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We present an approach to smoothing balanced, single–error term analysis of variance (ANOVA), de-
scended from Smith, that also allows spatial, temporal, or spatiotemporal smoothing. The approach ad-
dresses unreplicated designs, masked contrasts in effects with many degrees of freedom, and subgroup
analysis, demonstrated using a study of denture-lining materials. Our approach is Bayesian but can be
viewed as a way to generate frequentist procedures. A simulation experiment compares four priors, un-
smoothed ANOVA, and dropping nonsignificant interactions. Three priors have advantages when some
interactions are absent; dropping nonsignificant interactions has serious flaws. We contrast our approach
with the approaches of Nobile–Green and Gelman.
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1. INTRODUCTION AND MOTIVATION

Analysis of variance (ANOVA) attributes variation in a re-
sponse to individual factors and to combinations of these fac-
tors, that is, interactions. Interactions are often modeled in a
stepwise way, with significance tests used to delete or retain ef-
fects; but in other linear models, stepwise methods are outper-
formed by model-averaging and smoothing methods (Leamer
1978; Freedman 1983; Derksen and Keselman 1992; Raftery,
Madigan, and Hoeting 1993). This article presents a way to
smooth ANOVA that neither includes nor excludes interactions
but does something intermediate, like shrinkage.

What should a smoothed ANOVA do? Statistical folklore and
practical experience suggest that for a dependent variable on the
proper scale, interactions are often absent or small. However,
it is unwise to assume that any specific interaction is absent.
Thus a smoothed ANOVA should mostly remove small effects,
mostly retain large effects, and partly retain middling effects.
This simplifies interpretation and aids estimation by reducing
standard errors.

We present a smoothed ANOVA addressing this general goal
as well as three specific concerns, which we introduce using an
example, an unreplicated 2 × 4 × 8 study of soft denture-lining
materials (Pesun, Hodges, and Lai 2002). Soft denture liners
are fabricated on a hard denture base. The soft liner is then pol-
ished, which can create or widen a gap between the liner and
base. Such gaps harbor Candida and other oral pathogens. This
study compared gaps, measured in microns, for a new and a
standard soft-liner material (factor M) under all 32 combina-
tions of four polishing methods (factor P) and eight finishing
methods (factor F). The primary interest is how much the ma-
terials differ in gap size. Based on standard diagnostics, we an-
alyze the common logarithm, log10gap.

Three issues arise in this analysis. The standard analysis of
unreplicated designs uses the highest-order interaction as the
error term (Scheffé 1959, sec. 4.2). Table 1 is the ANOVA ta-
ble for this analysis; the dataset is given in Appendix B. This
dataset has an egregious outlier on the raw scale that also fails
outlier tests on the log scale, although not by much. It thus
would be desirable to keep part of the three-way interaction—
the outlier—in the fitted model while also deriving an error
measure from this and perhaps other interactions. Second, the
P × F and M×P × F interactions have 21 degrees of freedom
(df) each. At most, a few of these contrasts are truly present,
and they may be masked by the many null contrasts. Finally,
the interactions of special interest are M×P and M×F, with 3
and 7 df. Shrinking (smoothing) the material comparison across
the four polishing methods and eight finishing methods would
reduce clutter. Smoothed ANOVA addresses all of these is-
sues: unreplicated designs, masking in effects with many df,
and “subgroup analysis,” where treatment-by-subgroup inter-
actions capture subgroup treatment effects (Dixon and Simon
1991).

Our approach in this article smooths balanced, single–error
term ANOVAs using hierarchical models. We focus on interac-
tions, but exactly the same tools can be used to smooth main ef-
fects. Section 2 gives notation and results, including a smoothed
ANOVA (SANOVA) table. We use a Bayesian analysis with
Markov chain Monte Carlo (MCMC) draws from the poste-
rior. This can be done in many different ways; Appendix A
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Table 1. Soft-Material Polishability Data:
The Usual ANOVA Table

df SS MS

Main effects
Material 1 1.12 1.12
Polishing 3 .38 .13
Finishing 7 1.92 .27

Interactions
M × P 3 .65 .22
M × F 7 1.40 .20
P × F 21 3.28 .16
M × P × F 21 2.05 .098

Error
Replicates 0 — —

gives our algorithm. Readers averse to Bayesian interpretations
can view our approach as a way to generate smoothing pro-
cedures in which a new prior distribution specifies a new pro-
cedure. The priors do matter; Section 3 compares several in a
simulation experiment. Section 4 then analyzes the polishabil-
ity data. Section 5 contrasts our approach with two other ap-
proaches to “smoothed ANOVA,” those of Nobile and Green
(2000) and Gelman (2005). Our approach shows a clear fam-
ily resemblance to the approach of Smith (1973), nourished by
modern Bayesian computing.

2. THEORETICAL MACHINERY

This section illustrates the notation using a 23 design with six
replicates per cell.

2.1 Notation

Suppose that a balanced design has c cells and n ≥ 1 observa-
tions per cell, for cn in total. In our 23 example, c = 23 = 8 and
cn = 48. Write the ANOVA as a linear model with each effect
having design matrix columns orthogonal to each other and to
columns for other effects, that is, an orthogonal parameteriza-
tion. Effects with >2 df have infinitely many such design matri-
ces related by orthogonal transformation. Group the M columns
for the grand mean and main effects into a cn × M matrix A1,
and group the N columns for interactions into a cn × N matrix
A2. Scale the columns of A1 and A2 so that A′

1A1 = cnIM and
A′

2A2 = cnIN , where IM is the M-dimensional identity.
To simplify bookkeeping, we use artificial “cases” to for-

mulate smoothed ANOVA as a hierarchical model (Lee and
Nelder 1996; Hodges 1998). The hierarchical model’s data level
(the “data cases”) is the usual ANOVA in linear model form,
y = X1� + ε, where y is the cn vector of data, X1 = [A1|A2],
� = (θ1, . . . , θM+N) is the vector of unknown mean-structure
parameters, and ε is cn-dimensional normal with mean 0 and
covariance 1

η0
Icn, with the error precision η0 unknown. In the

23 example, X1 = H ⊗ 16, where ⊗ is the Kronecker product
and

H =




+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 −1 +1 −1 −1 −1
+1 +1 −1 +1 −1 +1 −1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 +1 −1 −1 +1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 −1 −1 +1 +1 +1 −1




. (1)

The first four columns of H are for the grand mean and
main effects, whereas the last four columns are for the inter-
actions. The interactions θk are smoothed by the hierarchical
model’s second layer. Partition � as (�T

1 ,�T
2 )T conforming

to A1 (main effects) and A2 (interactions). �2 is modeled as
θM+k|φk ∼ N(0,1/φk), k = 1, . . . ,N. The unknown precisions
φk control shrinkage of their respective θk in a manner to be
elaborated; they are the key to our approach. Rewrite �2’s
model as 0N = Z1� + δ, where Z1 = [0N×M|IN], 0N and 0N×M

are arrays of 0’s with the given dimensions, and δ is an N-
variate normal with mean 0 and diagonal covariance matrix
diag(φ1, . . . , φN)−1. The model for � can be treated as artifi-
cial cases, called “constraint cases” by Hodges (1998) because
they constrain �2, and then combined with the data cases to
give

[
y

0N

]
=

[
A1 A2

0N×M IN

][
�1

�2

]
+

[
ε

δ

]
(2)

or, more concisely, Y = X�+e, where Y , X, and e have obvious
definitions referring to (2).

Equation (2) has the form of a linear model; Y and X
are known, � is unknown, and e contains unknown errors.
This is precisely—and merely—an accounting identity (Whit-
taker 1998) that eases derivations because � = cov(e) is di-
agonal with blocks �1 = 1

η0
Icn for the data cases and �2 =

[diag{φ1, φ2, . . . , φN}]−1 for the constraint cases.
The precisions φk need not be distinct. The modeler specifies

a set of distinct constraint-case precisions {η1, . . . , ηs}, s ≤ N,
and a fixed, deterministic assignment function j(k) such that
φk = ηj(k). This groups the θk’s and their associated columns
in A2 with each group’s θk smoothed using its own ηj. Define
η = (η0, η1, . . . , ηs), the vector consisting of the error precision
η0 and the distinct smoothing precisions. Let nj be the number
of φk’s mapping to ηj;

∑s
j=1 nj = N. In the 23 design, A2 has

N = 4 columns, one three-way interaction and three two-way
interactions. If each interaction is smoothed separately, then
each φk is distinct, so s = 4 and nj = 1, j = 1,2,3,4. Alterna-
tively, the two-way interactions can be smoothed using a single
ηj, whereas the three-way interaction keeps its own ηj. Then
s = 2, and, referring to (1), j(1) = j(2) = j(3) = 1 and j(4) = 2,
so n1 = 3 and n2 = 1.

We have implicitly put a flat prior on the θk for the grand
mean and main effects. This is not required. The main effects
can be smoothed as we have smoothed the interactions, or infor-
mative priors can be added as constraint cases with fully speci-
fied covariance (Hodges 1998, sec. 2).

2.2 Conditional and Marginal Posterior Distributions

Our MCMC algorithm (Sec. A.3) draws log(rj) = log(ηj/η0)

and uses Rao–Blackwellization (Gelfand and Smith 1990) to
estimate the marginal posteriors of � and η0. This section
derives the needed distributions; Section A.1 gives simplified
forms that avoid matrix inversions.

In the usual notation, the joint posterior for � and η is

f (�,η|Y)

∝ π(η)|�|−1/2 exp

(
−1

2
(Y − X�)′�−1(Y − X�)

)
, (3)
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where � is a function of η and π(η) is η’s prior. Completing the
square in � makes it possible to integrate � out of (3), giving

f (η|Y) ∝ π(η)|X′�−1X|−1/2|�|−1/2

× exp

(
−1

2
{Y′�−1Y

− Y′�−1X(X′�−1X)−1X′�−1Y}
)

. (4)

By straightforward calculation, X′�−1X is
[

cnη0IM 0M×N

0N×M cnη0IN + diag(φ1, . . . , φN)

]
, (5)

which, with further simple algebra, gives

|X′�−1X|−1/2|�|−1/2

= (cn)−M/2η
(cn−M)/2
0

s∏
j=1

r
nj/2
j (cn + rj)

−nj/2. (6)

Now change variables from η to (η0, r), where rj = ηj/η0, j =
1, . . . , s, and replace the prior π(η) with π(η0, r), which con-
tains the Jacobian. The joint marginal posterior of (η0, r) is

f (η0, r|Y) ∝ π(η0, r)η(cn−M)/2
0

× exp

(
−1

2
η0W(r)

) s∏
j=1

r
nj/2
j (cn + rj)

−nj/2, (7)

where W(r) = Y′Q−1Y − Y′Q−1X(X′Q−1X)−1X′Q−1Y and
Q−1 = �−1/η0 is a function of r but not η0. Equation (7) is
a gamma density in η0; integrating out η0 gives r’s marginal
posterior.

If η0 has a gamma prior independently of r, π(η0, r) ∝
π(r)ηα−1

0 exp(−λη0), then

f (r|Y) ∝ π(r)(2λ + W(r))−[(cn−M)/2+α]

×
s∏

j=1

r
nj/2
j (cn + rj)

−nj/2. (8)

From (7), the posterior of η0 given r is also a gamma distribu-
tion,

f (η0|r,Y) = (λ + W(r)/2)ξ

�(ξ)

× η
ξ−1
0 exp

(
−η0

(
λ + W(r)

2

))
, (9)

where �(ξ) is the gamma function evaluated at ξ = cn−M
2 + α.

To obtain the posterior of � given r, begin with (3), change
variables from η to (η0, r), and integrate out the gamma
variate η0 to give a multivariate-t on ν = cn − M + 2α df
with center �̂ = (X′Q−1X)−1X′Q−1Y and dispersion matrix
2λ+W(r)

ν
(X′Q−1X)−1.

If instead all of the ηj, j = 0, . . . , s, have independent gamma
priors with shape and scale parameters (αj, λj), then, following

the same sequence of steps, r’s marginal posterior is

f (r|Y) ∝
(

W(r) + 2λ0 + 2
s∑

j=1

rjλj

)−((cn−M)/2+∑s
j=0 αj)

×
s∏

j=1

r
nj/2+αj−1
j (cn + rj)

−nj/2. (10)

Given r, η0’s conditional posterior is gamma with shape pa-
rameter cn−M

2 + ∑s
j=0 αj and scale parameter W(r)/2 + λ0 +∑s

j=1 rjλj, and �’s conditional posterior is multivariate-t on

ν = cn − M + 2
∑s

j=0 αj df, with center �̂ = (X′Q−1X)−1X′ ×
Q−1Y and dispersion matrix (W(r) + 2λ0 + 2

∑s
j=1 rjλj)/ν ×

(X′Q−1X)−1.
The MCMC algorithm in Section A.3 draws zi = log(ri) us-

ing (8) or (10) transformed to z.

2.3 Degrees of Freedom

Standard ANOVA uses df in F-tests. Smoothed ANOVA em-
phasizes estimation, and a thoroughly Bayesian approach es-
chews F-tests. Nonetheless the usual notion of df can be ex-
tended to smoothed ANOVA and used to specify priors on r
and to describe the extent of smoothing.

For given �, the df in the fit are df = trace(X1(X′Q−1X)−1 ×
X′

1) (Hodges and Sargent 2001), where Q−1 = �−1/η0 is, as
noted, a function of r but not of η0. Using (5), straightforward
algebra gives

df = M +
N∑

k=1

cnη0

cnη0 + φk
= M +

s∑
j=1

njcnη0

cnη0 + ηj

= M +
s∑

j=1

njcn

cn + rj
= M +

s∑
j=1

qj, (11)

where qj = njcn
cn+rj

∈ [0,nj] is the df controlled by rj. Note that qj

depends on the precisions η only through the ratio rj = ηj/η0,
so a prior on rj induces a prior on qj and vice versa.

2.4 Prior Distributions on the Smoothing Structure

A prior distribution on η completes a Bayesian specification.
In non-Bayesian terms, Sections 2.1 and 2.2 plus a prior de-
fine a procedure; different priors define different procedures,
which can be assessed in a frequentist way, such as by the mean
squared error (MSE) of point estimates. We consider two kinds
of priors: unconditional priors, and conditional priors that fix
the fit’s smoothness at a certain number of df. Other priors may
be advantageous; Section 5 briefly considers two of these.

2.4.1 Unconditional Priors. An obvious prior is a gamma
distribution on each element of η. Section 3’s simulation exper-
iment considers gamma(.001, .001) because with mean 1 and
variance 1,000 it has become a conventional “vague” prior, al-
though with 95th percentile 3 × 10−20, it is far from vague.

Alternatively, a prior can be placed on each qj, inducing a
prior on each rj and thus on ηj. The sample space of qj is [0,nj],
so a flat prior on qj is proper and may be viewed as express-
ing prior indifference about the degree of smoothing. (It is also

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1
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equivalent to the uniform-shrinkage prior; cf. Daniels 1999.)
Alternatively, a scaled beta prior for qj can be used to prefer
some degrees of smoothing; for example, a scaled beta(.5, .5)

prefers no smoothing (qj = nj) and complete smoothing (qj =
0) over intermediate smoothing. At the extreme, such a pref-
erence implies a two-point prior where qj = 0 or nj, each with
probability .5. The two-point prior is easily executed by putting
probability .5 on each of qj = ε and qj = nj − ε for a small ε.
As long as ε is quite small, its specific value is unimportant;
Section 3’s simulation used ε = .001.

If qj ∼ U(0,nj), then rj > 0 has density cn/(cn + rj)
2. As the

per-cell sample size n increases, this prior moves probability
to larger rj; that is, the prior favors larger ηj to offset the data
and maintain indifference about the degree of shrinkage. This
is also true for any beta prior on qj.

2.4.2 Priors Conditioned on Degrees of Freedom. The
preceding priors are unconditional in that they do not fix any
qj or group of qj’s. It may be desirable to condition on qj = K
or

∑
j∈S qj = K for some set S of indices, which is analogous to

fixing a linear smoother’s df. Conditioning on an inequality, say
qj ≤ K, raises no distinct issues, so we consider only equality
conditions.

If qj’s prior is conditioned on qj = K, then this fixes ηj/η0 =
rj = cn(nj − K)/K, a common practice with dynamic linear
models. If the condition is

∑
j∈S qj = K for S containing more

than one j, then conditioning does not fix any qj. Rather, it fixes
the total complexity of {θk|j(k) ∈ S} at K df, and the affected
θk’s compete for the K df. Such a condition does not completely
specify the prior on the affected qj’s; this can be done by spec-
ifying unconditional priors on the affected qj, then imposing
the condition on their sum. If nj = 1 for each affected qj, and
each qj receives an iid prior F, then conditioning on

∑
qj = K

makes the qj’s exchangeable, although no longer independent.
Section 4 illustrates such a prior.

2.5 The SANOVA Table

The usual ANOVA table analyzes—in that word’s literal
sense—the sum of squares into pieces for each effect. In
smoothed ANOVA as specified here, the smoothed θk are
shrunk toward 0, that is, partly removed from the fitted model
and counted as error. A SANOVA table records this division of
each effect’s df and sum of squares (SS) into a part retained in
the fit and a part considered error. SANOVA emphasizes esti-
mation over testing, but a SANOVA table is still a useful book-
keeping device, particularly for showing how information about
error variation is derived from replication and from variation
smoothed out of shrunken effects.

Section 2.3 derived the portion of an effect’s df retained in
the fit for a given �; the rest of the effect’s df is deemed to be
error. Section A.2 derives analogous portions of an effect’s SS
allotted to the fit and to error. These elements suffice to con-
struct a SANOVA table accounting for a dataset’s df and SS.
The partition of each effect’s SS and df is a function of the pre-
cisions η, but single-number summaries are convenient. Sec-
tion A.2 argues for using the posterior expected df and SS. We
defer further discussion of this topic to Section 4, which gives
SANOVA tables for the polishability data.

3. A SIMULATION EXPERIMENT COMPARING
PRIORS (PROCEDURES)

This experiment had two aims: to compare priors and to com-
pare the resulting SANOVA procedures to familiar ANOVA
procedures.

3.1 Design, Procedures, Outcome Measures

3.1.1 Design of the Simulation Experiment. An observa-
tion in this simulation experiment was a dataset simulated from
a 23 design with n = 6, like the dataset analyzed by Hodges and
Sargent (2001, sec. 6). The simulation experiment itself was
a repeated-measures (split-plot) design, in which a “subject”
was a set of 48 standard normal errors. We generated 1,000
such “subjects.” The simulation experiment had three factors,
all within-subject: (a) the true 23 mean structure, with levels
being the number of truly present interactions (0, 1, 2, 3, or 4);
(b) the 23 design’s true error precision η0, with three levels (1,
.25, or .0625, i.e., error standard deviation 1, 2, or 4); and (c) the
analysis procedure applied to the 23 design, with six levels as
described in Table 2. Table 2 gives each procedure a brief name,
which we use henceforth. We included the two-point procedure
because it is a step in the Bayesian direction from the familiar
“drop-non-sig” procedure.

Because we specified the true 23 mean structure using the or-
thogonal parameterization (1), we set the true θ1, θ2, θ3, and θ4

(grand mean and main effects) to 0 without loss of generality.
When an interaction was absent, we set its θk to 0; when an in-
teraction was present, we set θk to 1. We considered exchange-
able priors for the interaction θk’s with each θk smoothed by its
own ηj, so we lose no generality by considering only how many,
not which, interactions were truly present. Section A.4 gives
more details on simulating the 23 datasets and about Monte
Carlo error.

Table 2. Procedures Considered in the Simulation Experiment

Short name for procedure Bayesian? The procedure

Gamma Yes η0, ηi ∼ gamma(.001, .001), i = 1, 2, 3, 4
Flat Yes qi ∼ unif(0, 1), i = 1, 2, 3, 4; η0 ∼ flat
Beta Yes qi ∼ beta(.5, .5), i = 1, 2, 3, 4; η0 ∼ flat
Two-point Yes qi = .999 or .001 each with probability .5; η0 ∼ flat
No-smoothing No Ordinary least squares ANOVA
Drop-non-sig No Two-step ANOVA

Step 1: Fit with all interactions.
Step 2: Refit with only interactions significant in step 1.

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1
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3.1.2 Outcome Measures. We compared the six proce-
dures using three groups of measures, one group for the means
of the eight cells in the 23 design, a second group for the θk’s,
and a third group for the error precision η0. With one excep-
tion, each group of measures included the bias and MSE of the
estimates (posterior means, for the Bayesian procedures) and
coverage of the 95% equal-tail posterior or confidence interval.
We did not consider bias of the cell means, which are simple
linear functions of �2’s bias.

When interactions are truly present in the simulated data, the
θk’s are of three types: the “target,” or truly present interactions;
the “null,” or truly absent interactions; and the grand mean and
main effects. The simulation experiment’s design implies that
for any given number of truly present interactions, η0, and pro-
cedure, the targets all have the same true bias, MSE, and cover-
age, as do the nulls and main effects. Thus results for target and
null θk are described separately, with bias, MSE, and coverage
averaged within each type of θk. For the grand mean and main
effects, bias, and MSE are identical for all procedures and are
not considered further.

For the θk’s, we scaled bias by the true error standard devia-
tion ( 1√

η0
); for the cell means and θk’s, we scaled MSE by the

true error variance ( 1
η0

). This gives the no-smoothing procedure
constant performance, removing trends in the design factor η0
that obscure comparisons. Similarly, for the error precision η0,
we report the bias and square root of MSE as percents of the
true η0.

3.2 Results

3.2.1 Cell Means. When no interactions are present, all
procedures are unbiased for cell means. In this null case, scaled
MSE is largely unaffected by the true η0 (Table 3, “Cell means”
column); all Bayesian procedures outperform no-smoothing, as
does drop-non-sig. Figures 1 and 2 show scaled MSE as a func-
tion of η0 for one and four truly present interactions. All other
procedures outperformed no-smoothing when one interaction
was present (Fig. 1), and even when four interactions were
present (Fig. 2), gamma, flat, and beta were almost as good
as no-smoothing. Intermediate numbers of interactions gave re-
sults intermediate between Figures 1 and 2 (not shown).

Coverage of 95% intervals turns out to be nearly nominal
for all procedures and all numbers of interactions when η0 = 1
or .25. Figure 3 shows coverage as a function of the number
of truly present interactions when η0 = .0625. All procedures
but no-smoothing lose coverage as more interactions are added.
However, gamma, flat, and beta are still near nominal, whereas
two-point and drop-non-sig fall to about 90% and 80% respec-
tively.

Table 3. Null Case: Scaled MSE for Cell Means and Parameters θk

Procedure Cell means θk

Gammaa 11.5–10.3% .85–.56%
Flat 10.4% .58%
Beta 10.2% .54%
Two-point 8.7% .16%
No-smoothing 16.6% 2.13%
Drop-non-sig 10.2% .54%

aScaled bias decreases as η0 decreases.

Figure 1. Cell Mean MSE (as a percentage of 1/η0) versus η0, for
the Case of One Interaction. ( , gamma; , flat; , beta; , two-point; ,
no-smoothing; , drop-non-sig.)

3.2.2 The parameters θk. All procedures are unbiased for
null θk. Figure 4 plots scaled bias for target θk as a function of
the error precision η0 for the case of four truly present inter-
actions. The plots for one, two, and three interactions are vi-
sually identical; only the vertical scale changes, with bias in-
creasing in magnitude as interactions are added. Two-point and
drop-non-sig degrade sharply as η0 decreases. Gamma degrades
more gracefully; flat and beta degrade when η0 declines from 1
to .25, but actually improve as η0 declines further to .0625.

Scaled MSE for null θk is again largely unaffected by η0
(Table 3, “θk” column); all Bayesian procedures perform bet-
ter than no-smoothing. In nonnull cases, a plot of scaled MSE

Figure 2. Cell Mean MSE (as a percentage of 1/η0) versus η0, for
the Case of Four Interactions. ( , gamma; , flat; , beta; , two-point;

, no-smoothing; , drop-non-sig.)

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1
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Figure 3. Cell Mean Coverage versus Number of Present Interactions, for the Case of 1/η0 = .0625. ( , gamma; , flat; , beta; , two-point; ,
no-smoothing; , drop-non-sig.)

for target θk looks just like Figure 2. When four interactions are
truly present, no-smoothing’s scaled MSE of target θk is about
2%. For gamma and beta, it is well under 3% for η0 = 1 and
.0625; flat reaches up to 3% for η0 = 1 and to 4% for η0 = .25.
Two-point reaches 6% for η = 0.25 and drop-non-sig reaches
5% for η0 = .0625.

Under all conditions, intervals for null θk have nearly nom-
inal coverage for drop-non-sig but 99% or higher for the
Bayesian procedures. Figure 5 shows coverage of 95% inter-
vals for target interactions as a function of η0. Except for
no-smoothing, all procedures lose coverage as η0 decreases.
Gamma, flat, and beta degrade to about 90% coverage with little
change as η0 declines to .0625, whereas coverages of two-point
and drop-non-sig plunge when η0 = .0625.

3.2.3 The Error Precision η0. Scaled MSE is 20–30%
and coverage close to 95% for all procedures in all conditions.

Drop-non-sig is nearly unbiased for η0 in all conditions. Fig-
ure 6 plots E(η0|Y)’s bias for the Bayesian procedures against
the absolute bias of θk for target interactions. Generally, as η0’s
bias becomes more positive, overstating the data’s precision,
the targets shrink less and their bias decreases. Also, although
adding interactions has little effect on the bias of target θk, more
true interactions make η0’s bias more negative, except for two-
point when η0 = 1, where the opposite is true. This bias may be
specific to η0’s posterior mean; preliminary results suggest that
the posterior median is much less biased.

3.3 Summary

The results support two conclusions. First, results for smooth
priors (gamma, flat, and beta) degrade gracefully as error pre-
cision decreases, whereas procedures that guess the right in-

Figure 4. Average Bias for Target θk (as a percentage of 1/
√

η0). ( , gamma; , flat; , beta; , two-point; , no-smoothing; , drop-non-sig.)
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Figure 5. Target θk Coverage versus η0, for the Case of Four Interactions. ( , gamma; , flat; , beta; , two-point; , no-smoothing; ,
drop-non-sig.)

teractions (two-point and drop-non-sig) degrade sharply. Sec-
ond, for zero, one, or two interactions, the smooth priors give
notable performance gains while giving up little or nothing to
unsmoothed ANOVA in MSE and coverage. Some procedures

showed performance gains even when three interactions were
present. Given the common presumption—dare we say prior
belief?—that real data usually have few truly present interac-
tions, the gamma, flat, and beta priors seem to be reasonable

Figure 6. Average Absolute Bias of Target θk versus Bias of η0. For each procedure, the plotting character (1, 2, 3, or 4) indicates the number
of truly present interactions. ( gamma; flat; beta; two-point.)
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candidates for general use. However, the two-point and drop-
non-sig procedures are hazardous when error precision is small.

4. EXAMPLE: THE SOFT–MATERIAL
POLISHABILITY DATA

We now return to the polishability dataset introduced in Sec-
tion 1. A standard ANOVA of log10gap using the three-way
interaction as the error term gives p values of .12, .097, and
.15 for the material-by-polishing (M×P), material-by-finishing
(M × F), and polishing-by-finishing (P × F) interactions. With-
out the one outlier, the p values drop to .096, .004, and .016.
The investigators had no reason to consider the outlying mea-
surement defective, so deleting it is hard to justify. Smoothed
ANOVA is a smooth alternative to a binary (include/exclude)
choice. This section presents three smoothed analyses; Appen-
dix > gives the design matrix X1 that we used.

In all three smoothed analyses, the M × P and M × F inter-
actions were smoothed by giving each θk its own ηj, that is,
smoothing each contrast separately. The P × F interaction is of
secondary interest because it does not involve the materials, so
its 21 contrasts were smoothed using a single ηj.

The three smoothed analyses differ in their handling of the
M × P × F interaction, which is most directly affected by the
outlier. Analysis 1 gave each of M × P × F’s 21 contrasts its
own ηj, that is, smoothed them separately. Analysis 2 smoothed
all 21 contrasts using a single ηj, giving a posterior expected df
of 6.75. To distinguish the effect of using a single ηj from the
effect of having few total df, Analysis 3 fixed M × P × F’s total
df at the same 6.75 but allowed each contrast to be smoothed by
its own ηj. (We also did an analysis like Analysis 3 but fixing
M × P × F’s total df at 9.83, Analysis 1’s posterior mean; the
results were nearly identical to those of Analysis 1.) Finally, we
put a flat prior on η0 (i.e., gamma with α = 1 and λ = 0) and
flat priors on each interaction’s qj, subject to conditioning as
described.

Figure 7 summarizes the results for M×P×F. In both panels,
M × P × F’s contrasts are sorted from left to right in increas-
ing order of their unsmoothed estimates’ absolute values. Fig-
ure 7(a) shows, for each contrast, the posterior mean df in the
fit. In Analysis 1, where each contrast has its own ηj, posterior
mean df increased as the unsmoothed contrast increased, for a
posterior mean of 9.83 total df. The rightmost contrast retained
.8 df in the fit, reflecting the outlier’s effect. In Analysis 2, all
21 contrasts were smoothed with the same ηj and had the same
posterior mean df, .32. All 21 contrasts were smoothed more
than in Analysis 1 (some much more), leaving 6.75 total df.
Analysis 3’s prior fixed M × P × F’s df at the same 6.75 but al-
lowed each contrast to be smoothed by its own ηj. It smoothed
the four largest contrasts less than Analysis 2, and the other 17
contrasts were smoothed a bit more. The rightmost contrast, re-
flecting the outlier, changed the most, from 0.32 df in Analysis
2 to .68 in Analysis 3. Thus, although Analyses 2 and 3 gave
M × P × F 6.75 df, Analysis 3 “unmasked” the outlier by al-
lowing different contrasts to be smoothed differently and forc-
ing them to compete for those 6.75 df.

Figure 7(b) shows absolute values of the unsmoothed con-
trast estimates and posterior means from Analyses 1, 2, and 3.

(a)

(b)

Figure 7. Polishability Data: Posterior Summaries for the 21 Con-
trasts in the M × P × F interaction. (a) E(DF|Y) for the three smoothed
analyses. (b) Absolute values of contrast estimates for the unsmoothed
and smoothed analyses [the latter being E(θk |Y)]. ( unsmoothed;
Analysis 1; Analysis 2; Analysis 3.)

These largely reflect the posterior mean df of Figure 7(a). How-
ever, although small contrasts have fewer df in Analysis 3 com-
pared with Analysis 2, their smoothed estimates hardly change,
whereas the largest contrast’s estimate increases substantially.

Table 4 gives the SANOVA tables for Analysis 1, 2, and 3.
The unsmoothed section, for the grand mean and main effects,
is the same as in the usual ANOVA table. The Smoothed sec-
tion shows the partition of each effect’s df and SS between the
model fit (“Model” column) and error (“Error” column). As
noted, these are posterior expectations, with respect to r, of
the respective SS and df. The Model and Error halves of the
table include a column for mean squares, which, as usual, are
SS divided by df. A smoothed effect’s error MS describes the
effect’s contribution of information about error variation. Pure
Error’s SS is 0 because the design is unreplicated. A replicated
design would have df and SS for error from replication as well
as smoothing, with the total error SS and df being the sums of
the two sources. Unlike in the standard analysis, in which only
the three-way interaction is deemed error, in Analysis 1 about
half of the 23.08 df for error comes from variation smoothed
out of two-way interactions.

The SANOVA tables for Analyses 2 and 3 have the same un-
smoothed section as for Analysis 1, so Table 4 gives only their
Smoothed and Error sections. Comparing Analyses 1 and 2, a
single ηj for all 21 M × P × F contrasts (Analysis 2) inflates
the MSE from .11 to .13 and forces M × P × F to shrink more
(posterior mean df, 6.75 vs. 9.83). This occurs because the con-
trast reflecting the outlier is smoothed as much as the other 20
contrasts [Fig. 7(a)]. Pushing this variation into error inflates
the estimate of error variance and induces further smoothing,

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1



20 JAMES S. HODGES ET AL.

Table 4. SANOVA Tables for Analyses 1, 2, and 3

Model Error

SS DF MS SS DF MS

Analysis 1
Unsmoothed

Grand mean 75.54 1.00 75.54
M 1.12 1.00 1.12
P .38 3.00 .13
F 1.92 7.00 .27

Smoothed
M × P .48 1.59 .30 .17 1.41 .12
M × F .88 3.85 .23 .52 3.15 .17
P × F 2.13 13.65 .16 1.15 7.35 .16
M × P × F 1.26 9.83 .13 .79 11.17 .07

Error
Pure 0 0
Smoothing 2.63 23.08 .11
Total 2.63 23.08 .11

Analysis 2
Smoothed

M × P .43 1.52 .28 .22 1.48 .15
M × F .78 3.53 .22 .62 3.47 .18
P × F 1.64 10.50 .16 1.64 10.50 .16
M × P × F .66 6.75 .10 1.39 14.25 .10

Error
Pure 0 0
Smoothing 3.87 29.70 .13
Total 3.87 29.70 .13

Analysis 3
Smoothed

M × P .45 1.54 .29 .20 1.46 .13
M × F .82 3.63 .22 .58 3.37 .17
P × F 1.81 11.64 .16 1.46 9.36 .16
M × P × F .95 6.75 .14 1.10 14.25 .08

Error
Pure 0 0
Smoothing 3.34 28.44 .12
Total 3.34 28.44 .12

resulting in about 3 more df smoothed out of M×P×F. Smooth-
ing all M×P×F contrasts with a single ηj indirectly forces P×F
to shrink more, with a posterior mean df in the fit of only 10.50
in Analysis 2 and 13.65 in Analysis 1. (Recall that P×F was
smoothed using a single ηj.)

We illustrate a subgroup analysis using the M×F interaction,
which addresses whether the material difference, standard mi-
nus new, varies between levels of F (finishing methods). Fig-
ure 8 shows the unsmoothed estimates and 95% confidence in-
tervals for standard minus new (using M × P × F as the error
term), and Analysis 2’s smoothed estimates and intervals. The
three smoothed analyses give nearly identical posterior means
for standard minus new despite their differences for M × P × F.
The SANOVA tables reflect this: M × F’s line is similar in all
three analyses. In Figure 8, the smoothed subgroup-specific dif-
ferences are shrunk toward −.26 log10 µm, the material main
effect. M × F’s seven contrasts were smoothed using differ-
ent ηj, so F’s levels 1 and 3 were shrunk toward the mater-
ial main effect by larger fractions than was level 2. The inter-
vals from the Unsmoothed analysis are wider, at .92 log10 µm,
than Analysis 2’s intervals, which range in width from .55 to
.75 (median, .65; Analyses 1’s and 3’s are narrower by about
.1). Based on Section 3’s results for cell means, we conjec-
ture that these intervals have nearly nominal coverage despite
being narrower. Finally, smoothing simplifies interpretation;
while the Unsmoothed analysis has a scattered group of es-
timates, Analysis 2 suggests that F’s levels 4 and 7 have no
treatment effect, level 2 has a standard-to-new ratio of about
1/4 (log10 .25 = −.6), and F’s other levels cluster around a ra-
tio of about 1/2 (log10 .5 = −0.3).

5. DISCUSSION

We have presented a way to smooth balanced ANOVAs
with one error term. We focused on interactions, but smooth-
ing main effects is a trivial extension. Section 4 showed how

Figure 8. Polishability Data: Subgroup Analysis, Standard Material Minus New Material for the Levels of Factor F. Unsmoothed analysis: solid
lines, point estimates and 95% confidence interval. Smoothed Analysis 2: dashed line, posterior mean; gray region, 95% posterior intervals. The
dotted line indicates no difference between standard and new.
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smoothed ANOVA addresses three common problems: unrepli-
cated designs, masking of large contrasts, and subgroup analy-
sis. Our approach allows flexibility in grouping contrasts to
be smoothed by the same ηj and in choosing priors to con-
trol smoothing. Section 3’s simulation experiment compared
four priors, unsmoothed ANOVA, and a strategy of dropping
nonsignificant interactions. The three smooth priors (gamma,
flat, and beta) had performance advantages over nonsmoothed
ANOVA and few significant disadvantages for zero, one, and
two truly present interactions. The two-point prior and the
strategy of dropping nonsignificant interactions entailed serious
problems when error variation was large.

We considered only iid priors on the qj or ηj, but other priors
are possible. Spatial smoothing for lattice data fits easily into
our framework using, for example, an improper conditional au-
toregressive (CAR) prior reexpressed as a proper prior as done
by Hodges, Carlin, and Fan (2003). This is a case in which
smoothing a spatial main effect is clearly indicated and smooth-
ing considerably simplifies the effects. Similarly, the response
surface priors considered by Smith (1973) fit into our frame-
work, allowing an effect to be smoothed toward, but not forced
to fit, a polynomial.

Nobile and Green (2000) presented a Bayesian ANOVA for a
two-way design in which they modeled each of the row and col-
umn factors and the interaction as draws from finite mixtures of
normally distributed components. The prior structure for (say)
the row factor enforces small variation between levels from the
same mixture component and large variation between compo-
nents, so that levels from the same component are “practically
indistinguishable.” Differences between levels are tested using
the posterior probabilities of the allocations of levels to compo-
nents. The theory handles unbalanced or unreplicated designs
as well as different error variances in each design cell. This
bounty comes at the price of a prior more complex than ours,
which we find daunting despite Nobile and Green’s ingenious
interpretation. Also, although how to place an order constraint
on (say) the row factor in this approach seems clear, how to
smooth a spatial effect is unclear.

Gelman (2005) stated that his fertile treatment of ANOVA
derived from an early version of the present article, but his
goal was more ambitious than and rather different from ours.
He aimed to reinterpret ANOVA, to treat all effects as random
effects and replace F-tests with variance-component estimation,
and to make error-term selection implicit and automatic. In con-
trast, we consider only single–error term ANOVAs; in ongoing
work on multiple–error term ANOVAs, we observe the usual
distinction between fixed and random effects. However, hav-
ing labeled each effect as fixed or random, we focus on esti-
mation so we too let our machinery select an error term auto-
matically, as in the approach of Gelman (2005) and the SAS
MIXED procedure, among others. Moreover, Gelman (2005)
smoothed each effect’s θk using one ηj. He defended this off-
the-shelf ANOVA as “a tool for data exploration . . . used to con-
struct useful models,” and in this sense, our machinery may be
viewed as providing some useful models.

In our approach to smoothed ANOVA, the prior distribution
on the smoothing structure is important. The three smooth pri-
ors (gamma, flat, and beta) had similar performance in the sim-
ulation experiment, giving little basis for a preference. Many

hierarchical model applications have meaningful data about
second-level precisions, but in smoothed ANOVA, these preci-
sions are purely a device to induce smoothing. This suggests
that priors on df or other scale-invariant quantities will ulti-
mately prevail as reference priors.

The scope of our simulation experiment is limited in that it
considers only effects with 1 df, each with its own ηj. But the
prior should have its greatest effect in this case because the
datum for each ηj is a single contrast in the cell averages. Of
course, the information in this contrast depends symmetrically
on the error precision η0, a design factor in our experiment, and
on the per-cell sample size, which we fixed at n = 6.

A prior on qj induces a prior on ηj and vice versa. For a 23

ANOVA with n = 6, giving the ηj a gamma(.001, .001) prior
induces a prior on each qj marginally that is well approximated
by a beta(.001, .001) distribution, which is in effect a two-point
prior. This gamma prior on the ηj also induces a prior on any
pair of qj with probability near 1 on the unit square’s perime-
ter. This happens because gamma(.001, .001) puts nearly all its
probability extremely close to 0, with a tiny bit on huge values.
Thus for independently drawn η0 and ηj, with rare exceptions
both are microscopically small but differ by orders of magni-
tude, so their ratio rj is effectively 0 or infinite. In the simula-
tion experiment, gamma dominated two-point for small η0 ap-
parently because two-point placed independent two-point priors
on the qj, whereas gamma induced correlated two-point priors
on the qj.

As presented here, smoothed ANOVA has some potentially
undesirable features. Section 2’s tidy theory requires an orthog-
onal parameterization, and in general smoothing depends on the
specific orthonormal parameterization. We know of one excep-
tion, when an effect’s contrasts are treated as iid with a single
smoothing precision (e.g., P × F in Sec. 4). Otherwise, a dif-
ferent design matrix implies different smoothing, although we
conjecture that this effect is minor for smooth priors. Certainly
it is advisable to use contrasts motivated by subject matter con-
siderations whenever possible.

We considered the balanced case here. Unbalanced cases
have no universally accepted ANOVA even without smoothing.
Of course, one could order the effects, orthogonalize columns
with respect to preceding columns, and apply our approach,
which amounts to smoothing SAS’s type I analysis. Smooth-
ing unbalanced ANOVA more thoughtfully will require a dif-
ferent treatment of variation in the dependent variable y than is
“claimed” by collinear effects.

Finally, our approach could be extended to a Lasso-like
procedure (Tibshirani 1996) in which the θk’s have double-
exponential priors, and the posterior is maximized. As with the
Lasso, most contrasts would be shrunk to 0, whereas shrinkage
of the other contrasts would depend on the prior on the double-
exponential’s scale. A final extension is to balanced ANOVAs
with two or more error terms; preliminary work indicates that
results as explicit as those in Section 2 are possible.
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APPENDIX A: DETAILS FOR SECTIONS 2 AND 3

A.1 Computational Forms for Expressions in Section 2.2

Simplified forms of Section 2.2’s expressions are easily de-
rived; we omit the derivations. First,

(X′Q−1X)−1 =
[
(cn)−1IM 0M×N

0N×M diag(cn + rj(k))
−1

]
; (A.1)

therefore,

�̂ =
[

(cn)−1A′
1y

diag(cn + rj(k))
−1A′

2y

]
. (A.2)

The upper part of �̂—the main effects’ conditional posterior
mean—does not depend on r. In the lower part, the diagonal
matrix depends on r, whereas A′

2y does not. Similarly,

W(r) = y′y − (cn)−1y′A1A′
1y

− y′A2 diag
(
cn + rj(k)

)−1
A′

2y. (A.3)

The first two terms of W(r) do not depend on r and are the
usual residual sum of squares in a main effects–only ANOVA.
The Bayesian analysis gives this because of the flat prior on �1.
The last term in (A.3) involves r and can be written as

∑
k

1

cn + rj(k)
(y′A2)

2
k, (A.4)

where again (y′A2)k does not depend on r.
The conditional posterior of � given r has center �̂, given in

(A.2). Its dispersion matrix is

2λ + W(r)
ν

(X′Q−1X)−1, (A.5)

which simplifies using (A.3) and (A.1). Posterior variances for
individual θk can be derived using var(θk) = E(var(θk|r)) +
var(E(θk|r)), where the outer expectation and variance are with
respect to r. For main effect θk, E(θk|r) is independent of r, so
its variance is 0. For these θk’s,

var(θk|r) = 2λ + W(r)
(ν − 2)cn

, (A.6)

from (A.5); this is the same for each main effect θk. E(var(θk|r))
can be estimated by the average of (A.6) evaluated at the
MCMC draws of r. For interaction θk,

E(θk|r) = 1

cn + rj(k)
{A′

2y}k, (A.7)

so var(E(θk|r)) is(
E

[
1

(cn + rj(k))2

]
− E2

[
1

cn + rj(k)

])
{A′

2y}2
k; (A.8)

both expectations can be estimated by the obvious averages.
From (A.5),

var(θk|r) = 2λ + W(r)
(ν − 2)(cn + rj(k))

, (A.9)

the expectation of which can be estimated by the obvious aver-
age.

A.2 The SANOVA Table

In an ordinary one–error term ANOVA, the usual projection
theory analyzes y as

y = Puy + Psy + QAy, (A.10)

where Pu = 1
cn A1A′

1 and Ps = 1
cn A2A′

2 are orthogonal projec-
tions onto the columns of A1 and A2 and QA = Icn − 1

cn (A1A′
1 +

A2A′
2) is the residual projection. Pu, Ps, and QA have dimension

cn. Smoothing of interactions is captured by splitting Psy into
two pieces, Psy = Pssy + Psey, the smoothed part in the fit and
the error part.

To do this, extend (A.10) to Section 2.1’s constraint-case for-
mulation as [

y
0N×1

]
= Y = PuY + PsY + QAY, (A.11)

where each projection matrix now has dimension cn + N. Now
Pu is partitioned into four parts; the upper left part is the original
Pu in (A.10), whereas the other parts are appropriate-sized zero
matrices. Ps and QA are related to their counterparts in (A.10)
in the same way. Split Ps, treating � as fixed for now. Define
X′

s = [A′
2|IN], the columns of X corresponding to the smoothed

contrasts. The projection matrix for the smoothed contrasts is

Pss = Xs(X
′
s�

−1Xs)
−1X′

s�
−1 (A.12)

=
[

A2 diag(cn + ηj(k)
η0

)−1A′
2 A2 diag(

ηj(k)/η0
cn+ηj(k)/η0

)

diag(cn + ηj(k)
η0

)−1A′
2 diag(

ηj(k)/η0
cn+ηj(k)/η0

)

]

(A.13)

(Hodges and Sargent 2001). Thus the projection for the error
part of the smoothed contrasts is

Pse = Ps − Pss (A.14)

=
[

A2 diag(
ηj(k)/η0

cn(cn+ηj(k)/η0)
)A′

2 −A2 diag(
ηj(k)/η0

cn+ηj(k)/η0
)

−diag(cn + ηj(k)
η0

)−1A′
2 −diag(

ηj(k)/η0
cn+ηj(k)/η0

)

]
.

(A.15)

Neither Pss nor Pse is an orthogonal projection, although their
sum, Ps, is.

The SS y′y = Y ′Y partitions as

y′y = Y ′Y = Y ′(Pu + Pss + Pse + QA)Y

= 1

cn
y′A1A′

1y + y′A2 diag

(
cn + ηj(k)

η0

)−1

A′
2y (A.16)

+ y′A2 diag

(
ηj(k)/η0

cn(cn + ηj(k)/η0)

)
A′

2y (A.17)

+ y′
(

Icn − 1

cn
(A1A′

1 + A2A′
2)

)
y, (A.18)

where the four terms in the sum correspond to unsmoothed ef-
fects, the part of smoothed effects in the fit, the part of smoothed
effects considered error, and pure error.

The first three terms in (A.16)–(A.18) have the form y′AiG×
A′

iy, for diagonal G. Because A′
iy is a vector, these terms can

be written as
∑

k Gk(A′
iky)2, where Gk is G’s kth diagonal en-

try and Aik is Ai’s kth column. Thus each SS decomposes into
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summands for the individual columns of Ai, which a SANOVA
table can group in any convenient way.

The traces of Pu and Pss give each effect’s df in the fit
(Hodges and Sargent 2001). For unsmoothed effects and pure
error, the mean squares are as usual. For any grouping of
smoothed contrasts, the mean square for the part in the fit is
the part of SS in the fit divided by the part of df in the fit, with
the obvious analog for the part of the effect smoothed into error.

For smoothed effects, the df in the fit and error are functions
of �, as is the partition of the SS. Because � is unknown and
has a posterior distribution, so do each effect’s df and SS in the
fit and in error. In a SANOVA table, it is much simpler to use
single-number summaries of df and SS instead of a distribu-
tion. Here are three candidate summaries, all easily computed
by MCMC:

a. Compute the DF and SS at the posterior median of each rj.
b. Compute the DF and SS at the posterior mean of each rj.
c. Use the posterior means of the DF and SS themselves.

The rj tend to have posteriors with long upper tails, because
in hierarchical models the data usually provide little informa-
tion about higher-level variances. Thus rj’s posterior mean is
likely to be much larger than its median and less representative
of the distribution’s “middle.” Option (c) is less subject to this
problem; each smoothed effect’s df and SS lie in closed inter-
vals, so their median and mean cannot differ as much as rj’s.
In this sense, (a) and (c) seem to dominate (b). Because expec-
tations of sums are sums of expectations, the posterior mean
df and SS always add properly for model and error parts and
across effects. Given the ANOVA table’s bookkeeping function,
(c) thus seems to dominate (a). With (c) as the single-number
summary, if a smoothed contrast is not grouped with other con-
trasts, then its model and error parts have mean squares identi-
cal to each other and to the contrast’s conventional mean square.

A.3 MCMC Algorithms for Bayesian Analyses

We used the following procedures but claim no optimal-
ity. Our algorithms draw samples from the marginal posterior
of r, the vector of smoothing ratios, which are then used with
f (�|Y, r) and f (η0|Y, r) to Rao–Blackwellize. First, we give an
algorithm suitable for unconditional priors, then a modification
that works better with priors conditioned on df.

Case 1. Unconditional Priors. The chain is on zj = log(rj).
To start, set zj so qj = .5nj. For each cycle, update each zj con-
ditional on the other zj using this Metropolis–Hastings step:

1. zj,old ← current value of zj.
2. For t = 1, . . . ,T ,

a. zj,t ← zj,old + C × κ , where κ ∼ N(0, 1)
b. With probability min(1,MH ratio for zj,t), zj,old ← zj,t.

3. Return zj,old .

In Section 3’s simulation experiment, each analysis used this
algorithm for 12,000 cycles with T = 2 and C = 3, discarding
the first 2,000 draws as burn-in.

Case 2. Prior Conditioned on df. For rj not affected by a
prior conditioned on df, use Case 1’s algorithm. The algorithm
that follows describes draws for a group of rj’s whose qj’s add
up to K. If several groups of rj’s have such constraints, then
apply this algorithm separately to each group. An inequality
condition on df raises no distinct issues.

Again, the chain is on zj = log(rj). In each MCMC cycle, the
condition on z is handled by randomly selecting one zj, zj′ , to
use as a “pivot” in drawing zj, j 
= j′. Specifically, draw zl given
{zj|j 
= l, j′} and adjust the pivot zj′ according to the drawn zl, so
that ql +qj′ = K −∑

j 
=l,j′ qj. The df condition limits zl’s sample
space. The specific algorithm follows.

Index the affected rj by j = 1, . . . ,B. To start, set each zj so
that qj is K/B. Then each cycle through the zj includes the fol-
lowing steps:

1. Randomly select a pivot index j′ from {1, . . . ,B}, with the
probability of index j proportional to q∗

j (1 − q∗
j ), q∗

j being
the current value of qj (a function of the current zj).

2. Randomly permute the remaining index values {1,2, . . . ,

j′ − 1, j′ + 1, . . . ,B}.
3. Sample zl given {zj|j 
= l, j′} in the order selected in the

previous step. Use Case 1’s Metropolis–Hasting step, with
two changes:
a. zl’s conditional sample space is bounded so at least one

zj′ satisfies ql + qj′ = K − ∑
j 
=l,j′ qj.

b. The pivot zj′ is updated using the df constraint and re-
turned along with zj,old .

Originally, we used zB as the pivot. For datasets strongly indi-
cating more than K df, each qj’s samples quickly moved close
to 0 or 1 and could not move away. Some might take this to
mean that they should use a different prior, but for overpowered
experiments, one might prefer to avoid trivial detail in the fit by
imposing more smoothing than the data would suggest.

A.4 Some Details About Simulated Datasets and
Monte Carlo Error

In the simulation experiment, we created artificial datasets as
follows. Consider simulating datasets with two truly present in-
teractions and η0 = .25. We set two interaction θk’s to 1 and
all other θk’s to 0. We multiplied the 1,000 “subjects” (sets
of 48 errors) by 2 to give error precision .25 and added them
to the true means to give 1,000 artificial datasets. We then
applied the six procedures to each artificial dataset. For the
Bayesian procedures, we used the MCMC algorithm in Sec-
tion A.3 (Case 1). We used true parameter values as starting val-
ues, sampled 10,000 r’s from their marginal joint posterior (8),
and then Rao–Blackwellized θk and η0 to estimate posterior
means and interval coverages. Preliminary testing indicated that
this was sufficient.

The contribution of MCMC error to overall Monte Carlo er-
ror was quite small, because it was averaged over 1,000 arti-
ficial datasets. For the comparisons in Figures 1 and 2, when
comparing two methods according to scaled MSE (i.e., as a per-
cent of true error variance), the contribution of MCMC error is
at most .02 percentage points per dataset (i.e., before averag-
ing). The contribution of variation between simulated datasets
is somewhat larger, but still small compared with differences
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between design cells, because of the simulation experiment’s
design. For example, in Figure 1 (one interaction truly present),
for the gamma method, comparing η0 = .25 versus η0 = .0625,
the two design cells differ in scaled MSE by 1.09 percentage
points, and the relevant Monte Carlo standard error is .08 per-
centage points.

APPENDIX B: THE POLISHABILITY DATASET

Pesun et al. (2002) described this study in detail. Table B.1
gives raw gap measurements (leftmost column) and the design
matrix used in Section 4’s analyses. Design matrix columns are
given for the main effects; columns for interactions (A2) are

Table B.1. The Polishability Data and Design Matrix for Main Effects

Gap (µm) Material Polishing Finishing

5.02 1 3 0 0 7 0 0 0 0 0 0
8.84 1 3 0 0 −1 6 0 0 0 0 0
3.61 1 3 0 0 −1 −1 5 0 0 0 0

10.55 1 3 0 0 −1 −1 −1 4 0 0 0
3.90 1 3 0 0 −1 −1 −1 −1 3 0 0
5.64 1 3 0 0 −1 −1 −1 −1 −1 2 0

98.95 1 3 0 0 −1 −1 −1 −1 −1 −1 1
10.75 1 3 0 0 −1 −1 −1 −1 −1 −1 −1
2.91 1 −1 2 0 7 0 0 0 0 0 0
3.00 1 −1 2 0 −1 6 0 0 0 0 0
5.94 1 −1 2 0 −1 −1 5 0 0 0 0
8.64 1 −1 2 0 −1 −1 −1 4 0 0 0

16.33 1 −1 2 0 −1 −1 −1 −1 3 0 0
7.44 1 −1 2 0 −1 −1 −1 −1 −1 2 0

11.26 1 −1 2 0 −1 −1 −1 −1 −1 −1 1
16.35 1 −1 2 0 −1 −1 −1 −1 −1 −1 −1
4.75 1 −1 −1 1 7 0 0 0 0 0 0
3.93 1 −1 −1 1 −1 6 0 0 0 0 0
4.90 1 −1 −1 1 −1 −1 5 0 0 0 0

13.44 1 −1 −1 1 −1 −1 −1 4 0 0 0
2.82 1 −1 −1 1 −1 −1 −1 −1 3 0 0
6.44 1 −1 −1 1 −1 −1 −1 −1 −1 2 0

20.88 1 −1 −1 1 −1 −1 −1 −1 −1 −1 1
9.30 1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1

178.22 1 −1 −1 −1 7 0 0 0 0 0 0
1.95 1 −1 −1 −1 −1 6 0 0 0 0 0
3.70 1 −1 −1 −1 −1 −1 5 0 0 0 0

18.11 1 −1 −1 −1 −1 −1 −1 4 0 0 0
16.40 1 −1 −1 −1 −1 −1 −1 −1 3 0 0
9.61 1 −1 −1 −1 −1 −1 −1 −1 −1 2 0

36.52 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1
14.88 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
18.68 −1 3 0 0 7 0 0 0 0 0 0
49.02 −1 3 0 0 −1 6 0 0 0 0 0
4.55 −1 3 0 0 −1 −1 5 0 0 0 0

10.85 −1 3 0 0 −1 −1 −1 4 0 0 0
20.04 −1 3 0 0 −1 −1 −1 −1 3 0 0
5.65 −1 3 0 0 −1 −1 −1 −1 −1 2 0

47.00 −1 3 0 0 −1 −1 −1 −1 −1 −1 1
34.14 −1 3 0 0 −1 −1 −1 −1 −1 −1 −1
8.12 −1 −1 2 0 7 0 0 0 0 0 0

10.30 −1 −1 2 0 −1 6 0 0 0 0 0
10.10 −1 −1 2 0 −1 −1 5 0 0 0 0
1.11 −1 −1 2 0 −1 −1 −1 4 0 0 0

21.49 −1 −1 2 0 −1 −1 −1 −1 3 0 0
19.02 −1 −1 2 0 −1 −1 −1 −1 −1 2 0
13.49 −1 −1 2 0 −1 −1 −1 −1 −1 −1 1
48.75 −1 −1 2 0 −1 −1 −1 −1 −1 −1 −1
37.62 −1 −1 −1 1 7 0 0 0 0 0 0
36.22 −1 −1 −1 1 −1 6 0 0 0 0 0
10.58 −1 −1 −1 1 −1 −1 5 0 0 0 0
11.60 −1 −1 −1 1 −1 −1 −1 4 0 0 0
33.44 −1 −1 −1 1 −1 −1 −1 −1 3 0 0
51.28 −1 −1 −1 1 −1 −1 −1 −1 −1 2 0
24.19 −1 −1 −1 1 −1 −1 −1 −1 −1 −1 1
23.25 −1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1
9.75 −1 −1 −1 −1 7 0 0 0 0 0 0
8.38 −1 −1 −1 −1 −1 6 0 0 0 0 0

14.23 −1 −1 −1 −1 −1 −1 5 0 0 0 0
27.90 −1 −1 −1 −1 −1 −1 −1 4 0 0 0
16.72 −1 −1 −1 −1 −1 −1 −1 −1 3 0 0
37.83 −1 −1 −1 −1 −1 −1 −1 −1 −1 2 0
12.51 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1
11.51 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
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constructed by multiplying main-effect columns. For the Ma-
terial factor, +1 corresponds to standard and −1 corresponds
to new. The columns in Table B.1 are not standardized so that
A′

iAi = 64I, as the theory in Section 2.1 requires.

[Received September 2005. Revised May 2006.]
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