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Summary. Non-Gaussian spatial data are very common in many disciplines.For instance, count
data are common in disease mapping, and binary data are common in ecology.When fitting spa-
tial regressions for such data, one needs to account for dependence to ensure reliable inference
for the regression coefficients. The spatial generalized linear mixed model offers a very popular
and flexible approach to modelling such data, but this model suffers from two major shortcom-
ings: variance inflation due to spatial confounding and high dimensional spatial random effects
that make fully Bayesian inference for such models computationally challenging. We propose
a new parameterization of the spatial generalized linear mixed model that alleviates spatial
confounding and speeds computation by greatly reducing the dimension of the spatial random
effects. We illustrate the application of our approach to simulated binary, count and Gaussian
spatial data sets, and to a large infant mortality data set.
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1. Introduction

Over 20 years ago Besag et al. (1991) proposed the spatial generalized linear mixed model
(SGLMM) for areal data, which is a hierarchical model that introduces spatial dependence
through a latent Gaussian Markov random field (GMRF). Although Besag et al. (1991) focused
only on prediction for count data, the SGLMM for areal data has since been applied to other
types of data (e.g. binary), in many fields (e.g. ecology, geology and forestry), and for regression
as well as prediction. In fact, the SGLMM has long been the dominant areal model, owing to
its flexible hierarchical specification, to the availability of the WinBUGS software application
(Lunn et al., 2000), which greatly eases data analysis, and to the various theoretical and
computational difficulties that plague the areal SGLMM’s nearest competitor: the automodel
(see, for example, Hughes et al. (2010) and Kaiser and Cressie (1997, 2000)).

SGLMMs, although remarkably flexible and widely applicable, suffer from two major short-
comings:

(a) variance inflation due to spatial confounding and
(b) computational challenges posed by high dimensional latent variables.

The issue of spatial confounding was discovered by Clayton et al. (1993) and recently reiterated
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by Reich et al. (2006), who suggested a new model (henceforth the RHZ model) that seeks to
alleviate confounding by explicitly introducing synthetic predictors that are orthogonal to the
fixed effects predictors. But the RHZ model, by failing to account for the underlying graph,
permits structure in the random effects that corresponds to negative spatial dependence, i.e.
repulsion, which we do not expect to observe in the phenomena to which these models are
typically applied.

We propose a new model that mitigates confounding while including patterns of positive
spatial dependence, i.e. attraction, in the random effects and excluding patterns of repulsion.
We achieve this by exploiting what we believe to be the intrinsic geometry for these models.
The utilization of this geometry permits a natural and dramatic reduction in the dimension of
the random effects, which speeds computation to the extent that our model makes feasible the
analyses of large areal data sets.

Several recent references have focused on dimension reduction for point level, i.e. Gaussian
process-based, spatial models (see, for example, Higdon (2002), Cressie and Johannesson (2008),
Banerjee et al. (2008), Furrer et al. (2006) and Rue and Tjelmeland (2002)). To our knowledge,
this paper is the first to propose a principled approach to dimension reduction for areal models
(while also improving regression inference).

The rest of the paper is organized as follows. In Section 2 we review the traditional SGLMM.
In Section 3 we discuss spatial confounding and review the model that was proposed by Reich
et al. (2006). In Section 4 we present our sparse reparameterization of the areal SGLMM. In
Section 5 we discuss dimension reduction for spatial models. In Section 6 we discuss the results
of applying each of the three models to simulated binary, count and Gaussian spatial data. In
Section 7 we apply our sparse model to a large US infant mortality data set. We conclude with
a discussion.

2. Traditional spatial generalized linear mixed model

Besag et al. (1991) formulated their SGLMM for areal data as follows. Let G = .V , E/ be the
underlying undirected graph, where V ={1, 2, . . . , n} are the vertices (each of which represents
an area of interest) and E are the edges (each of which is a pair, (i, j), that represents the prox-
imity of areas i and j). In what follows we shall represent G by using its adjacency matrix A,
which is the n×n matrix with entries given by diag.A/= 0 and Aij = 1{.i, j/∈E, i #= j}, where
1{·} denotes the indicator function.

Now, let Z = .Z1, . . . , Zn/′ be the random field of interest, where Zi is the random variable
associated with vertex i. Then the first stage of the model is given by

g{E.Zi|β, Wi/}=Xiβ+Wi, .1/

where g is a link function, Xi is the ith row of the design matrix, β is a p-vector of regres-
sion parameters and Wi is a spatial random effect associated with vertex i. As for classical
generalized linear models, different types of data imply different (canonical) choices of the link
function g. For example, the canonical link function for binary spatial data is the logit function,
logit.p/ = log{p=.1 − p/}, for count data it is the natural logarithm function, and for normal
data it is the identity function (Nelder and Wedderburn, 1972). In the last case we have the
spatial linear mixed model, which is of considerable interest (see, for example, Cressie (1993)
and Banerjee et al. (2004)).

The field of random effects, W = .W1, . . . , Wn/′, whereby the traditional model incorporates
spatial dependence, is assumed to follow the so-called intrinsic conditionally auto-regressive or
GMRF prior:
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p.W|τ /∝ τ rank.Q/=2exp
(

− τ

2
W′QW

)
, .2/

where τ is a smoothing parameter and Q=diag.A1/−A is a precision matrix (1 is the conform-
able vector of 1s). Note that Q intuitively incorporates both dependences (Wi and Wj, i #= j,
are independent given their neighbours if and only if Qij =Qji =0 if and only if .i, j/ =∈E) and
prior uncertainty (our uncertainty about Wi is inversely proportional to the degree of vertex i:
Qii =Ai1, where Ai denotes the ith row of A).

As described in the seminal paper by Diggle et al. (1998), an SGLMM for spatial data over
a continuous domain, i.e. for point level data, can be formulated by replacing the GMRF spec-
ification with that of a Gaussian process (also see De Oliveira (2000) and Christensen and
Waagepetersen (2002)). See Banerjee et al. (2004), Rue and Held (2005) or Haran (2012) for an
introduction to the use of Gaussian random field models in spatial statistics.

Since prior (2) is improper (Q is singular) the traditional areal model restricts us to a Bayesian
or restricted maximum likelihood analysis, although it is possible to use a maximum likelihood
approach if a proper GMRF distribution is used instead of the intrinsic GMRF (see Besag and
Kooperberg (1995)). The models that are described in Sections 3 and 4 have conditional auto-
regressions with invertible precision matrices, and so those models lend themselves to both clas-
sical and Bayesian analyses. In the interest of concision we use only Bayesian terminology in what
follows.

3. Spatial confounding

We begin with a discussion of confounding for the areal SGLMM’s closest competitor, the
automodel, because we believe that this offers insight regarding confounding for the SGLMM.
The automodel, a Markov random-field model that incorporates dependence directly rather
than hierarchically, can be specified as

g{E.Zi|β, η, Z−i/}=Xiβ+η
∑

.i,j/∈E
ZÅ

j , .3/

where g (here and in the remainder of the paper) is a canonical link function, Z−i denotes the
field with the ith observation excluded and η is the dependence parameter (η > 0 implies an
attractive model; η < 0 a repulsive model). For the so-called uncentred automodel, ZÅ

j = Zj,
whereas ZÅ

j =Zj −µj for the centred automodel, where µj is the independence expectation of
Zj, i.e. µj =E.Zj|β, η =0/=g−1.Xjβ/.

The sum in equation (3) is called the autocovariate. We see that it is a synthetic predictor that
employs only the observations themselves or the observations along with the posited regres-
sion component Xβ of the model. The centred form of the autocovariate leads easily to an
interpretation of the dependence parameter: η measures the ‘reactivity’ of an observation to
its neighbours, conditional on the hypothesized regression component. This interpretation of η
lends β their desired interpretation as regression parameters. Put another way, the purpose of
the centred autocovariate is to fit small-scale structure in the data, by which we mean structure
that is residual to the large-scale structure that is represented by Xβ. Evidently the centred
autocovariate is well suited to this role, since η tends to be at most weakly correlated with β.

The uncentred automodel, in contrast, exhibits both conceptual and spatial confounding.
It is not clear how we should interpret the uncentred autocovariate, and so η and β are also
difficult to interpret. Moreover, η and β tend to be strongly correlated for the uncentred model.
(See Caragea and Kaiser (2009) for a treatment of confounding in the context of the autologistic
model.)
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Reich et al. (2006) employed a reparameterization to show that the traditional SGLMM, like
the uncentred automodel, is confounded. More specifically, they showed that introduction of
the random effects can inflate the variance of the posterior distribution of β. This is because
the traditional model implicitly contains predictors that are collinear with X, and it is this col-
linearity that causes the variance inflation. To see this, let P be the orthogonal projection onto
C.X/, i.e.

P=X.X′X/−1X′,

and let P⊥ be the projection onto C.X/’s orthogonal complement: P⊥ = I −P. Now, spectrally
decompose these operators to acquire orthogonal bases, Kn×p and Ln×.n−p/, for C.X/ and
C.X/⊥ respectively. These bases allow us to rewrite equation (1) as

g{E.Zi|β, Wi/}=Xiβ+Wi =Xiβ+Kiγ +Liδ,

where γ and δ are random coefficients. This form exposes the source of the spatial confounding:
K and X have the same column space.

Since the offending predictors K have no scientific meaning, Reich et al. (2006) suggested that
they be deleted from the model. Setting γ =0 leads to the following specification. For the first
stage we have

g{E.Zi|β, δ/}=Xiβ+Liδ:

And the prior for the random effects, δ, is now

p.δ|τ /∝ τ .n−p/=2 exp
(

− τ

2
δ′QRδ

)
,

where QR =L′QL.
Reich et al. (2006) referred to this as smoothing orthogonal to the fixed effects, and they

showed that their model does, in principle, address the confounding of the traditional model.
More specifically, adding this restricted conditional auto-regression to the non-spatial model
adjusts, but does not inflate, the variance of β’s posterior. We also note that Reich et al. (2006)
reduced slightly the number of model parameters, from n+p+1 to n+1.

The traditional SGLMM and RHZ model take essentially the same approach as the auto-
model in the sense that all these models augment the linear predictor with synthetic predictors.
The traditional model can be considered to employ implicitly the synthetic predictors K and L,
and the RHZ model explicitly employs L. The traditional SGLMM is analogous to the uncen-
tred automodel in that both models introduce predictors—K and the uncentred autocovariate,
respectively—that cause spatial confounding and thus render β uninterpretable. And the RHZ
model is analogous to the centred automodel in that both models introduce predictors that are
designed to fit only residual structure in the data.

4. Sparse reparameterization of the areal spatial generalized linear mixed model

Although the synthetic predictors for the RHZ model are readily interpreted, receiving their
interpretation from the theory of linear models, they do not permit parsimonious fitting of the
residual clustering that arises because of spatial dependence. This is because the geometry corre-
sponding to the operator P⊥ neglects the underlying graph G. In this section we reparameterize
the areal SGLMM by using an alternative operator that captures the intrinsic geometry of these
models. The random effects for our new model
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(a) include patterns corresponding to positive spatial dependence only, i.e. repulsive patterns
are excluded, and

(b) have dimension much smaller than n.

In an attempt to reveal the structure of missing spatial covariates, Griffith (2003) augmented
a generalized linear model with selected eigenvectors of .I −11′=n/A.I −11′=n/, where I is the
n × n identity matrix and 1 is the n-vector of 1s. This operator appears in the numerator of
Moran’s I -statistic,

I.A/= n

1′A1
Z′.I −11′=n/A.I −11′=n/Z

Z′.I −11′=n/Z
,

which is a popular non-parametric measure of spatial dependence (Moran, 1950). We see that
I.A/ is a scaled ratio of quadratic forms in e=Z− Z̄1. The numerator of the ratio is the squared
length of e in the elliptical space corresponding to A, whereas the denominator is the squared
length of e in a spherical space.

Since we are interested not in missing covariates but in smoothing orthogonal to X (which
may or may not contain 1), we replace I−11′=n with P⊥. The resulting operator, P⊥AP⊥, which
we call the Moran operator for X with respect to G, appears in the numerator of a generalized
form of Moran’s I :

IX.A/= n

1′A1
Z′P⊥AP⊥Z

Z′P⊥Z
:

Boots and Tiefelsdorf (2000) showed that

(a) the (standardized) spectrum of a Moran operator comprises the possible values for the
corresponding IX.A/ and

(b) the eigenvectors comprise all possible mutually distinct patterns of clustering residual to
X and accounting for G.

The positive and negative eigenvalues correspond respectively to varying degrees of positive and
negative spatial dependence, and the eigenvectors associated with a given eigenvalue (λi, say)
are the patterns of spatial clustering that data exhibit when the dependence between them is of
degree λi.

In the language of harmonic analysis (Katznelson, 2004), one might say that the residual (to
X) of a data set on G is a noisy superposition of basic waves, or harmonics. The harmonics are
the eigenvectors of the Moran operator. The harmonics that correspond to positive frequencies
(eigenvalues) are those harmonics that could arise under positive spatial dependence, whereas
the harmonics that correspond to negative or zero frequencies are those that could arise under
negative spatial dependence or independence respectively. Since we expect the typical areal data
set to have arisen under positive spatial dependence, the residual of such a data set must be a
superposition of positive harmonics only, in which case the residual has an entirely consonant
‘sound’. Residual spatial repulsion, in contrast, would have a dissonant sound.

To illustrate the appropriateness of the Moran basis for parsimoniously fitting residual spatial
clustering, we consider the 30×30 square lattice and X= [x y], where the ith row of the design
matrix contains the x- and y-co-ordinates of the ith lattice point, with co-ordinates restricted
to the unit square. The panels of Fig. 1 show eigenvectors 7, 13 and 42 of the RHZ model basis
(L7, L13, L42) and of the Moran basis (M7, M13, M42). Each panel displays its eigenvector as a
‘map’ by associating the ith component of the vector with the spatial location .xi, yi/ of the ith
lattice point. We note that M7, M13 and M42 are associated with eigenvalues 0.995, 0.970 and
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0.868 respectively, which implies that these eigenvectors correspond to strong positive spatial
dependence.

We chose eigenvectors 7, 13 and 42 at random. For the RHZ model, these three eigenvectors
are as good as any other three because all eigenvectors of P⊥ look essentially the same. Each
vector of the RHZ basis is relatively flat, with the flatness occasionally broken by a very local-
ized spike or dip. This blandness of the RHZ basis is reflected in the spectrum of P⊥, which
is not useful for selecting one eigenvector as being more relevant than another—since P⊥ is a
projection, all eigenvalues are 0 or 1. The chosen vectors of the Moran basis, in contrast, show
smooth patterns of spatial variation at various scales. By contrast, Moran eigenvectors that
correspond to negative eigenvalues exhibit rough patterns of spatial variation. In either case,
the magnitude of the eigenvalue that is associated with a given eigenvector indicates the scale
of the eigenvector’s spatial pattern.

We henceforth assume that the matrix M contains the first q(n eigenvectors of the Moran
operator. Since the spatial analyst typically expects neighbouring observations to be similar,
only the smooth harmonics are of interest here, and so we assume that λq>0. (This assumption
may not be appropriate in other settings, e.g. where one might expect to see residual roughening.
We return to this issue in the final section of the paper.) This means that we can discard at least
half of the eigenvectors in many cases, and our simulated examples will show that a much greater
reduction is often possible.

Replacing L with M in the RHZ model gives, for the first stage,

g{E.Zi|β, δS/}=Xiβ+MiδS:

And the prior for the random effects is now

p.δS|τ /∝ τq=2 exp
(

− τ

2
δ′

SQSδS

)
,

where QS =M′QM. This implies p+q+1 model parameters.
It would be difficult, perhaps impossible, to provide an intuitive conditional interpretation of

QS (or QR), and we feel that such an interpretation would probably be misleading regarding the
marginal dependence structure. This is because the typical (a priori) interpretations provided
for the traditional conditionally auto-regressive models are conditional interpretations that are
known to be misleading. The assumption is that those models imply positive spatial dependence
between any pair of observations and that the dependence behaves in an intuitive fashion. But
Wall (2004) showed that this is not so, and Assunção and Krainski (2009) recently showed why
it is not so: the a priori covariance structure of the proper conditional auto-regression and the
a posteriori covariance structure of the intrinsic conditional auto-regression both depend, in a
rather complicated way, on the overall structure of G. Hence, we feel that relying on a priori
intuition is misguided for these models, and so we instead focus on the dependence structure of
the posterior distribution, which can be interpreted as residual structure in the spatial field.

This sparse model is more closely analogous to the centred automodel than is the RHZ model.
The uncentred automodel accounts for the underlying graph, since the uncentred autocovariate
is a sum over neighbours, but does not fit structure residual to X. The RHZ model accounts
for X but not for the underlying graph. Both the centred automodel and our sparse SGLMM
account for X and for the underlying graph. Table 1 compares and contrasts the five models
that are treated here.

A referee pointed out that fitting the RHZ and sparse models as specified above may not
yield a posteriori uncorrelated fixed and random effects unless we adjust for the link function.
Although it is true that a non-linear link function does induce some collinearity between X and
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Fig. 1. Eigenvectors 7, 13 and 42 from the RHZ and Moran bases (the Moran basis appears to be an appro-
priate basis for parsimoniously fitting small-scale structure): (a) L7I (b) L13I (c) L42I (d) M7I (e) M13I (f) M42
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Table 1. Comparing and contrasting various spatial generalized linear models

Model Systematic Confounded Accounts
distortion for G
of mean

Uncentred automodel η
∑

.i,j/∈E Zj Yes Yes
Traditional SGLMM Kiγ +Liδ Yes No
RHZ SGLMM Liδ No No
Centred automodel η

∑
.i,j/∈E.Zj −µj/ No Yes

Sparse SGLMM MiδS No Yes

L (or M), we found β and δ (or δS) to be approximately a posteriori uncorrelated for every one
of our more than 100 simulated data sets.

We note that another popular measure of spatial dependence is Geary’s C, which uses the
graph Laplacian Q in place of A (Geary, 1954). Geary’s C is the spatial analogue of the well-
known Durbin–Watson statistic for measuring auto-correlation in the residuals from a time
series regression (Durbin and Watson, 1950). More specifically, the Durbin–Watson statis-
tic is similar to Geary’s C for a path graph (where adjacency is in time rather than space).
Moran’s I corresponds to a product moment formulation, and Geary’s C to a squared difference
formulation. The eigensystem of P⊥QP⊥ is a viable alternative to that of P⊥AP⊥ for the current
application, and perhaps other matrix representations of G would also provide suitable eigen-
systems. We chose A because the spectrum of a Moran operator is particularly easy to interpret.

5. Dimension reduction for spatial models

Fitting a Gaussian process model like that mentioned in Section 2 requires the repeated eval-
uation of expressions involving the inverse of the covariance matrix H.φ/, where φ are the
parameters of the spatial covariance function. The customary approach to this problem is to
avoid inversion in favour of Cholesky decomposition of H followed by a linear solve. Since H
is typically dense, its Cholesky decomposition is in O.n3/, and so the time complexity of the
overall fitting algorithm is in O.n3/. This considerable computational expense makes the anal-
yses of large point level data sets time consuming or infeasible. Consequently, efforts to reduce
the computational burden have resulted in an extensive literature detailing many approaches,
e.g. process convolution (Higdon, 2002), fixed rank kriging (Cressie and Johannesson, 2008),
Gaussian predictive process models (Banerjee et al., 2008), covariance tapering (Furrer et al.,
2006) and approximation by a GMRF (Rue and Tjelmeland, 2002).

Fitting an areal mixed model can also require expensive matrix operations. It is well known
that a univariate Metropolis–Hastings algorithm for sampling from the posterior distribution
of W leads to a slow mixing Markov chain because the components of W exhibit strong
a posteriori dependence. This has led to various approaches that involve updating the random
effects in a block(s). Constructing proposals for these updates is challenging, and the improved
mixing comes at the cost of increased running time per iteration (see, for instance, Knorr-Held
and Rue (2002), Haran et al. (2003) and Haran and Tierney (2010)).

The random effects for the RHZ model and for our sparse model, in contrast, are practically a
posteriori uncorrelated. This means that we can use a spherical normal proposal for the random
effects, which is very efficient computationally. Thus the computational crux of fitting the RHZ
or sparse model is respectively the evaluation of the quadratic form δ′QRδ or δ′

SQSδS. This oper-
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ation has time complexity O.n2/ for the RHZ model, which is sufficient to discourage or prevent
the application of the model to large data sets. As we shall show in the next section, evaluation
of δ′

SQSδS can be O.1/, which renders our sparse model applicable to even very large data sets.

6. Simulated application

We applied the classical generalized linear model and the three spatial models to binary, count
and normal data simulated from the sparse model. The underlying graph for the binary and
count data was the 30×30 lattice, and we restricted the co-ordinates of the vertices to the unit
square. We chose for our design matrix X= [x y], where x= .x1, . . . , x900/′ and y= .y1, . . . , y900/′

are the x- and y-co-ordinates of the vertices, and we let β= .1, 1/′. A level plot of this large-scale
structure, Xβ= .x1 +y1, . . . , x900 +y900/′, is shown in Fig. 2.

Fig. 3 shows the standardized eigenvalues for the 30×30 lattice. Since over half of the values
are non-positive, we chose to use only the first 400 eigenvectors to simulate data for our study,
i.e. dim.δS/ = 400 and M is 900 × 400. The horizontal grey line marks the 400th eigenvalue,
which equals 0.05.

Fig. 2. Large-scale structure Xβ for our simulation study

Fig. 3. Standardized eigenvalues for the 30!30 lattice
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We applied all three spatial models in a Bayesian setting. It is customary to put a flat prior or
diffuse spherical normal prior on β. We assumed that β∼N .0, 100I/. The choice of a prior for τ
has been the subject of debate. Kelsall and Wakefield (1999) recommended a gamma prior with
shape parameter 0.5 and scale parameter 2000. This prior is appealing because it corresponds
to the prior belief that the fixed effects are sufficient to explain the data (since a large value for
τ implies small variances for the random effects) and because it does not produce artefactual
spatial structure in the posterior.

To ensure that the Monte Carlo standard errors were sufficiently small, we simulated sam-
ple paths of length 2 million in all cases (Flegal et al., 2008; Jones et al., 2006). We fit the
SGLMMs by using Metropolis–Hastings random-walk updates and/or Gibbs updates. For the
normal data we used Gibbs updates for all parameters, and we used a Gibbs update for τ for all
three types of data. For the binary and count data we updated β by using a random walk with
proposal β.j+1/ ∼ N .β.j/, V̂/, where V̂ is the estimated asymptotic covariance matrix from a
classical generalized linear model fit. We updated W by using a univariate random walk with
normal proposals. And we updated each of δ and δS by using a multivariate random walk
with a spherical normal proposal.

6.1. Binary data
We created a binary data set by first setting τ = 1 and simulating random effects according to
δS ∼N .0, Q−1

S /. Then we simulated independent observations according to Z|δS ∼B.p/, where
B denotes a Bernoulli random variable and p = exp.x + y + MδS/={1 + exp.x + y + MδS/} is
the vector of true probabilities.

We fitted the simulated data set by using a non-spatial model, i.e. the standard logistic model,
the centred autologistic model, the traditional SGLMM, the RHZ model and our sparse model
with varying degrees of sparsity—400 eigenvectors (the true model), 200 eigenvectors, 100, 50
and 25. The study results are shown in Table 2, and Fig. 4 illustrates the inference for β with
boxplots.

We see that the RHZ model and the true model produced approximately the same inference
for these data. This is not surprising since the RHZ model can also fit residual structure and
has random effects that essentially ‘contain’ the random effects for our sparse model, i.e. Lδ can
accommodate any structure that is exhibited by MδS. The traditional SGLMM, in contrast,
gave a rather poor point estimate of β along with confidence intervals that are over four times
as wide as those provided by the other SGLMMs.

Table 2. Results of our analyses of a data set simulated from the sparse SGLMM with Bernoulli first stage†

Model Dimension β̂1 CI(β1) β̂2 CI(β2) τ̂ CI(τ) ‖p− p̂‖ Time
(min)

Non-spatial — 0.822 (0.445, 1.199) 0.852 (0.475, 1.230) — — 4.576 —
Autologistic — 0.930 (0.446, 1.397) 0.915 (0.448, 1.367) — — 3.876 20
Traditional 900 2.149 (0.254, 4.107) 2.218 (0.391, 4.132) 2.803 (0.287, 6.729) 3.255 2455
RHZ 898 1.079 (0.626, 1.538) 0.969 (0.536, 1.410) 0.949 (0.481, 1.482) 3.263 1640
Sparse 400 1.013 (0.569, 1.465) 0.946 (0.520, 1.382) 1.425 (0.355, 2.477) 3.174 285
Sparse 200 1.014 (0.582, 1.452) 0.937 (0.519, 1.359) 1.052 (0.365, 1.872) 3.175 167
Sparse 100 0.997 (0.566, 1.426) 0.923 (0.510, 1.342) 0.935 (0.339, 1.724) 3.201 80
Sparse 50 0.982 (0.562, 1.403) 0.900 (0.495, 1.304) 0.945 (0.317, 1.751) 3.295 49
Sparse 25 0.964 (0.552, 1.377) 0.897 (0.501, 1.301) 0.867 (0.225, 1.699) 3.543 37

†Here, and in Tables 4 and 5, ‘traditional’ refers to the traditional SGLMM.
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(a) (b)

Fig. 4. Boxplots illustrating inference for β for the simulated binary data: (a) β1I (b) β2

(a) (b)

Fig. 5. Boxplots illustrating the effect of increasing sparsity on regression inference for the binary data:
(a) β1I (b) β2

The boxplots in Fig. 5 and the level plots in Fig. 6 show the effect of increasing sparsity
on regression inference and on fit respectively. The inference and fit that are provided by our
model did not suffer appreciably until the number of eigenvectors had been reduced to 25, which
represents a 97% reduction in the number of parameters relative to the traditional and RHZ
models.

Fig. 7 shows the distributions of the estimated posterior correlations between the random
effects for the three SGLMMs. We see that the random effects for the RHZ model and for
our sparse model are at most weakly correlated, whereas the random effects for the traditional
model are often strongly dependent. This is why spherical normal proposals are sufficient for δ
and δS.

To compare the performance of the three mixed models more throughly, we applied the mod-
els to 100 simulated binary data sets. The results are shown in Table 3. We see that the variance
inflation caused by the traditional SGLMM was so large as to result in large type II error rates.
Indeed, almost all of the 95% highest posterior density intervals covered 0. The RHZ and sparse
models, in contrast, performed comparably and reliably.
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Table 3. Results of applying the traditional, RHZ and sparse
models to 100 simulated binary data sets†

Model Results for β1 Results for β2

Coverage Type II Coverage Type II
rate (%) rate (%) rate (%) rate (%)

Traditional 94±2 83±4 95±2 82±4
RHZ 95±2 0 97±2 0
Sparse 95±2 0 93±3 0

†The sparse model was applied with q=50.

6.2. Count data
We created a count data set by first simulating random effects according to δS ∼N{0, .3QS/−1}
and then simulating independent observations according to Z|δS ∼P.λ/, where P denotes a
Poisson random variable and λ= exp.x +y +MδS/ is the vector of true rates.

The study results for the count data are shown in Table 4. The sparse and RHZ models once
again produced comparable inference. The traditional SGLMM produced a good point estimate
of β for this data set but once again gave much wider intervals than the other models (Fig. 8).

6.3. Normal data
For the normal data we used the 20 × 20 lattice with the co-ordinates of the vertices again
restricted to the unit square, and we used the first 180 eigenvectors of the corresponding
Moran operator. We simulated random effects according to δS ∼ N .0, Q−1

S / and then simu-
lated observations according to Z|δS ∼N .µ=x +y +MδS, σ2I/, where σ2 =1.

The study results for these data are shown in Table 5. The RHZ and sparse models gave
narrower intervals than the ordinary linear model because the latter model overestimated σ2

(Fig. 9). For this data set the traditional SGLMM gave a poor estimate of β and inflated the
variance so much as to cause a type II error. We note that the running times for this study were
much longer than they would have been for binary and count data sets of the same size because
we did a Gibbs update of the random effects for the normal data, which requires an expensive
Cholesky decomposition.

6.4. On further dimension reduction
We conducted a more extensive simulation study with the aim of providing a heuristic for unsu-
pervised dimension reduction, i.e. dimension reduction that does not employ the data to be
analysed. For this study we used the 50 × 50 lattice, which is large but not so large as to make
fitting the true model infeasible. We used the same regression component as before, i.e. X= [x y]
and β = .1, 1/′, and simulated binary data sets for four values of the smoothing parameter τ :
0.5, 1, 2 and 4. We used the first 1100 eigenvectors of the Moran operator, which correspond to
standardized eigenvalues greater than 0.06 and thus practically exhaust the patterns of positive
dependence for this scenario. We then fitted the true model and four sparser models to the
simulated data. The number of random effects for the sparser models were 625 (the upper
quartile of the eigenvalues), 265 (standardized eigenvalues greater than 0.7), 100 and 50. The
last two of these were chosen with the hope of recommending a small fixed dimension for the
random effects.
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Fig. 7. Posterior correlations between the random effects for the three SGLMMs: , traditional; ,
RHZ; , sparse

Table 4. Results of our analyses of a data set simulated from the sparse SGLMM with Poisson first stage

Model Dimension β̂1 CI(β1) β̂2 CI(β2) τ̂ CI(τ) ‖λ− λ̂‖ Time
(min)

Non-spatial — 1.108 (0.989, 1.226) 1.179 (1.061, 1.297) — — 53.898 —
Traditional 900 1.007 (0.073, 1.913) 1.056 (0.117, 1.986) 5.141 (3.469, 6.952) 26.039 2275
RHZ 898 0.934 (0.816, 1.051) 1.092 (0.975, 1.210) 4.978 (2.916, 7.324) 26.172 1864
Sparse 400 0.942 (0.824, 1.060) 1.101 (0.986, 1.215) 4.499 (2.873, 6.402) 24.379 485

(a) (b)

Fig. 8. Boxplots illustrating inference for β for the simulated count data: (a) β1I (b) β2
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(a) (b)

Fig. 9. Boxplots illustrating inference for β for the simulated Gaussian data: (a) β1I (b) β2

Table 6. Effect of various levels of sparsity, for simulated binary data with τ D0:5, 1, 2, 4

τ Dimension β̂1 CI(β1) β̂2 CI(β2) τ̂ CI(τ) ‖p− p̂‖ Time

0.5 1100 0.862 (0.581, 1.147) 1.166 (0.865, 1.463) 0.665 (0.439, 0.912) 6.379 5159
625 0.869 (0.592, 1.147) 1.114 (0.828, 1.402) 0.617 (0.372, 0.915) 6.521 1836
265 0.857 (0.588, 1.127) 1.085 (0.805, 1.367) 0.512 (0.311, 0.720) 6.877 597
100 0.852 (0.588, 1.117) 1.035 (0.766, 1.307) 0.464 (0.253, 0.676) 7.424 260

50 0.832 (0.571, 1.092) 1.023 (0.757, 1.291) 0.410 (0.206, 0.621) 7.853 113
1 1100 1.125 (0.870, 1.380) 0.992 (0.743, 1.251) 0.930 (0.500, 1.319) 5.205 6067

625 1.097 (0.847, 1.344) 0.971 (0.724, 1.221) 1.056 (0.585, 1.687) 5.294 1666
265 1.086 (0.840, 1.337) 0.962 (0.715, 1.212) 0.793 (0.404, 1.198) 5.418 579
100 1.050 (0.809, 1.293) 0.924 (0.683, 1.165) 1.141 (0.533, 1.865) 5.787 169

50 1.037 (0.796, 1.275) 0.920 (0.679, 1.161) 1.031 (0.435, 1.726) 6.005 109
2 1100 1.046 (0.800, 1.293) 0.988 (0.739, 1.239) 2.234 (0.676, 3.789) 4.134 4469

625 1.046 (0.805, 1.291) 0.992 (0.743, 1.237) 1.701 (0.856, 2.715) 4.098 1926
265 1.034 (0.793, 1.276) 0.990 (0.744, 1.238) 1.507 (0.548, 2.723) 4.116 552
100 1.018 (0.780, 1.254) 0.966 (0.726, 1.210) 2.031 (0.616, 4.163) 4.230 184

50 1.012 (0.779, 1.250) 0.960 (0.721, 1.202) 2.478 (0.465, 5.205) 4.392 131
4 1100 0.978 (0.743, 1.214) 1.173 (0.934, 1.411) 4.530 (1.192, 6.581) 3.238 4698

625 0.986 (0.750, 1.224) 1.142 (0.903, 1.380) 3.470 (1.246, 7.501) 3.417 2316
265 0.972 (0.733, 1.205) 1.133 (0.898, 1.374) 2.839 (1.103, 5.186) 3.506 546
100 0.957 (0.725, 1.195) 1.126 (0.886, 1.363) 2.639 (0.935, 4.939) 3.567 249

50 0.951 (0.716, 1.185) 1.122 (0.885, 1.360) 2.296 (0.697, 4.580) 3.652 155

The results of the study are shown in Table 6 and Fig. 10. Evidently, a very dramatic reduc-
tion in dimension comes at little cost to regression inference. In fact, since β1 are β2 are nega-
tively correlated in this scenario, greater dimension reduction resulted in a better point estimate
for β in many cases. And even using a mere 50 eigenvectors did not result in a large relo-
cation of any highest posterior density interval. Hence, 50–100 eigenvectors may suffice for
most analyses, which would remove evaluation of the above-mentioned quadratic form as the
chief computational burden in fitting the model. Should one wish to be more conservative, we
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recommend the use of all eigenvectors corresponding to standardized eigenvalues that are
greater than 0.7. For a square lattice this means using approximately 10% of the eigenvectors.

For a more principled approach to further dimension reduction, we recommend fitting a
sequence of models and using the deviance information criterion (DIC) (Spiegelhalter et al.,
2002) to choose between them. For each of the four data sets just described, the model with
q = 50 yielded the smallest value of the DIC. And, for the simulated binary data analysed in
Section 6.1, the model with q = 25 yielded the smallest value for the DIC. These results lend
further support to our claim that 50–100 eigenvectors may suffice for most analyses, but this
DIC-based approach to selecting q is obviously more defensible and is only slightly more bur-
densome computationally.

7. Application to US infant mortality data

The plot in Fig. 11 shows infant mortality data for 3071 US counties. Each shaded circle rep-
resents a ratio of deaths to births, i.e. an empirical infant mortality rate, for a given county.
The data were obtained from the 2008 area resource file, which is a county level database
maintained by the Bureau of Health Professions, Health Resources and Services Administra-
tion, US Department of Health and Human Services. Specifically, three variables were extracted
from the area resource file: the 3-year (2002–2004) average number of infant deaths before the
first birthday, the 3-year average number of live births and the 3-year average number of low
birth weight infants.

To these data we fit our sparse Poisson SGLMM with

Fig. 11. Plot of infant mortality rates for 3071 counties of the contiguous USA: the circle for a given county
represents that county’s ratio of deaths to births, where births and deaths were averaged over the 3-year
period 2002–2004; a darker circle indicates a higher rate
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Table 7. Results of fitting model (4) to the infant mortality data

Predictor Parameter Estimate CI

Intercept β0 −5.430 (−5.616, −5.246)
Low birth weight β1 8.777 (7.540, 10.032)
Black β2 0.00423 (0.00288, 0.00556)
Hisp β3 −0.00379 (−0.00488, −0.00270)
Gini β4 −0.555 (−0.977, −0.125)
aff β5 −0.0757 (−0.0877, −0.0638)
stab β6 −0.0285 (−0.0433, −0.0138)
— τ 9.540 (3.870, 16.459)

E.deathsi|β, δS/=birthsi exp.β0 +β1 lowi +β2 blacki +β3 Hispi +β4 Ginii +β5 aff i

+β6 stabi +MiδS/, .4/

where deaths is the number of infant deaths, births is the number of live births, low is the
rate of low birth weight, black is the percentage of black residents (according to the 2000
US census), Hisp is the percentage of Hispanic residents (2000 US census), Gini is the Gini
coefficient, which is a measure of income inequality (Gini, 1921), aff is a composite score
of social affluence (Yang et al., 2009) and stab is residential stability, which is an average
z-score of two variables from the 2000 US census.

We note that M in equation (4) contains eigenvectors not of P⊥AP⊥ but of P⊥
w AP⊥

w , where
P⊥

w = I − W1=2X.X′WX/−1X′W1=2. The matrix W is diagonal with Wii a weight for the ith
observation (Reich et al., 2006).

We chose to fit models with q equal to 25, 50, 100 and 200. Since we fit the four models
simultaneously, the analysis took just 8.5 h, which was the time required to fit the model with
q=200. The model for q=50 had the smallest value of the DIC. This represents a 98% reduction
of the model dimension.

Fitting the RHZ model to these data took approximately 14 days, partly because storing the
sample paths for the 3064 random effects required the use of a 46 Gbyte file-backed matrix
(Kane and Emerson, 2010). If we could have stored all the results in random-access memory,
fitting the RHZ model would have taken approximately 4 days.

Our sparse model and the RHZ model yielded nearly the same inference. The results for the
sparse fit are given in Table 7. We see that all predictors were found to be significant. The poster-
ior mean for τ is much smaller than the prior mean of 1000, which contraindicates a non-spatial
analysis of these data. Moreover, five eigenvectors (all of which were among the first 40) were
found to be significant predictors.

8. Discussion

In this paper we developed a framework for reparameterization of the areal SGLMM. By
accounting appropriately for the covariates of interest, our approach alleviates the spatial con-
founding that plagues the traditional SGLMM. And, by accounting for the underlying graph,
our model includes patterns of positive spatial dependence only, which allows for dramatic
reduction in the dimension of the random effects.

It is conceivable that some data sets, although rare, may exhibit residual patterns of spatial
repulsion, in which case prediction would suffer for such a data set if one applied our sparse
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model with λq >0. But this scenario is easy to avoid—simply select eigenvectors from both ends
of the spectrum. If we desire dim(δS/=q, we could choose the first q=2 eigenvectors and the last
q=2 eigenvectors, for example. We could fit a sequence of models corresponding to a sequence
of values for q and use DIC to choose the ‘right’ model. This symmetric scheme would still
result in a considerable dimension reduction, but the reduction would clearly not be as dramatic
as that provided by the scheme that employs only the positive end of the spectrum. It is easy,
though, to envision a more sophisticated scheme that would achieve the optimal reduction (for
a typical data set) by eventually discarding all the repulsive eigenvectors.

We studied the performance of our approach for three of the most commonly used first-
stage models: Bernoulli, Poisson and Gaussian. In all three cases our approach resulted in
better regression inference and in considerable gains in the computational efficiency of the
Markov chain Monte Carlo algorithms used for inference. A follow-up study indicates that
a small fixed number of random effects is sufficient for all data sets. More conservatively,
our sparse model appears to require no more than 0.1n random effects to perform well with
respect to both regression and prediction. The resulting gain in computational efficiency will
permit the relatively rapid analysis of data sets that were once considered too large for the areal
SGLMM.

Reich et al. (2006) noted that their approach is valid not only for the intrinsic conditionally
auto-regressive model but also for the areal model that uses a proper conditional auto-regres-
sion and for the point level model that uses a Gaussian process. Consequently, our approach
also carries over to these cases. But the precision matrix of the proper conditional auto-regres-
sion and the covariance matrix of the Gaussian process both involve additional parameters.
Because these parameters enter the computations in a complicated way, restricting the random
effects (in a naive way, at least) will improve regression inference but will not permit such a
dramatic gain in computational efficiency. Extending our framework to handle these models in
a computationally efficient way will be the focus of a future investigation.
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