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Part A: A small exploration of spatial confounding in some common

geostatistical models

In the main paper’s Section 2.5, each municipality ¢ was assigned north-south and east-west co-
ordinates. In the computations below, each coordinate was centered so it averaged zero across
the municipalities, and both centered coordinates were divided by a common scaling constant.
The symbols N; and A; refer to the centered and scaled north-south and east-west coordinates
respectively, which had standard deviations 0.76 and 1.24 respectively.

We considered four forms of cov(S) determined by combinations of two distance measures and
two specifications of correlation between municipalities as a function of distance between them.
The measures describing distance between municipalities 7 and j, d;;, were Euclidean distance
[(N; — N;)? + (A; — A;)?]°® and maximum distance max(|N; — N;|,|A; — 4;]), for which the largest
distances between two municipalities were 5.4 and 4.7 respectively. The forms specifying correlation
as a function of distance were exponential, exp(—d;;/6), and linear, max[(1 — §;;/6),0].

For each form of cov(S), Table 1 shows Pearson’s correlation between the eigenvector corre-
sponding to the j** smallest eigenvalue of cov(S)~! and the eigenvector corresponding to the j*
smallest eigenvalue of the ICAR model’s neighbor matrix Q, for a range of values of cov(S)’s tuning
constant §. When this correlation is high for j = 2, the geostatistical specification for cov(S) will
produce the same spatial confounding as the ICAR model.

Table 1 shows that generally the correlations between eigenvectors of cov(S)~! and Q are high
for j = 2 and j = 3, but fall off substantially for ; = 4 and for j > 4 (not shown). Results for
the four cov(S) differ somewhat in details. The two distance measures behave similarly. However,
while the exponential function of distance gives high correlations for all values of § shown here for
7 = 2,3, the linear function of distance shows smaller correlations for small values of 6, most likely

because the spatial correlation dies off so quickly for small 8, and for ;7 = 3 for large 8 as well.



Table 1: Correlation between eigenvectors corresponding to j* smallest eigenvalues of the ICAR’s

Q matrix and of cov(S) !, for four specifications of cov(S) and various 6.

Distance  Correlation 0

measure function j105 10 15 20 25 30 35 40 45 5.0

Fuclidean exponential 2 | 0.89 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96
31079 087 088 0.88 0.88 0.87 0.87 0.86 0.86 0.85
41042 020 0.21 0.23 024 025 0.25 0.26 0.26 0.26

Fuclidean linear 21034 061 088 092 094 095 0.96 0.96 0.96 0.96
31044 060 080 0.87 0.8 0.85 0.66 0.28 0.18 0.19
41025 033 010 0.15 0.21 0.27 0.28 0.20 0.15 0.13

maximum exponential 2 | 0.90 0.94 0.95 095 095 0.95 0.95 095 0.95 0.95
31081 086 087 0.87 087 0.86 0.86 0.85 0.84 0.83
41017 0.11 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08

maximum linear 21036 072 090 093 094 094 095 095 095 0.95
3015 0.66 0.83 0.87 0.87 0.87 0.26 0.25 0.26 0.29
41026 036 009 0.11 0.14 0.13 0.01 0.03 0.04 0.04

Part B: Spatial confounding with spectral methods

Section 2.2 of the main paper gives results for a discrete spatial domain; these can be extended
to Gaussian process models defined on a continuous spatial domain. Let y(s;) = x;8 + S(s;) + &;,
where s; € R?, ¢; d N(0, 7¢) is pure error, and S is a spatial process with mean zero, precision 7y,
and stationary spatial correlation function Cor(s;,s;) = p(s; — s;)-

The spectral representation theorem states that S(s) can be written

S(s) = /722 cos(w's)dby (w) + /732 sin(w's)dbs (w), (1)

where w = (w1, w2)’ € R? is a frequency and b; and by are independent Gaussian processes with
mean zero, orthogonal increments, and E(|dbj(w)|?) = F(w)/7s. The spectral representation formu-
lates the spatial process as a convolution of trigonometric basis functions and stochastic processes
in the frequency domain with independent increments. The spatial correlation p is directly related

to the spectral density F':

plsi —s7) = [ cosle(s: = s,)}dF w). (2)

The spectral density is often decreasing in ||w||, for example, F(w) o exp(—||w||?/(4¢)) corresponds
to the squared-exponential covariance p(s; — s;) = exp(—¢||s; — s;]|?).
Assuming the observations lie on a m x m square grid with distance one between neighbor-

ing sites, S’s density can be approximated (Whittle 1954) by a sum over a finite grid of Fourier



frequencies w; € {2 —(m —1)/2]/m, ..., 27 (m — |[m/2])/m}?,

2
S(S) = Z Zj(s,wl)bj (3)
bjl ~ N(OaTsdl)a

where |z]| is the smallest integer greater than or equal to z, Zi(s,w) = cos(w's), Zs(s,w) =
sin(w's), and 7,d; is a precision with d; = 1/F(w;). In this special case, the Z; are orthogonal, i.e.,
Zl’fl Zj(s,wy) Zp(s',wy) = I(k = j)I(s = s'). This approximation may induce edge and aliasing
effects in the spatial covariance, especially for small grids, but the approximation is useful for
studying the fixed effects. This representation is directly analogous to the ICAR model as in
equation (5) in the main paper, so the rest of the analysis applied to the ICAR model follows
directly.

Comparing the spectral representation (3) with the ICAR model in equation (5) in the main
paper, the trigonometric functions Z; and Z are analogous to Section 2.2’s eigenvectors Z;, and
the inverse of the spectral density 1/F(w) is analogous to the eigenvalues d; in Section 2.2. Unlike
the eigenvectors and eigenvalues of the ICAR model, Z1, Zs and F have explicit forms, so the role
of the covariate’s spatial scale is more clear. High-frequency terms (large ||w||) have small prior
variance (small F'(||w]||)) and are shrunk a great deal, while low-frequency terms (small ||w||) have
large prior variance (large F(||w||)) and are shrunk relatively little. In this parameterization, the
correlations between a covariate and the Z; clearly describe the covariate’s variation at different
spatial scales.

References

Whittle P (1954). On stationary processes in the plane. Biometrika, 41, 434-449.



