.84 23.73

Table 14: Quantiles of absolute residuals, i.e., data minus estimated fixed effects.

Step 1 | Step 1 || Step 2 | Step 2
Candidate covariates slope p-value slope | p-value
Elevation -2.52 | <1072 — —

Slope -1.63 1076 -1.37 107°
SpringTC2 -0.28 0.16 -0.44 0.04
SpringTC3 0.99 10-° 0.97 10-°
SummerTC1 -1.03 107° -1.09 1076
SummerTC3 1.25 1077 1.23 1077
FallTC2 -0.87 | 0.0001 -0.94 10-°

Table 15: Coefficients for the covariates obtained by putting them into the model, and p-values
from Wald tests. The symbol “—” denotes covariate already in the model.
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Step 3 | Step 3 || Step 4 | Step 4 || Step 5 | Step 5

Candidate covariates slope | p-value slope | p-value slope | p-value
Elevation - - - — - -
Slope - - - — - —
SpringTC2 -0.49 0.03 - - - -

SpringTC3 0.39 0.10 1.30 0.0005 1.19 0.0008
SummerTC1 - - - — — -
SummerTC3 0.84 0.003 1.39 1076 - -

FallTC2 -0.76 0.0007 -0.72 0.001 -0.74 0.0005

Table 16: Coefficients for the covariates obtained by putting them into the model, and p-values

from Wald tests. The symbol “—” denotes covariates already in the model.
covariates in the model o2 o2 p
Step 1: Intercept-only 29.62 | 16.20 | 5.96
Step 2: Elev 21.96 | 13.82 | 2.85
Step 3: Elev, Slope, SumTC1 15.98 | 15.13 | 2.65
Step 4: Elev, Slope, SumTC1,
SprTC2, north-south quad trend 16.04 | 14.37 | 2.28
Step 5: Elev, Slope, SumTC1, SprTC2,
SumTC1, n-s quad, SumTC3 16.35 | 12.89 | 1.92

Table 17: Estimates of 02, 02, p using the exact restricted likelihood at each step.

11 Web Appendix K. Approximation Effects and Accuracy

This appendix focuses on the effects of smoothing data observed at irregular locations to a regular
grid using IDW, and approximating the restricted likelihood (RL) using the spectral approximation
to the GP-distributed random effect. The appendix mainly summarizes a simulation experiment
examining the effect of smoothing data to the grid and the combined effect of smoothing to a grid
and the spectral approximation. Subsection 11.1 discusses the intuition about IDW that motivated
the simulation experiment. The spectral approximation has a large literature, which we do not

attempt to summarize. Subsection 11.2 gives and interprets the simulation experiment results.

11.1 Intuition about smoothing to the grid using IDW

In the pseudo-data for a given grid point, IDW gives each actual observation a weight that is

inversely proportional to the distance from the grid point to that observation’s location, raised to
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the power A. A small A\ gives weight to many observations and thus produces smooth pseudo-data;
as A grows, weight is concentrated on fewer observations and with very large A, most grid points
are effectively assigned the nearest observation.

The clearest intuition is about smoothing’s effect on the estimated error variance, 62: in general,
62 will be biased downward because the weighted averaging at grid points dampens local or high-
frequency variation. The power A affects this most directly: small A suppresses local or high-
frequency variation more than large A, so small A should produce greater bias than large A. As
for grid density (M; and My), the downward bias of 62 should be greatest at the extremes of very
coarse and very dense grids even with large A, though for different reasons at the two extremes.
For coarse grids, with considerably fewer grid points than observations, each grid point’s weighted
average will be affected only by the observations closest to it; as the grid becomes coarser, the
most discrepant observations are more likely to influence no grid points, so the downward bias
should worsen as the grid coarsens. For dense grids, with the number of grid points approaching
or greater than the number of observations, more and more individual observations will be used
for more than one grid point; this repeated use will make the grid-smoothed data less variable
than the actual data, so again the downward bias should worsen as the grid becomes increasingly
dense. This suggests a moderate grid density is best for bias in 2. Finally, many real datasets have
measurements on non-rectangular regions, so the rectangular grid will have grid points in regions of
the map that are empty of observations. Pseudo-data for such grid points are necessarily averages

of observations at or very near the edge of the empty regions so they will tend to be less variable

than the actual data because of repeated use of the same observations. Thus, larger empty regions

2

should tend to have more downward bias in &5.

Intuition about the effects of grid smoothing on the estimate of the GP’s range, p, largely follows
from intuition about 62. Smoothing to a grid should have little effect on low-frequency features of
the data but will suppress power at high frequencies, so that power will tend to decline as frequency

increases faster in the grid smoothed data than in the actual data. Using intuition about estimates

based on the spectral approximation, because p is determined by this decline, p will tend to be
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biased high in grid-smoothed data. As for the GP variance o2, in the same scheme of intuition, its

estimate adjusts Jfaj (p) + o2 to “go through the middle of” the ’UJQ» for small j, and it is not clear

that the aforementioned effects will induce any consistent effect on 2.

11.2 Simulation experiment

In most simulation experiments done by statisticians, the purpose is to precisely estimate operating
characteristics (e.g., type I error), so the experimental designs consider few conditions (simulation
scenarios) and simulate many artificial datasets for each. Our purpose is different — to examine
trends in estimates over many IDW settings — so our experimental design is like one we would
recommend to our collaborators, with relatively few simulated datasets. (Our collaborators rarely
need designs with 1000 replications per design cell.) Specifically, we simulated 20 datasets with
observations at locations in the unit square; from each simulated dataset, we created 3 analysis
datasets differing in the size of the empty region on the spatial map; for each analysis dataset, we
considered 5 grid sizes; and for each grid size, we considered three values of the IDW smoothing
parameter A. The experimental design is thus entirely within-subject, where a “subject” is a
simulated dataset (20 levels), and the factors are amount of blank space (3 levels), and estimator
(16 levels, the estimates from maximizing the exact RL on the actual data plus 15 estimates for
data smoothed to a grid, where 15 = 5 grid sizes x 3 A values). Analysis of variance gave p < 0.05
for many effects, i.e., adequate power to detect trends of the sort described in the preceding section;
below, we focus on broad trends and do not report significance tests.

Experimental settings. Twenty datasets were simulated, each with observations at 400 lo-

cations in the unit square, iid draws from a uniform distribution. The same locations were used
for all 20 datasets. Simulated observations were drawn from an intercept-only linear mixed model
with true 8 = 0 and true 02 = 12, p = 0.1 (i.e., 1/10 of each dimension of the unit square), and o2

= 5. Amount of blank space. Blank space was created by omitting observations at locations within

specified regions. The levels of this factor were: no blank space; 1/8 of the unit square blank; and

1/4 of the unit square blank. The omitted regions were wedges opening upward with apex at the
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point (0.5, 0.5), specifically: to omit 1/8 of the unit square, omit points having sy > —2s; + 1.5
and sy > 2s1 — 0.5; to omit 1/4 of the unit square, omit points having so > —s1 + 1 and s9 > s1.
Grid size. All grids were M x M, where M was 12, 14, 16, 18, or 20. With no omitted data, a
simulated dataset had 400 observations, so these grids had, respectively, 36%, 49%, 64%, 81%, and

100% as many points. Smoothing parameter A\. We considered values of 5, 10, and 100. Preliminary

experiments considered A = 1 with catastrophic results. The analyses in the main paper’s Section
7 used A = 7 for y and X\ = 9 for candidate covariates by minimizing the sum over o2, p, and o2 of
the squared relative difference between the estimate obtained by maximizing the exact RL for the
real data and the data smoothed to the grid.

For each of the 60 analysis datasets (20 simulated datasets x 3 levels of blank space), we
produced estimates of (02, p,02) by (a) maximizing the exact RL using the “real” data; then (b)
maximizing the exact RL using pseudo-data smoothed to the grid; then (c) maximizing the ap-
proximate RL, based on the spectral approximation to the GP, using pseudo-data smoothed to the
grid. Comparing the estimates from (b) to the exact estimates (a) isolates the effect of smoothing
the data to a grid; comparing the estimates from (c) to the exact estimates (a) shows the combined
effect of smoothing the data to a grid and using the spectral approximation. (We do not recommend
obtaining estimates by maximizing the approximate restricted likelihood; this is simply a compact
way to capture the effect of smoothing to the grid followed by the spectral approximation.) The
following sections present these two comparisons; for both comparisons, preliminary analyses indi-
cated that the logarithms of the estimates were more appropriate dependent variables for ANOVA
than untransformed values.

Effect of smoothing to a grid.

Figure 37 shows the estimates obtained by maximizing the exact likelihood for the actual data
(“Exact” on the horizontal axis) or the pseudo-data smoothed to the grid (labelled as “M /)’ on
the horizontal axis). Figures 37 and 38 have the same vertical axes to facilitate comparison.

Broadly, biases in the estimates can be summarized as follows.
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e Error variance: Estimates are biased downward, least so for moderate M and large A though
even for these settings the bias is substantial. More empty space makes the bias worse for

denser grids.

e GP variance: Estimates are affected much less than error variance. The bias has no consistent

direction of bias but is sensitive to both M and .

e GP range p: Estimates are generally biased high, more so for coarser grids (small M) and for

more omitted data.

Regarding choices for the IDW procedure:

e Grid size: Moderate M is the best compromise: it is best for the error and GP variance,

while large M is best for p though not by much.

e Lambda: 100 is best for error variance; for the GP variance, the best value depends on M,

with moderate A\ best for moderate M; and for p, A has little effect.

Combined effect of smoothing to a grid and using the approximate RL.

Figure 38 shows estimates obtained by maximizing the exact RL for the actual data (“Exact” on
the horizontal axis) and the approximate RL for pseudo-data smoothed to the grid (labelled “M /\”
on the horizontal axis). Figures 38 and 37 have the same vertical axes to facilitate comparison.

For data smoothed to the grid, the estimate of error variance is markedly less biased and
less sensitive to the IDW settings when obtained by maximizing the approximate RL than when
obtained by maximizing the exact RL. Coarser grid sizes M give modestly less bias compared to
denser grids. This may depend on the true parameter values used to simulate the data; further
experiments would be required to determine this. Compared to estimates obtained using the exact
RL, estimates of GP variance and p are more biased on average using the approximate RL and
also more variable, as reflected in the standard errors associated with each estimate, listed in the
Figure captions. (An outlier strongly affects the average estimates of (62 and p for M = 20, A =

5). Estimates of the GP variance are generally biased high but show no particular dependence on
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the IDW settings, while estimates of p are generally biased downward but again show no particular

dependence on the IDW settings.
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Figure 37: Estimates from maximizing the exact RL; average over 20 simulated datasets. In each
panel: No empty space, solid line with circles; 1/8 empty space, dashed line with triangles; 1/4
empty space, dotted line with crosses; the solid horizontal line is the true value used to simulate
the data. “Exact” is the estimate from maximizing the exact RL for the actual data. Vertical
axes are the same as in Figure 38. Standard errors for individual estimates are 0.51 for logl0 error
variance, 0.023 for logl0 GP variance, and 0.032 for logl0 p. Standard errors for comparing pairs
of estimates are similar.
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Figure 38: Estimates from maximizing the approximate RL; average over 20 simulated datasets. In
each panel: No empty space, solid line with circles; 1/8 empty space, dashed line with triangles; 1/4
empty space, dotted line with crosses; the solid horizontal line is the true value used to simulate the
data. “Exact” is the estimate from maximizing the exact RL for the actual data. Vertical axes are
the same as in Figure 37. Standard errors for individual estimates are 0.39 for log10 error variance,
0.19 for logl0 GP variance, and 0.22 for log10 p.
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12 Web Appendix L. Spatial Confounding

This brief discussion of spatial confounding, as it relates to the spectral approximation used here,
is based on Chapter 15 of Hodges (2014), especially Section 15.2.3.

A conventional non-Bayesian fit of a linear mixed model has two steps: (1) Maximize the re-
stricted likelihood (RL) to estimate unknown parameters in the random-effect and error covariance
matrices G and R, and (2) insert those estimates into G and R as if they were known to be true,
and estimate fixed effect coefficients 8 and random effects u. (A Bayesian analysis implicitly re-
places Step 1 by computing the marginal posterior of the unknowns in G and R, and replaces Step
2’s plug-in estimates with the integral of the conditional posterior of (3, u) against the marginal
posterior of the unknowns in G and R, which gives the marginal posterior of (5, u). If the fixed
effect vector 8 has 7(3) o 1, the following paragraph still holds; if 8 has a multivariate normal prior
with covariance matrix ¥ having a finite determinant, the following paragraph no longer holds.)

In Step 1, the RL attributes to the fixed effects all variation in y that lies in the column space
of the fixed effect design matrix X, so that estimates of the unknowns in G and R are determined
entirely by variation in y lying in the orthogonal complement to the column space of X. Thus,
spatial confounding has no effect whatsoever on RL-maximizing estimates of unknowns in G and
R; our approximate analysis preserves this property. In Step 2, the unknowns in G and R are set
to their estimated values and the fixed effects X5 and random effects Zu then compete to explain
variation in y. They compete to an extent determined by Step 1’s estimates: spatial confounding
can occur in Step 2 only if shrinkage or smoothing is not marked; this occurs if error variation
(R) is not large relative to random-effect variation (G). Our approximate analysis preserves this
property as well.

The foregoing, applied to the spectral approximation, may help explain spatial confounding
for linear mixed models including GP-distributed random effects, the best published treatment of
which, as far as we know, is Hanks et al (2015). Broadly, fixed effects with strong low-frequency

components can be spatially confounded only if Step 1 produces an estimate of error variation that
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is not large relative to random-effect variation. If this condition holds, then such fixed effects are
spatially confounded by low-frequency components of the GP-distributed random effect to a degree
determined by the size of their projection on the columns of Z capturing those low frequency
components, and by the extent to which the latter’s coefficients in u are in fact shrunk. Fixed
effects with weak low-frequency components are generally not subject to spatial confounding: high-
frequency components of the random-effect fit are shrunk a great deal and thus cannot confound
fixed effects. The exception to the latter generalization occurs when error variation is estimated to
be very small relative to random-effect variation, in which case little shrinkage occurs and fitting

fixed effects of any kind is hazardous because the model is barely identified.

References

Fuentes, M. and Reich, B. (2010). Spectral Domain. In A. E. Gelfand, P. Diggle, P. Guttorp and

M. Fuentes (eds.), Handbook of Spatial Statistics. CRC Press, Ch. 5.

Hanks, E.M., Schliep, E.M., Hooten, M.B., Hoeting, J.A. (2015). Restricted spatial regression
in practice: geostatistical models, confounding, and robustness under model misspecification.

Environmetrics, 26:243-254.

Hodges, J. S. (2014). Richly Parameterized Linear Models: Additive, Time Series, and Spatial

Models Using Random Effects. Chapman and Hall, CRC Press.

Paciorek, C. J. (2007). Bayesian Smoothing with Gaussian Processes using Fourier Basis Functions

in the spectral GP Package. Journal of Statistical Software, 19(2):1-38.
Priestley, M. B. (1981). Spectral Analysis and Time Series. London: Academic Press.

Wikle, C. (2002). Spatial Modeling of Count Data: A Case Study in Modelling Breeding Bird Sur-
vey Data on Large Spatial Domains. In A Lawson, D Denison (eds.), Spatial Cluster Modelling,

Chapman & Hall, 199-209.

48



