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Summary

Hodges et al (2007) proposed smoothed analysis of variance (ANOVA) and showed how to use

it to smooth interactions in balanced, single-error-term ANOVAs. Besides avoiding discontinuous

choices to include or exclude effects, smoothed ANOVA addresses three practical concerns: un-

replicated designs, masking in effects with many degrees of freedom, and “subgroup analysis”. The

present paper extends smoothed ANOVA to general designs with multiple error terms or imbalance,

although certain extensions are only possible for balanced designs. While this is presented as a

Bayesian analysis, we also give a smoothed ANOVA table similar to a standard ANOVA table with

degrees of freedom and sum of squares.
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1 Introduction and motivation

Analysis of variance (ANOVA) is widely used to test the association of a response with individual

factors and their combinations, i.e., interactions. Interactions are often modeled in a stepwise way

in which at each step an effect stays in the model or leaves it completely. Smoothed ANOVA

(SANOVA; Hodges et al 2007, henceforth HCSC) neither includes nor excludes effects, but instead

smooths (or shrinks) them. In doing so, it addresses three practical concerns with standard ANOVA:

unreplicated designs, masking in effects with many degrees of freedom, and “subgroup analysis”. In

a simulation study and a real data analysis, HCSC showed advantages of using smoothed ANOVA.

Zhang et al (2007) used the SANOVA framework to smooth spatially-referenced factors in two-

and higher-way ANOVAs, again balanced with a single error term. The present paper extends

smoothed ANOVA from balanced, single-error-term designs to designs with arbitrary random effects

and imbalance. HCSC proposed a SANOVA table as a bookkeeping device for variation in and

smoothing of the dependent variable y; this paper extends the SANOVA table to general designs,

although one aspect of the extension appears to require balance.
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Following Hodges & Sargent (2001), HCSC proposed priors on the fitted degrees of freedom

(DF) of individual effects as an indirect but intuitive way to specify priors on smoothing parameters.

They also showed how to condition the priors on the DF in one or more effects so they satisfy sum

constraints. This was possible only because the balanced, single-error-term ANOVA gives a natural

decomposition of total DF in the fit into DF for individual effects. Cui et al (2009) extended Hodges

& Sargent’s (2001) definition of DF to attribute DF to individual effects in great generality. The

present paper uses this extended definition to specify priors on the DF of effects in smoothing

general ANOVAs.

This paper is organized as follows. Section 2 defines notation, introduces the smoothed

ANOVA table and shows how to put prior distributions on DF to specify priors on smoothing

parameters. The source and destination of smoothed-out DF and SS can be derived for a large

class of balanced designs; Section 3 shows how. Section 4 demonstrates some properties of smoothed

ANOVA and priors on DF using data from a balanced study having one between- and one within-

subject effect. Section 4 concludes.

2 Theory and derivations

2.1 Notation

We use a hybrid parameterization: a one-column-per-DF parameterization for each fixed effect

(FE) and a one-column-per-level exchangeable parameterization for each random effect (RE). We

use the terms FE and RE in their more traditional senses (e.g., Scheffé 1959, p. 238): a FE is a

factor with fixed number of levels and the interest lies in estimation of each of its levels; a RE is

a factor with many levels, from which only a sample of levels can be investigated, and the interest

lies in estimating variation in the population of levels. The one-column-per-DF parameterization

for FE is often used in ANOVA because it assigns each effect a number of columns equal to the

DF used in standard ANOVA F-tests. For RE, as traditionally understood, one-column-per-level

exchangeable parameterization is the convention. Section 3 shows an example to make this more

concrete. We assume the following model

y = X1θ1 + X2θ2 + ε, (1)

where X1 ∈ Rn×p and X2 ∈ Rn×L are respectively the design matrices for effects that will not

be smoothed and for effects that will be smoothed, including REs. Partition the columns in X2

as [X21, · · · , X2l], l ≤ L and conformably partition θ2 = [θ21, · · · , θ2l]. The parameters θ1 ∈ Rp
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and the first l′ ≤ l clusters of parameters in θ2 ∈ RL are FEs while the other l − l′ clusters of

parameters in θ2 are REs. Then if we use an orthogonal parameterization for FEs, which gives

each column one DF, in a balanced ANOVA design and with a suitable scaling of X1 and X2,

X ′
1X1 = nIp and for j, j1, j2 ≤ l′, X ′

2j1
X2j2 = 0 if j1 6= j2, X ′

2jX2j = nI, and X ′
1X2j = 0.

This parameterization is the same as in HCSC (Section 2). The jth cluster of smoothed θ2j has

prior distribution θ2j |Γ2j ∼ N(0, Γ2j), and the θ2j |Γ2j are assumed independent of each other.

The normally distributed error ε has mean 0 and covariance matrix Γ0. Here, Γ0 and Γ2j are

nonnegative-definite symmetric covariance matrices and are not necessarily proportional to the

identity matrix or even diagonal. If X2j corresponds to a RE, e.g., with 5 levels, then to get an

exchangeable parameterization for this effect, X2j could be a binary matrix, i.e., all entries are

0 or 1, with 5 columns, and Γ2j could be proportional to the identity matrix of dimension 5, or

alternatively have a 2-parameter compound symmetry structure, etc.

The partition of X2’s columns and θ2 need not correspond to effects. For example, an effect’s

5 columns in X2 could be partitioned into as many as 5 clusters, or the columns representing all of

the two-way interactions could be grouped into a single cluster. However, it will often be useful to

specify clusters corresponding to effects in the ANOVA.

An alternative parameterization would be an exchangeable parameterization for every effect,

as proposed by Peter McCullagh (personal communication). For a 2 by 3 factorial design, this

would use a 2 column and 3 column binary matrix for the two main effects and a 6 column

binary matrix for the interaction. This parameterization satisfies infinite exchangeability for the

levels of the two fixed effects, which makes it a sensible model according to McCullagh (2002), so

that, for example, a contrast of two levels of a factor is not impacted by deletion or addition of

other levels of the factor. McCullagh’s mathematical formulation of a statistical model is partly

motivated by a concern that a parameter’s meaning should not be affected by the sample size or

experimental design, with the analysis primarily oriented toward predictions of future observations.

For our purposes, we lean to Besag’s (2002) view of McCullagh’s motivating concerns. First,

this specification is over-parameterized and thus inestimable even when no term is smoothed and

the model reduces to an ordinary ANOVA. Also, in computing the degrees of freedom in the

model’s fit, this parameterization allocates degrees of freedom among effects in a non-intuitive

way (Cui et al 2009), and we consider this allocation important for interpretation and for placing

prior distributions on variances of RE and variances used to smooth FE. Also, the benefits of the

exchangeable parameterization, such as consistency in morphisms on experimental units (including

permutation and marginalization), appear to be relevant to designed experiments, where units are

regarded as exchangeable, more than to observational studies. However, we aim to produce an
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analysis for general designs, including observational studies.

2.2 Deriving DF and SS

As in a standard ANOVA, a smoothed ANOVA procedure gives a bookkeeping table of DF and

SS. We use Hodges and Sargent’s (2001) definition of DF, as extended in Cui et al (2009). This

definition is identical to that of Ruppert et al (2003, section 8.3) when both are applicable. The

formula to define effect-specific SS is given below. (In the preceding section’s terms, here the

clusters are the same as the ANOVA’s effects.) DF and SS as defined here are similar in that they

are both consistent with definitions in HCSC and are functions of the smoothing parameters Γ0 and

Γ2. Since DF and SS depend on unknowns, in a Bayesian analysis they have posterior distributions,

and we can use summary descriptions of these posteriors, such as the posterior mean or median.

We prefer the posterior mean for reasons given in HCSC, mainly that the expectation of a sum is

the sum of the expectations so that the ANOVA’s bookkeeping function is preserved.

The DF (Cui et al 2009) of the nonsmoothed FE X1 is the rank of X1, while the DF of a

smoothed effect X2j or error ε is the “fraction of variation” contributed by X2j or ε out of variation

that is not accounted for by the nonsmoothed effects X1, i.e.,

DF (X2j) = tr{X2jΓ2jX
′
2j [(I − PX1)(X2Γ2X

′
2 + Γ0)(I − PX1)]

+}

DF (ε) = tr{Γ0[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+}

where Γ2 = diag(Γ21, · · · , Γ2l); PM is the orthogonal projection onto the column space of a matrix

M , where the inner product of two vectors α and β is α′β; and “+” denotes the Moore-Penrose

generalized inverse.

Following the rationale used to derive DF (Cui et al 2009), the SS of a smoothed effect X2j

or error ε is the fraction of variation in y explained by X2j or ε out of variation not accounted for

by the nonsmoothed effects X1. As in the derivation of DF, a nonsmoothed effect can be viewed

as the limit of a smoothed effect, for which the prior covariance goes to infinity and imposes no

constraint. For a positive scalar λ and any positive definite Γ1 ∈ Rp×p, the SS for, respectively,

non-smoothed effects, for the jth cluster of smoothed effects (FE or RE), and for error ε, are thus

defined as:

SS(X1) = lim
λ→+∞

y′{[X1λΓ1X
′
1 + X2Γ2X

′
2 + Γ0]+1/2X1λΓ1X

′
1

[X1λΓ1X
′
1 + X2Γ2X

′
2 + Γ0]+1/2}y

= y′PX1y
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SS(X2j ; Γ0, Γ2) = lim
λ→+∞

y′{[X1λΓ1X
′
1 + X2Γ2X

′
2 + Γ0]+1/2X2jΓ2jX

′
2j

[X1λΓ1X
′
1 + X2Γ2X

′
2 + Γ0]+1/2}y

= y′{[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+1/2X2jΓ2jX
′
2j [(I − PX1)

(X2Γ2X
′
2 + Γ0)(I − PX1)]

+1/2}y,

SS(ε; Γ0, Γ2) = lim
λ→+∞

y′{[X1λΓ1X
′
1 + X2Γ2X

′
2 + Γ0]+1/2Γ0

[X1λΓ1X
′
1 + X2Γ2X

′
2 + Γ0]+1/2}y

= y′{[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+1/2Γ0[(I − PX1)

(X2Γ2X
′
2 + Γ0)(I − PX1)]

+1/2}y.

In the limit as λ goes to +∞, Γ1’s specific value does not matter.

If M is nonnegative definite, M+1/2 denotes the symmetric and nonnegative positive square

root of M as defined in Horn & Johnson (1985). They showed that for a nonnegative definite

matrix, M+1/2 always exists and is unique. It also has the same singular value decomposition as

M except for replacing the diagonals in the diagonal matrix by their nonnegative square roots.

The usage [(I −PX1)(X2Γ2X
′
2 + Γ0)(I −PX1)]

+1/2 is therefore legal since the matrix in question is

nonnegative definite.

The following lists some properties of SS; the Appendix gives proofs.

(SS.a) For balanced, single-error-term designs as in HCSC, the above definition gives the same SS

as in HCSC.

(SS.b) When Γ0, the covariance of ε, is positive definite, SS(X1)+
∑J

1 SS(X2j ; Γ0, Γ2)+SS(ε; Γ0,Γ2) =

y′y = ||y||2, as in ordinary ANOVA.

(SS.c) Suppose model (1) is correct, i.e., y|Γ0, Γ2 ∼ N(µ,X2Γ2X
′
2 + Γ0), where µ ∈ R(X1),

the column space of X1, and Γ0 is positive definite. Then E(SS(X1)|Γ0, Γ2) = tr[(X2Γ2X
′
2 +

Γ0)PX1 ] + µ′µ and E(SS(X2j ; Γ0, Γ2)|Γ0,Γ2) = tr[(X2jΓ2jX
′
2j)(I − PX1)]. So the expected SS of

the unsmoothed effects X1 come from two sources: µ ∈ R(X1) and variation arising from X2θ2 and

error ε that falls in R(X1), the column space of X1. By contrast, the expected SS of smoothed X2j

comes only from the variation in the orthogonal complement of the column space of X1.

It may seem odd that sums of squares can be defined unambiguously for individual smoothed

effects or random effects with columns X2j when this is not possible in ordinary unbalanced

ANOVAs (giving rise, for example, to the SAS system’s four types of sums of squares). Note,

however, that the sum of squares is defined above for the unsmoothed effects as a group, not for

individual unsmoothed effects. Also, the sum of squares for the unsmoothed effects in X1 is derived
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by first treating their coefficients θ1 as smoothed, with smoothing covariance λ1Γ1 for positive defi-

nite Γ1, and then letting λ1 go to infinity. Suppose we also give the jth cluster of smoothed effects,

θ2j , smoothing covariance λjΓ∗j for positive definite Γ∗j , and then try to derive sums of squares for

X1 and X2j by letting both λ1 and λj go to infinity. Unless X ′
1X2j = 0, the limiting sums of

squares depend on the order in which λ1 and λj go to infinity, that is, the limits do not exist.

2.3 Prior distributions on smoothing parameters

HCSC Section 2.4 discussed prior distributions for smoothing balanced single-error-term ANOVA.

Many of those prior distributions are applicable here as well. For cases in which Γ2j = σ2
2jΓ

0
2j and

Γ0 = σ2
0Γ

0
0, an obvious choice is to put priors on σ2

i , i = 0, . . . , l or ηi = 1/σ2
i . Apart from the

familiar independent gamma priors on the ηi, the growing literature of such priors includes Gelman

(2004, 2005) among others. He et al (2007) proposed re-parameterizing the σ2
2j to λ =

∑
i>0 ηi/η0

and β = (η1/λ, ..., ηl/λ), where β lies in the l-dimensional simplex, permitting a proper flat prior.

HCSC suggested priors on DF as a way to induce priors on smoothing parameters, which

extend to the present case but not necessarily straightforwardly. We discuss these at length below.

HCSC (Section 2.4.2) showed how to condition prior distributions on smoothing parameters

so that the sum of the DF in a group of clusters is equal to or bounded above by a constant, e.g.,

the sum of DF in all of the two-way interactions is fixed at some K. This can be done in the present

case as well. To specify such priors, it is easiest to specify unconstrained priors for the smoothing

parameters, either on the smoothing parameters themselves or on the analogous DF, and then to

impose the sum constraint. HCSC (Appendix A.3, Case 2) gave an algorithm for making MCMC

draws under these constraints.

The rest of this section discusses prior distributions on DF. For model (1), Cui et al (2009)

proposed a method to obtain a DF-based prior on variance ratios when each of the l smoothed effects

(groups of design-matrix columns) is smoothed by a single variance parameter σ2
i and residual error

is smoothed by σ2
0. Specifically, assume in model (1) that Γ2j = σ2

j Γ
0
2j , j = 1, · · · , l and Γ0 = σ2

0Γ
0
0,

where σ2
j , j = 0, 1, · · · , l are unknown scalars, while Γ0

2j , Γ
0
0 are known positive definite covariance

matrices. Assume further that X2j * R(X1) for any j = 1, · · · , l. Then DF (·) is a 1-1 mapping

between q = (DF (X21), · · · , DF (X2l))′ on q’s range and s = (log σ2
1

σ2
0
, · · · , log

σ2
l

σ2
0
)′, whose range is Rl,

and a prior on q induces a unique prior on s. We now elaborate that idea for the general smoothed

ANOVA considered here.

(This may seem restrictive, but recall that a cluster of columns X2l need not be an effect.
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An effect can be broken into as many clusters as the dimension of its column space, for example,

HCSC Section 4 treats a 21-DF interaction as 21 clusters.)

Any prior on the vector of cluster-specific DF q = (DF (X21), · · · , DF (X2l)) induces a joint

prior on the l variance ratios {ri}l
1, where ri = σ2

i

σ2
0
. For the balanced, single-error-term smoothed

ANOVAs considered in HCSC, DF (X2i) involves only ri, and the range of q is the Cartesian

product of the ranges of the DF (X2i). Thus HCSC put independent priors on the DF (X2i) to

obtain independent priors on the ri. But in general smoothed ANOVA, the range of q is not

necessarily regular and it is subject to constraints (property (DF.c), Section 2.4 of Cui et al 2009).

As the ANOVA becomes more complicated, the range of q becomes subject to more constraints.

For example, for the balanced design discussed in Section 4 below, the DF of the smoothed fixed

effect A lies in (0, 2) and the DF of the nested random effect S|A lies in (0, 26), but the sum of

these two DF is constrained to lie in (0, 26).

To avoid such complications and to speed computing, for the purpose of specifying a prior

we can use an ad hoc approximation of DF which we call pseudo-DF. For model (1), we define

the pseudo DF of X2j , denoted by DFp(X2j), as the DF of X2j in a simplified model with only

nonsmoothed effects, the single smoothed effect X2j , and the pure error, i.e.,

DFp(X2j) = tr{X2jΓ2jX
′
2j [(I − PX1)(X2jΓ2jX

′
2j + Γ0)(I − PX1)]

+}.

If Γ2j = σ2
j Γ

0
2j and Γ0 = σ2

0Γ
0
0, where Γ0

2j , Γ
0
0 are known positive definite covariance matri-

ces, then DFp(X2j) is a function only of rj =
σ2

j

σ2
0
, and ranges from 0 to rank((I − PX1)X2j).

Then qp = (DFp(X21), · · · , DFp(X2l)) defines a mapping from r = (r1, · · · , rl) ∈ (R+)l onto

(0, rank((I − PX1)X21)) × · · · × (0, rank((I − PX1)X2l)). Now we can put unrestricted indepen-

dent priors on each DFp(X2j) to obtain a joint prior on r. Ruppert et al (2003, Section 8.3) used

the same approximation to reduce the computational burden of exact DF and reported practically

no difference between the approximation and exact values for all examples they had considered.

However, this is not always the case; Cui et al (2009, Section 3.2) gives an example, and Section 4

below gives another.

Usually an unbalanced design leads to a messier expression for q than does a balanced design.

However, since an unbalanced design can usually be nested within a balanced design with the same

set of variance parameters, DF-based priors from the larger nesting balanced design can be used as

another way to construct approximate priors for the actual unbalanced design. If the imbalance is

not great, this prior should differ little from a prior on DF for the imbalanced design itself. We do

not consider this further here.
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Section 3 below specifies another possibility, a prior on the so-called retained DF of each

random effect or smoothed fixed effect which are defined below.

For the purpose of inducing priors on the variance ratios
σ2

j

σ2
0
, we can use exact DF, pseudo-DF,

or retained DF to induce DF-based priors on the ri, but after we have samples from ri’s posterior,

we should only consider the exact DF as describing the smoothness of the fitted effects.

3 The destination of DF and SS smoothed out of effects

The usual ANOVA table decomposes both the DF and SS into pieces for each effect and for error.

In smoothed ANOVA, θ2i are shrunk toward 0 and partly removed from the fitted model and

counted as error. In the one-error-term ANOVA design considered by HCSC, variation smoothed

out of an effect can only be smoothed into one place: pure error. In a more complicated design,

however, REs compete with pure error for the part of variation smoothed out of fixed effects, so in a

general design, variation smoothed out of effects may have more than one destination. In this case,

smoothed ANOVA can show how information about each error term is derived from replication and

from variation smoothed out of shrunken effects and other errors. We develop these ideas using

a specific balanced experiment with two error terms, a subject effect and the usual residual error,

allowing explicit expressions. Three features of this example may reduce its generality: the choices

of Γ2j , the clear hierarchy of the error terms (REs), and the design’s balance. At this section’s end

we discuss what is known about how much our results can be generalized.

Consider a balanced design with one between- and one within-subject fixed effect. Section 4

uses this design for an endodontics dataset, the Irrigation study. The between-subject effect A has

3 levels and nine subjects (S) were measured at each level of A. The within-subject effect B has 5

levels, giving a total of 135 observations. Let 1k be the normalized k-vector of 1s, 1k = 1√
k
(1, · · · , 1)′,

and let Hk be a normalized orthogonal basis of the orthogonal complement of 1k in Rk, i.e., 1′kHk = 0

and H ′
kHk = Ik−1. Then model (1) becomes

y = X1θ1 + X2θ2 + ε, (2)

where X1 = XGM = 13⊗19⊗15 is the design matrix for the grand mean; X2 = [XA, XB, XAB, XS|A]

is partitioned conforming to mean parameters θ2 = [θ′A, θ′B, θ′AB, θ′S|A]′, where A, B and AB refer

to the main effects for A and B and their interaction, while S|A refers to the subject random effect

within levels of A. In X2, XA = H3⊗19⊗15, XB = 13⊗19⊗H5, XAB = H3⊗19⊗H5, and XS|A =

I3 ⊗ I9 ⊗ 15. Since there is no replication, the lowest-level error term is S ×B|A, i.e., the random

effect subject-by-B within levels of A. For this example, we smooth effects in θ2 by modelling
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Effect GM A B AB S|A ε = S ×B|A
DF 1

σ2
2

σ2
2+σ2

5+σ2
0
· 2

σ2
3

σ2
3+σ2

0
· 4

σ2
4

σ2
4+σ2

0
· 8

σ2
5

σ2
2+σ2

5+σ2
0
· 2 +

σ2
5

σ2
5+σ2

0
· 24

σ2
0

σ2
2+σ2

5+σ2
0
· 2 +

σ2
0

σ2
3+σ2

0
· 4+

σ2
0

σ2
4+σ2

0
· 8 +

σ2
0

σ2
5+σ2

0
· 24 + 96

Table 1: Effect-specific DF in the example (the Irrigation study)

each as iid normal conditional on its variance σ2
i : θA ∼ N(0, σ2

2I2), θB ∼ N(0, σ2
3I4), θAB ∼

N(0, σ2
4I8), θS|A ∼ N(0, σ2

5I27), ε ∼ N(0, σ2
0I135), where the effects and interactions in θ2 are

independent of each other conditional on the σ2
i . For this discussion, each effect is smoothed using

a single smoothing parameter, though this is not necessary (see HCSC Section 4 and the discussion

of generalizations below).

With DF as defined in Cui et al (2009), Table 1 gives effect-specific DF in the fit as a function

of the variances σ2
i . If a modeler does not want to smooth the FEs A, B, or AB, which is equivalent

to letting their smoothing variances σ2
2, σ2

3, or σ2
4 go to infinity, then from Table 1 above, A, B,

and AB will have 2, 4, and 8 degrees of freedom respectively, DF (XS|A) = σ2
5

σ2
5+σ2

0
· 24, and

DF (ε) = σ2
0

σ2
5+σ2

0
· 24 + 96. It is easy to check that DF (XGM ) + DF (XA)+ DF (XB)+ DF (XAB)+

DF (XS|A)+DF (ε) = 135 = dim(y). Direct application of Section 2.2’s definition gives SS for each

effect. Section 4 gives a smoothed ANOVA table for the Irrigation study.

We now describe how the DF and SS for each smoothed effect are smoothed into the two error

terms in this balanced design. It is conventional in standard balanced ANOVA with a one-column-

per-DF parameterization and a single error term to regard a fixed effect, say E, as the source for

all variation of y that lies in R(XE), the column space of XE , where XE is effect E’s design matrix.

Thus effect E is credited with all DF attributed to variation in R(XE). However, in ANOVA with

more than one error term, variation in y that lies in R(XE) comes from effect E and possibly from

random effects whose design matrices are correlated with XE , or more precisely, the column spaces

of their design matrices have non-trivial intersection with R(XE). Therefore in smoothed ANOVA,

effect E and those error terms share the fixed number of DF attributed to variation in y that lies

in R(XE).

In our example’s design, the response y is a 135-vector, so DF of the total variation in y is 135

(property (DF.a) in Cui et al 2009). Of these 135 DF, the variation that lies in R(XA) comprises

2 DF, since effect A has 2 contrasts. This 2 DF is by convention the DF of effect A in unsmoothed

ANOVA. This is also true in smoothed ANOVA if effect A is not smoothed, or equivalently, if A’s

smoothing variance goes to infinity, so that although REs or error terms contribute to variation in

R(XA), they are credited with 0 DF of A’s maximum 2 DF. However, when effect A is smoothed,

A only retains part of these 2 DF in the fitted model, i.e., σ2
2

σ2
2+σ2

5+σ2
0
· 2. Where does the rest of the
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2 DF go?

In model (1), the total (marginal) variation in y around the unsmoothed effects is X2Γ2X
′
2+Γ0,

given θ1, Γ0 and Γ2. Consider a given fixed effect that is being smoothed, say θE , with design

matrix XE and smoothing covariance ΓE . Because we are considering balanced designs, R(XE)

intersects with the column space of the nonsmoothed effects, R(X1), only at the origin. Then

the total variation in y around the unsmoothed effects lying in R(XE), contributed by θE and

possibly other effects, has total DF rank(XE). In our example, the total variation in R(XA)

around the grand mean is PXA
(X2Γ2X

′
2 + Γ0)PXA

, and this total variation is credited with 2

DF, i.e., tr{PXA
(X2Γ2X

′
2 + Γ0)PXA

[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+} equals 2. These 2 DF

are partitioned among A, S|A and S × B|A (error). Specifically, the variation arising from A

is XAΓAX ′
A; the variation from S|A that lies in R(XA) is PXA

COVS|APXA
, where COVS|A =

XS|AΓS|AX ′
S|A; the variation from S×B|A (error) that lies in R(XA) is PXA

COVS×B|APXA
, where

COVS×B|A = XS×B|AΓ0X
′
S×B|A = Γ0 because XS×B|A = I135. The sum of the three components

is the total variation in R(XA), PXA
(X2Γ2X

′
2 + Γ0)PXA

. XB and XAB do not have a share of this

variation because PXA
XB = PXA

XAB = 0.

Therefore, the DF in R(XA) attributed to effect A is tr{XAΓAX ′
A[(I−PX1)(X2Γ2X

′
2+Γ0)(I−

PX1)]
+}, which reduces to σ2

2

σ2
2+σ2

5+σ2
0
· 2; the part of S|A’s DF arising from its contribution to

variation in R(XA) is tr{PXA
COVS|APXA

[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+}, which reduces to
σ2
5

σ2
2+σ2

5+σ2
0
· 2; the part of S×B|A’s (i.e., error) DF arising from its contribution to variation in R(XA)

is tr{PXA
COVS×B|APXA

[(I−PX1)(X2Γ2X
′
2 +Γ0)(I−PX1)]

+}, which reduces to σ2
0

σ2
2+σ2

5+σ2
0
· 2. The

three parts add to 2, the DF conventionally attributed to A.

Define the part of a RE’s DF that arises from its contribution to the total variation in R(XE)

as the “DF smoothed out of XE to this RE”, because if θE is not smoothed, this part of DF will

not be allocated to this RE. In our example, out of the total DF of S|A, the part σ2
5

σ2
2+σ2

5+σ2
0
· 2

is termed as “DF smoothed from A to S|A”, which becomes 0 if A is not shrunk toward 0, or

equivalently if σ2
2 goes to +∞. With the balanced orthogonal parameterization of FEs, we can

divide variance arising from S|A into parts corresponding to variation in the column spaces of each

FE and a residual, i.e., total variance from S|A decomposes as

COVS|A = PGMCOVS|APGM + PACOVS|APA + PBCOVS|APB + PABCOVS|APAB + QCOVS|AQ, (3)

where Q = I − (PGM + PA + PB + PAB) = I3 ⊗ PH9 ⊗ I5, PGM = PXGM
, PA = PXA

, PB =

PXB
, PAB = PXAB

. Thus, define the DF smoothed from A to S|A as

DF (A → S|A) = tr{PACOVS|APA[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+} =
σ2

5

σ2
2 + σ2

5 + σ2
0

· 2.

The DF smoothed from other FEs to S|A are defined similarly; the DF smoothed from the grand
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mean, B and the AB interaction into S|A, DF (GM → S|A) = DF (B → S|A) = DF (AB →
S|A) = 0 as expected, because the grand mean is not smoothed, while B and AB are within-subject

effects.

Similarly the error term S ×B|A’s covariance COVS×B|A decomposes as

COVS×B|A = PGMCOVS×B|APGM + PACOVS×B|APA + PBCOVS×B|APB +

PABCOVS×B|APAB + PS|AQCOVS×B|AQPS|A + QS|AQCOVS×B|AQQS|A, (4)

where PS|A = PXS|A = I3 ⊗ I9 ⊗ P15 , and QS|A = I − PS|A, and PS|AQ and QS|AQ are both

orthogonal projections since PS|A and Q commute. Then the part of DF smoothed from A into

S ×B|A (i.e., into error) is defined as

DF (A → S ×B|A) = tr{PACOVS×B|APA[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+}

=
σ2

0

σ2
2 + σ2

5 + σ2
0

· 2,

which would not be credited to S ×B|A if σ2
2 went to +∞. DF smoothed from B and A×B into

S ×B|A are defined similarly. DF smoothed from S|A into S ×B|A is

DF (S|A → S ×B|A) = tr{PS|AQCOVS×B|AQPS|A[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+}

=
σ2

0

σ2
5 + σ2

0

· 24.

This is also the amount of DF S×B|A would lose if σ2
5 went to +∞ and FEs were all unsmoothed.

We define the “retained” DF of S|A as the part of S|A’s DF that is not smoothed into or out

of S|A, i.e., DFr(XS|A) = DF (XS|A) − DF (GM, A, B,AB → S|A) = σ2
5

σ2
5+σ2

0
· 24, which is the

variation QCOVS|AQ in (3), i.e., tr{QCOVS|AQ[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+}, and is also

the DF S|A would have if all FEs were unsmoothed, i.e., if σ2
2, σ

2
3, σ

2
4 are all +∞. As noted earlier,

a prior distribution can be placed on retained DF as an alternative to placing a prior on DF itself;

Section 4 gives an example.

DF smoothed from the grand mean, B, and AB into S × B|A are DF (GM → S × B|A) =

0, DF (B → S × B|A) = σ2
0

σ2
3+σ2

0
· 4, DF (AB → S × B|A) = σ2

0

σ2
4+σ2

0
· 8. So the retained DF of

S×B|A is DFr(XS×B|A) = DF (XS×B|A)−DF (A → S×B|A)−DF (B → S×B|A)−DF (AB →
S×B|A)−DF (S|A → S×B|A) = 96, which comes from the variation of QS|AQCOVS×B|AQQS|A

in (4), and is also the DF S ×B|A would have if σ2
j = +∞, j = 2, 3, 4, 5. In other words, S ×B|A

as the lowest error term has no DF smoothed out of it and therefore retains all of its original 96

DF.
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Source Destination: DF in the smoothed fit.

GM A B AB S|A S ×B|A Conventional DF

GM 1 0 0 0 0 0 1

A 0
σ2
2

σ2
2+σ2

5+σ2
0
· 2 0 0

σ2
5

σ2
2+σ2

5+σ2
0
· 2 σ2

0
σ2
2+σ2

5+σ2
0
· 2 2

B 0 0
σ2
3

σ2
3+σ2

0
· 4 0 0

σ2
0

σ2
3+σ2

0
· 4 4

AB 0 0 0
σ2
4

σ2
4+σ2

0
· 8 0

σ2
0

σ2
4+σ2

0
· 8 8

S|A – – – –
σ2
5

σ2
5+σ2

0
· 24

σ2
0

σ2
5+σ2

0
· 24 24

S ×B|A – – – – – 96 96

DF in fit DF (XGM ) DF (XA) DF (XB) DF (XAB) DF (XS|A) DF (XS×B|A) 135

Table 2: A balanced design: the DF portion of the smoothed ANOVA table

Table 2 bookkeeps DF flow in the model fit. In Table 2, rows are sources of variation except

for the bottom row (“DF in fit”) which is the column sum; columns are final locations of variation,

except for the right-most column (“Conventional DF”), which is the row sum; the entry in a row

and column is the piece of the row’s total DF that, for given Γ0 and Γ2, is retained in or smoothed

into the column’s effect. Here, for example, only the between-subject factor A has DF smoothed

into S|A. The bottom row is the sum of DF retained or smoothed into the column’s effect in the

fitted smoothed ANOVA, and is the same as in Table 1. Retained DF is on the diagonal of Table

2. Table 2 gives us the correct DF in the fit for each effect, rationalizing our definition of DF

smoothed from a FE to each error term. Besides accounting for the variation in each effect, this

table clarifies the various sources of information about the components of error variation.

The exact DF in the fit, pseudo-DF DFp (i.e., approximate DF) and retained DFr are identical

in a balanced design with orthogonal parameterization and a single error term. In this special

situation, all smoothed DF goes to the error term, so in the smoothed ANOVA table (Table 2),

except for the error term, a column has only one nonzero element, on the diagonal, so the DF in

the fit of the column’s effect is its retained DF. The pseudo-DF of X2j — the DF of X2j in the

simplified model including all nonsmoothed effects, smoothed effect X2j , and the pure error — can

be obtained by taking σ2
i = 0 for i 6= 0 or j in the expression of DF (X2j) in the original model.

In a balanced design with orthogonal parameterization and a single error term, DF (X2j) depends

only on
σ2

j

σ2
0
, as derived in HCSC, so the pseudo-DF is the same as the DF in the fit.

The amount and destination of SS smoothed out from each effect can be obtained from the

same decomposition of covariance, equation (3) and (4). For example, the SS smoothed out from

12



A to S|A, written as SS(A → S|A) is

y′[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+1/2PACOVS|APA[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+1/2y,

and SS smoothed out from S|A to S ×B|A (error), SS(S|A → S ×B|A) is

y′[(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]

+1/2PS|AQCOVS×B|AQPS|A ·

[(I − PX1)(X2Γ2X
′
2 + Γ0) · (I − PX1)]

+1/2y.

As noted, three features of this example may reduce its generality: the Γ2j that were used, the

nesting of S × B|A within S|A and S|A within A, and the design’s balance. As seen in equations

(3) and (4), flow of DF and SS depends on decomposition of variance from RE and the error,

which does not involve the specific value of Γ2j of any FE. Thus for fixed effects (A, B, AB), the

above results generalize immediately to Γ2j = σ2
2jΓ

0
2j for known positive-definite Γ0

2j , although the

resulting expressions are not as explicit as those given above. However, it is not clear to which ΓS|A

and ΓS×B|A our results can be extended.

The nesting of S × B|A within S|A permits the decomposition of COVS×B|A in (4) and

hence allows unambiguous declaration of the nesting effect (S|A) as the source and the nested

effect (S × B|A) as the destination. In crossed random effects, which have no such hierarchical

relationship, DF and SS in the fit can be defined unambiguously, but it is unclear that variation

can be partitioned as in (4) except by convention.

Finally, although balance is not necessary in obtaining effect-specific DF or SS, it appears to

be important in deriving the flow of DF and SS smoothed out of effects. In unsmoothed ANOVA of

unbalanced designs with RE, due to collinearity there is no unique way of specifying denominator

DF for F-tests and no unique way to specify the “original” DF of a RE. For SS, even when there

is no RE, there is no unique way to define an effect’s “original” SS, e.g., SAS’s Type I to Type IV

SS (Chapter 12, SAS online DocTM : Version 8). So although in smoothed ANOVA we know the

DF or SS of each effect in the model fit, there is no easy way to determine how much is smoothed

out or into a given effect.

4 Irrigation study analyzed

This section shows some analyses of the Irrigation study (Kinsey, 2006) which has the design used

in Section 3 and data given in Table 3. All of the capabilities of SANOVA displayed in HCSC’s
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Section 4 could also be displayed here, for example, subgroup analysis, or fixing the DF in the fit

for a group of effects and requiring those effects to compete for those DF. However, doing so would

have no novelty, so we restrict our attention to those aspects of SANOVA developed in this paper.

A1 (NAOCL) A2 (NAOCL/EDTA) A3 (NAOCL/MTAD)

patient B1 B2 B3 B4 B5 B1 B2 B3 B4 B5 B1 B2 B3 B4 B5

S1 12.751 5.170 5.701 2.347 11.627 10.901 0.591 3.143 5.205 20.044 11.062 6.196 8.430 3.457 5.515

S2 10.387 3.160 1.764 8.293 8.415 6.146 5.672 2.337 4.232 8.745 8.990 4.961 11.146 6.324 1.810

S3 13.170 4.596 6.879 5.531 1.568 12.833 4.335 0.898 4.723 17.187 9.346 21.181 10.793 21.039 0.717

S4 18.166 2.446 11.838 12.353 16.706 17.255 7.896 10.637 4.268 1.988 1.112 13.427 6.163 10.563 16.135

S5 8.497 4.295 3.646 6.101 15.159 1.899 0.869 7.254 1.650 3.844 12.130 5.294 4.348 0.035 3.215

S6 2.023 0.129 0.337 3.597 1.272 5.191 2.324 2.443 6.139 4.396 9.402 1.240 2.245 5.793 1.630

S7 5.861 0.753 0.673 2.253 2.787 8.893 0.282 2.040 3.406 1.872 4.175 0.608 0.410 0.110 1.314

S8 11.839 1.424 2.454 5.707 14.193 6.454 13.143 0.641 0.629 1.489 4.730 8.759 10.234 1.338 7.606

S9 3.312 3.772 6.042 15.531 9.262 1.244 11.461 0.950 2.503 16.525 9.929 6.801 9.118 5.947 7.718

Table 3: Irrigation data

The Irrigation study compared three solutions for rinsing (“irrigating”) a tooth’s prepared

root canal before sealing it. The outcome measure was the strength in mega-Pascals (MPa) of the

bond between the remaining root structure and a so-called post inserted into the canal and used as

the foundation of a crown. The between-subject factor A was irrigant, with three levels: NAOCL,

NAOCL/EDTA, and NAOCL/MTAD. The within-subject factor B was segment of the tooth root,

with levels 1, 2, 3, 4, and 5 in order from the top of the tooth’s root (cervix) to the bottom (apex).

Markov Chain Monte Carlo (MCMC) was used to sample from the posteriors; the Appendix derives

the necessary posterior distributions. Table 4 summarizes the posterior means of the variances σ2
5

and σ2
0 and of various effects’ DF, under three priors: flat on DF, flat on retained DF (DFr), and

flat on pseudo-DF (DFp), called π, πr and πp, respectively. Each prior was flat on the legal range

of DF, DFr, or DFp, as appropriate. The induced distributions on the variance ratios rj =
σ2

j

σ2
0

are

π(r2, r3, r4, r5) =
1
50

[
48

(r2 + r5 + 1)2(r5 + 1)
+

4
(r2 + r5 + 1)3

] · 1
(r3 + 1)2

· 1
(r4 + 1)2

,

πr(r2, r3, r4, r5) =
1

(r2 + r5 + 1)2(r5 + 1)
· 1
(r3 + 1)2

· 1
(r4 + 1)2

,

πp(r2, r3, r4, r5) =
1

(r2 + 1)2
· 1
(r5 + 1)2

· 1
(r3 + 1)2

· 1
(r4 + 1)2

.

Clearly r3, r4, and (r2, r5) are independent of each other in all three priors, and the marginal of ri

is 1
(ri+1)2

, i = 3, 4, 5 in all three priors. (The integrals for r5 can be done explicitly for π and πr;
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E(σ2
5 |y) E(σ2

0 |Y ) E[DF (A)|y] E[DF (B)|y] E[DF (AB)|y] E[DF (S|A)|y]

range — — (0,2) (0,4) (0,8) (0,26)

prior on DF 18.771 19.801 0.708 2.290 3.253 11.196

prior on DFr 18.725 19.792 0.711 2.302 3.247 11.213

prior on DFp 19.031 19.759 0.565 2.320 3.265 11.390

Table 4: Summary of posterior estimates for smoothing variances of random effects and DF of fixed

effects and random effects in the Irrigation study.

we omit the details.) However, the three marginal priors on r2 are different:

π(r2) =
1
50

[
2

(r2 + 1)2
+ 48(

log(r2 + 1)
r2
2

− 1
r2(r2 + 1)

)],

πr(r2) =
log(r2 + 1)

r2
2

− 1
r2(r2 + 1)

,

πp(r2) =
1

(r2 + 1)2
.

The variance ratios r2 and r5 are correlated in priors induced by flat priors on DF and DFr, but

independent in the prior induced by DFp. The joint priors on (s2, s5) = (log(r2), log(r5)) from

DF and DFr are displayed in Figure 1; they look almost identical due to the similarity of their

expressions. Figure 2 plots the three marginal priors of s2 = log(r2); we can see that DF and DFr

induce almost identical marginal priors on s2 and thus on r2. Results from all three posteriors are

close (Table 4); those from the flat priors on DF and DFr are almost identical. Although the three

priors give similar exact posterior mean DF (A) in Table 4, their (approximate) pseudo-DF range

from 0.9 to 1, noticeably different from the exact values of 0.565 to 0.7. This is a counterexample to

Ruppert et al’s observation (2003, Section 8.3) that the exact DF and the pseudo-DF were almost

the same in all examples that they had considered. DF and pseudo-DF diverge because R(XA)

is a subspace of R(XS|A), and this collinearity is almost certainly the “culprit”. Cui et al (2009),

Section 3.2 gives another counterexample in which DF and pseudo-DF diverge, again because of

similarly severe collinearity.

Table 5 displays the smoothed ANOVA table from the actual data using the flat prior on DF

π, showing posterior mean DF and SS. The four smoothed effects are smoothed substantially, each

retaining less than half of its original DF, except for B. S ×B|A has about 20 extra DF smoothed

into it, mostly from S|A.
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Source Destination in the smoothed fit.

GM A B AB S|A S ×B|A Total DF of effect

GM 1 (5387.9) 0 0 0 0 0 1 (5387.9)

A 0 0.7 (9.3) 0 0 0.6 (7.6) 0.7 (9.5) 2 (26.4)

B 0 0 2.3 (149.9) 0 0 1.7 (112.7) 4 (262.7)

AB 0 0 0 3.3 (116.6) 0 4.7 (170.2) 8 (286.8)

S|A – – – – 10.7 (437.9) 13.3 (547.4) 24 (985.3)

S ×B|A – – – – – 96 (1865.3) 96 (1865.3)

net DF/SS 1 (5387.9) 0.7 (9.3) 2.3 (149.9) 3.3 (116.6) 11.2 (445.5) 116.5 (2705.1) 135 (8814.5)

Table 5: Irrigation study: the smoothed ANOVA table. In each cell, the value is “E(DF |y) (E(SS|y))”

5 Discussion

This paper presented a generalization of smoothed ANOVA as proposed in HCSC. Section 2 ex-

tended their theory to general ANOVA designs, gave a smoothed ANOVA table, and showed how

to specify DF-induced priors on REs and smoothed FEs.

Section 3 rationalized the flow of DF out of smoothed effects into error terms in a balanced

design with nested error terms. It is unclear whether this extends in any generality to unbalanced

designs. One ad hoc extension is to nest the unbalanced design in the minimal larger balanced

design with the same set of variance smoothing parameters. After obtaining posterior information

on the smoothing parameters, one could use the flow of DF and SS from the bigger design to

describe DF flow in the actual design.

Also, the tidy expression of DF-induced priors from the Irrigation study (Section 3) depends

on the balance of the design. The same trick mentioned in the preceding paragraph – nesting

the unbalanced design in the minimal larger balanced design — could be used to specify simpler

priors on DF for unbalanced designs, while using the actual design to make inference. Although the

obvious intuition is that it makes little difference when the design not too far from being balanced,

further investigation is needed into this matter.

One concern with smoothed ANOVA is collinearity among covariates. Collinearity between

two nonsmoothed effects reduces to the familiar collinearity problem in ordinary regressions. The

new problem is how unsmoothed FE change estimation of smoothed effects when they are collinear,

and how two collinear smoothed effects influence each other. Intuition suggests that when a

smoothed effect is collinear with a nonsmoothed effect, the smoothed effect will account for less

variation than it otherwise would, while two correlated smoothed effects compete in an as-yet un-
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described manner (Cui et al 2009). However, study of this problem is in its infancy, and as yet

nothing is known about when two such effects will mask each other and perhaps lead to false-positive

findings. This question points to rich opportunities for future research.

6 Appendix

Proofs for Section 2.2

(SS.a) Assume the model in HCSC, i.e., in model (1), X ′
1X1 = nI, X ′

2kX2k = nI, X ′
2kX2k′ = 0

if k 6= k′, X ′
2kX1 = 0, Γ2k = diag(1/ηj(k1), · · · , 1/ηj(knk

)), where nk is the dimension of X2k,

Γ0 = 1
η0

In, and the function j(·) is as defined in HCSC. Then under the definition in Section 2.2,

SS(X2k; Γ0,Γ2) = y′X2kdiag

(
(n +

ηj(k1)

η0
)−1, · · · , (n +

ηj(knk
)

η0
)−1

)
X ′

2ky.

It is easy to show that X2kΓ2kX
′
2k = X2k√

n
diag(n/ηj(k1), · · · , n/ηj(knk

))
X′

2k√
n

, and

[(I − PX1 )(X2Γ2X′
2 + Γ0)(I − PX1 )]+1/2 =

l∑

m=1

X2m√
n

diag

(
(

n

ηj(m1)

+
1

η0
)−1/2, · · · , (

n

ηj(mnm )

+
1

η0
)−1/2

)
X′

2m√
n

+ (
1

η0
)−1/2 Xc

√
n

Xc′
√

n
,

where Xc is any set of columns forming a basis for the orthogonal complement of the column space

of [X1, X2]. The conclusion follows from the definition in Section 2.2.

(SS.b) From the definition of SS in Section 2.2,

J∑

1

SS(X2j ; Γ0,Γ2) + SS(ε; Γ0,Γ2) = y′H+1/2HH+1/2y

where H = [(I − PX1)(X2Γ2X
′
2 + Γ0)(I − PX1)]. Since for any nonnegative definite matrix H,

H+1/2HH+1/2 = PH , then under the assumption that Γ0 is positive definite, the column space of H

is the column space of I−PX1 . Therefore, PH = I−PX1 , and
∑J

1 SS(X2j ; Γ0, Γ2)+SS(ε; Γ0, Γ2) =

y′(I − PX1)y. Together with SS(X1) = y′PX1y the conclusion follows.

(SS.c) Under the assumption in (SS.c), E(y|Γ0, Γ2) = µ and V ar(y|Γ0,Γ2) = X2Γ2X
′
2 + Γ0. Then

E(SS(X1)|Γ0, Γ2) = E(y′PX1y|Γ0, Γ2)

= tr
(
(X2Γ2X

′
2)PX1

)
+ µ′PX1µ

= tr
(
(X2Γ2X

′
2)PX1

)
+ µ′µ
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since µ ∈ R(X1). Also,

E(SS(X2j)|Γ0, Γ2) = E
(
y′H+1/2(X2jΓ2jX

′
2j)H

+1/2y|Γ0, Γ2

)

= tr
(
H+1/2(X2jΓ2jX

′
2j)H

+1/2(X2Γ2X
′
2 + Γ0)

)
+ µ′H+1/2(X2jΓ2jX

′
2j)H

+1/2µ

= tr
(
H+1/2(X2jΓ2jX

′
2j)H

+1/2H
)

+ µ′H+1/2(X2jΓ2jX
′
2j)H

+1/2µ

= tr
(
(X2jΓ2jX

′
2j)(I − PX1)

)

since H+1/2HH1/2 = I − PX1 as shown in the proof for (SS.b), and H+1/2 is symmetric and

N(H+1/2) ⊇ R(X1), where N(H+1/2) is the null space of H+1/2.

Distributions for MCMC in Section 4

This is a derivation of posteriors of the mean-structure parameter θ and the smoothing variances

σ2
i , i = 0, 2, · · · , 5 in the Irrigation example. The joint posterior of θ and {σ2

i } is

f(θ, σ2
i | Y ) ∝ π(σ2

0, σ
2
2, · · · , σ2

5)|Σ|−1/2exp(−1
2
(Y −Xθ)′Σ−1(Y −Xθ)).

where Y =
(

y
041

)
, Σ = diag(Γ0,Γ2), Γ0 = σ2

0I135, Γ2 = diag(σ2
2I2, σ2

3I4, σ2
4I8, σ2

5I27), and

X =


 X1 X2

0 I41


 .

Integrate out θ and change variables from {σ2
i } to (η0, r), where η0 = 1/σ2

0 and ri = σ2
i

σ2
0
, i =

2, · · · , 5. This gives the joint marginal posterior of (η0, r):

f(η0, r|y) ∝ π(η0, r)η
135−1

2
0 exp(−1

2
η0W (r))(r5 + 1)−12(r2 + r5 + 1)−1(r3 + 1)−2(r4 + 1)−4,

where η0W (r) = Y ′Σ−1Y − Y ′Σ−1X(X ′Σ−1X)−1X ′Σ−1Y = η0y
′[(I − PX1)(X2Γ2X

′
2 + Γ0)(I −

PX1)]
+y. If η0 has a gamma prior independently of r, π(η0, r) ∝ π(r)ηα−1

0 exp(−λη0), then the

marginal posterior of (r2, · · · , r5) is

f(r|Y ) ∝ π(r)(2λ + W (r))−( 135−1
2

+α)(r5 + 1)−12(r2 + r5 + 1)−1(r3 + 1)−2(r4 + 1)−4,

and the conditional posterior of η0 given r is a gamma distribution,

f(η0|r, Y ) ∝ η
( 135−1

2
+α−1)

0 exp(−η0(λ +
W (r)

2
)).

Following the derivation in HCSC Section 2.2, the posterior of θ is a multivariate-t on ν = 135−1+

2α DF, with center θ̂ = Σ−1
r X ′

dy and dispersion matrix 2λ+W (r)
ν Σ−1

r , where Xd = [X1, X2], Σr =

X ′
dXd +


 0 0

0 Γ−1
2 /η0


. Note that Σr is a function of (r2, · · · , r5) and not the individual ηj .
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Figure 1: For the Irrigation example, prior contour plot on (log(r2), log(r5)), left from DF q, right

from retained DF qr.
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Figure 2: For the Irrigation example, marginal prior of s2 = log(r2). The densities for DF q and

retained DF qr are almost exactly superimposed and thus visually indistinguishable.
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