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Abstract

Bayesian analyses frequently employ two-stage hierarchical models involving two-variance parameters: one controlling measure-
ment error and the other controlling the degree of smoothing implied by the model’s higher level. These analyses can be hampered
by poorly identified variances which may lead to difficulty in computing and in choosing reference priors for these parameters.
In this paper, we introduce the class of two-variance hierarchical linear models and characterize the aspects of these models that
lead to well-identified or poorly identified variances. These ideas are illustrated with a spatial analysis of a periodontal data set
and examined in some generality for specific two-variance models including the conditionally autoregressive (CAR) and one-way
random effect models. We also connect this theory with other constrained regression methods and suggest a diagnostic that can be
used to search for missing spatially varying fixed effects in the CAR model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Advances in computing allow Bayesian analyses of complicated hierarchical models with relative ease. However,
these powerful tools must be used cautiously; the posterior for, say, a richly parameterized model may be weakly
identified, particularly for variance parameters. This may lead to computational problems and highlights the difficulty
of choosing reference priors for these parameters (Gelman, 2005). The present paper develops some theory and tools
for analyzing identification for the simplest interesting class of such models, those with two unknown variances. This
includes scatterplot and lattice smoothers and random-intercept models, among others.

To motivate this problem, consider the periodontal data in Fig. 1a from one subject in a clinical trial of a new
periodontitis treatment, conducted at the University of Minnesota’s Dental School (Shievitz, 1997). One of the trial’s
outcome measures was attachment loss (AL), the distance down a tooth’s root (in millimeters) that is no longer attached
to the surrounding bone by periodontal ligament. AL is measured at six locations on each tooth, for a total of N = 168
locations, and is used to quantify cumulative damage to a subject’s periodontium. The first two rows of Fig. 1a plot
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Fig. 1. Periodontal example: raw data and posterior means without (panel (a)) and with (panel (b)) terms with outlying ri set to fixed effects. (a)
Usual CAR fit. (b) Fit with two di set to zero.

AL measured along the lingual (cheek side) and buccal (tongue side) strips of locations, respectively, of the maxilla
(upper jaw), while the final two rows plot the AL measured at mandibular (lower jaw) locations. Calibration studies
commonly show that a single AL measurement has an error with standard deviation of roughly 0.75–1 mm. Fig. 1a
shows a severe case of periodontal disease, so measurement error with a 1 mm standard deviation is substantial.

Reich et al. (2007) analyzed AL data using a conditionally autoregressive (CAR) distribution, popularized for
Bayesian disease mapping by Besag et al. (1991). In a map with N regions, suppose each region is associated with an
unknown quantity �1j , j = 1, 2, . . . , N (here location j’s true AL). Let yj be the region j’s observable (measured AL);
assume yj |�1, �2

e is normal with mean �1j and variance �2
e , independent across j. Spatial dependence is introduced

through the prior (or model) on �1 = (�11, . . . , �1N)′. The CAR model with L2 norm (also called a Gaussian Markov
random field) for �1 has improper density

p(�1|�2
s ) ∝ (�2

s )
−(N−G)/2 exp

(
− 1

2�2
s
�′

1Q�1

)
, (1)

where �2
s controls the smoothing induced by this prior, smaller values smoothing more than larger; G is the number

of “islands” in the spatial structure (G = 2 for the periodontal grid since the two jaws are disconnected; Hodges
et al., 2003); and Q is N × N with non-diagonal entries qlj = −1 if regions l and j are neighbors and 0 otherwise, and
diagonal entries qjj equal to the number of region j’s neighbors. This is a multivariate normal kernel, specified by its
precision matrix (1/�2

s )Q instead of the usual covariance matrix.
Fig. 1a plots the posterior mean of �1 (solid lines) for the AL data described above. For this fit, both �2

e and �2
s have

Inverse Gamma(0.01, 0.01) priors and 30,000 samples were drawn using Gibbs sampling. The posterior distribution
of �1 is well identified; the �1j have posterior standard deviations between 0.40 and 0.59 and their posterior means are
smoothed considerably. The variances are also well identified. Fig. 2a is a contour plot of the log marginal posterior of
(�2

e, �
2
s ), with a flat prior on (�2

e, �
2
s ) to emphasize the data’s contribution. However, this model has N observations and

N + 2 unknowns ({�1j }, �2
e, �

2
s ), so it is far from clear why the variances are identified, how the data are informative

about the variances, and how this depends on the spatial structure.
This paper’s objectives are to explain how, in problems like this, the data are informative about the variances and

to determine which features of a model lead to well-identified variances. Section 2 introduces a class of models with
two variances as above: �2

e , which describes measurement error and �2
s , which controls smoothing. Section 2 also

gives a useful decomposition of the posterior distribution and derives the marginal posteriors of (�2
e, �

2
s ) and the ratio

of variances r = �2
s /�

2
e , which controls the degree of smoothing. The marginal posterior of r suggests a diagnostic

that can be used to search for contrasts in the data that are outlying with regard to the information they provide about
(�2

e, �
2
s ). Section 3 explores identification for two common two-variance models, the one-way random effects and CAR

models, and applies the theory of Section 2 to the periodontal example. Section 4 concludes by connecting this theory
to constrained regression methods such as the Lasso, among other things.
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Fig. 2. Joint log posterior (scaled to be zero at the posterior mode) of (�2
e ,�2

s ) assuming flat priors for the variances. (a) log[p(�2
e ,�|y)]. (b)

Unidentified modal lines of the mixed terms, each evaluated at its own posterior mode �2
s = di �̂

2
i − di�2

e .

2. The general two-variance model

The general two-variance model has the form

y|�1, �
2
e ∼ N

(
X1�1,

1

�2
e
IN

)
,

�1|�2, �
2
s ∼ N

(
Z�2,

1

�2
s
Q

)
, (2)

where (1/�2
e)IN and (1/�2

s )Q are precision matrices with dimensions N and p, respectively, p is �1’s length and X1’s
rank, Q is assumed known, Z is p × l and �2 is l × 1. A complete Bayesian specification adds priors for �2, �2

e and
�2

s . In this section we assume a flat prior for �2, although in some applications �2 may be fixed, e.g., the CAR model
takes �2 = 0. The variances �2

e and �2
s have inverse gamma priors. (This is, of course, much like the model introduced

in Lindley and Smith, 1972.)
This paper focuses on the marginal posterior of the variances (�2

e, �
2
s ) and of the smoothing parameter r = �2

s /�
2
e .

The next section gives a not-too-intuitive reparameterization of the data-level mean structure X1�1, which simplifies
derivations and is examined at length in Sections 3 and 4. The reparameterization simplifies but does not change the
marginal posterior of (�2

e, �
2
s ).

Everything novel in this problem arises from mean-structure effects in X1�1 that are smoothed or shrunk, so in-
tegrating out the fixed effects �2 simplifies the posteriors of interest. The prior for �1 after integrating out �2 has
mean zero and precision (1/�2

s )(Q − QZ′(Z′QZ)−1Z′Q). Now reparameterize X1�1 to give an orthogonal design
matrix and diagonal prior precision matrix. To do this, let �= (X′

1X1)
−1/2(Q−QZ′(Z′QZ)−1Z′Q)(X′

1X1)
−1/2 have

spectral decomposition �′D� for a p × p orthogonal � and rank c p × p diagonal D with positive diagonal elements
d1 � · · · �dc, and define

X = X1(X
′
1X1)

−1/2�′,
� = �(X′

1X1)
1/2�1. (3)
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Fig. 3. Eigenvectors (columns of X) associated with large, medium, and small eigenvalues of a 14-tooth periodontal grid. Arrows pointing up (down)
represent positive (negative) values; dark shades represent large magnitude and light shades small magnitudes.

This reparameterization depends only on known items. The standardized general two-variance model can then be
written as

y|�, �2
e ∼ N

(
X�,

1

�2
e
IN

)
, (4)

�|�2
s ∼ N

(
0,

1

�2
s
D

)
, (5)

where (1/�2
e)IN and (1/�2

s )D are precisions, X′X is the p × p identity, and D is known. Note that the last G = p − c

coordinates of � have prior precision zero.
At this level of generality, X’s columns and �’s coordinates are rather obscure, but with suitable displays they are

often highly interpretable. For example, Fig. 3 shows four columns of X for a 14-tooth periodontal grid. In order from
Fig. 3a–d, the transformed predictors measure local differences on tooth 2, the effect for a site in a gap between teeth,
and the quadratic and linear trends (averaged across the sides of the jaw), respectively.

The posterior arising from this standardized model, p(�, �2
e, �

2
s |y), is proportional to

(�2
e)

−N/2 exp

(
− (y − X�)′(y − X�)

2�2
e

)
(�2

s )
−c/2 exp

(
−�′D�

2�2
s

)
p(�2

e, �
2
s ), (6)

where p(�2
e, �

2
s ) is the prior on the variances. The posterior can be decomposed into a product of p(�2

e, �
2
s ) and three

terms,

p(�, �2
e, �

2
s |y) ∝ (�2

e)
−(N−p)/2 exp

(
−SSE

2�2
e

)

×
p∏

i=1

[
(�2

e[r/(r + di)])−1/2 exp

(
− (�i − [r/(r + di)]�̂i )

2

2�2
e[r/(r + di)]

)]

×
c∏

i=1

⎡
⎣(�2

e[1 + r/di])−1/2 exp

⎛
⎝− �̂

2
i

2�2
e[1 + r/di]

⎞
⎠
⎤
⎦p(�2

e, �
2
s ), (7)

where �̂=X′y is the maximum likelihood estimator of � ignoring the higher-level structure, SSE = (y −X�̂)′(y −X�̂)

is the usual sum of squared errors, and r = �2
s /�

2
e .
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The first term in (7) involves only �2
e and the usual residual sum of squares of linear model theory. The second term

in (7) is �’s conditional posterior, p(�|�2
e, �

2
s , y). Conditional on (y, �2

e, �
2
s ), the �i have independent normal posteriors

with mean �̂i r/(r +di) and variance �2
er/(r +di). As r decreases toward zero, the factor r/(r +di) shrinks the posterior

mean of �i towards zero and reduces its posterior variance, reducing the effective dimension of �. Hodges and Sargent
(2001) defined � =∑c

i=1 r/(r + di), a scalar between zero and p, as the degrees of freedom in the fitted model’s mean
structure, as implied by the smoothing constant r, with r/(r + di) ∈ [0, 1] being the fraction of a degree of freedom
for the contrast �i . This � is an overall measure of the complexity of the fitted model for fixed r, and grows as

∑c
i=1 di

decreases.
The final term in (7) is �̂’s marginal density given the variances, p(�̂|�2

e, �
2
s ), a function familiar from likelihood

analysis. The G = p − c terms with di = 0 and thus r/(r + di) = 1 contribute to second row, but not to the third row
of (7). For the c terms having di > 0, the �̂i given (�2

e, r) (but not �i) have independent normal distributions with mean
zero and variance �2

e(1 + r/di)��2
e . If the �i do not vary, i.e., �2

s = 0 so r = 0, �̂i has variance �2
e . Integrating out the

unknown �i instead of conditioning on it inflates the variance of �̂i by a factor (1 + r/di).

2.1. The marginal posterior of (�2
e, �

2
s )

Integrating � out of the posterior p(�, �2
e, �

2
s |y) simply removes the second row of (7), leaving

p(�2
e, �

2
s |y) ∝ p(�2

e, �
2
s )(�

2
e)

−(N−p)/2 exp

(
−SSE

2�2
e

) c∏
i=1

(
di

�2
s + di�2

e

)1/2

exp

⎛
⎝− �̂

2
i

2
· di

�2
s + di�2

e

⎞
⎠ . (8)

Leaving aside p(�2
e, �

2
s ), the first row of (8) does not involve �2

s ; we define these to be free terms for �2
e . The terms

in the second row of (8) involve both �2
e and �2

s ; we define them to be mixed terms for �2
e and �2

s . (Reich et al., 2007
used “free terms” and “mixed terms” to refer to analogous free and mixed terms conditional on �.) Of the data set’s
original N observations or “degrees of freedom”, N − p are free terms for �2

e , c are mixed terms for �2
e and �2

s , and
G = p − c have di = 0, that is, their �i has a flat prior and thus provides no marginal information (after integrating
out �i) about the variance parameters. The decomposition in (8) shows that the sufficient statistic for the variances is
(SSE, �̂1, . . . , �̂c) and the design information that determines variance identification is (N − p, d1, . . . , dc).

The ith mixed term in (8) has the form of a gamma density with variate di/(�2
s + di�2

e), shape parameter 3
2 , rate

parameter �̂i/2 and mode 1/�̂
2
i . Since the ith mixed term is a function of �2

e and �2
s only through di/(�2

s + di�2
e),

each mixed term is constant for pairs of (�2
e, �

2
s ) that give the same value of di/(�2

s + di�2
e), so a mixed term cannot

identify both variances. The variances are both identified—that is there is no one-dimensional function g(�2
e, �

2
s ) such

that p(y|�2
e, �

2
s )=p(y|g(�2

e, �
2
s )) for all (y, �2

e, �
2
s )—if and only if there are both free and mixed terms or there is more

than one distinct di .

The ith mixed term is maximized by any (�2
e, �

2
s ) on the line �2

s = di �̂
2
i − di�2

e . The mixed term favors these (�2
e, �

2
s )

but cannot differentiate between any two points on the line. Therefore, we define this as an unidentified modal line
for the ith mixed term. Unidentified modal lines can be used to graphically examine identification of �2

e and �2
s . For

example, Fig. 2b plots these unidentified lines for the periodontal CAR model of Section 1. In the (�2
e, �

2
s ) quarter-plane

with �2
e on the horizontal axis, these sets of points form the vertical line �2

e = SSE/(N − p) for free terms (although

there are no free terms for this model), and for the mixed terms lines with slopes −di and intercepts di �̂
2
i . Note that

only the intercepts, not the slopes, of the unidentified lines depend on �̂i . The location of these modal lines determines
the location of the posterior.

The di also determine whether the ith mixed term is more informative for �2
e or �2

s . Mixed terms with large di give
nearly vertical lines, similar to lines arising from free terms for �2

e . These terms are more informative about �2
e than �2

s
because any segment of an unidentified line spans a wider range of values for �2

s than �2
e . By contrast, mixed terms with

di near zero have nearly horizontal slopes, similar to lines arising from free terms for �2
s (which never actually exist),

so they are more informative about �2
s . Models that give free terms for �2

e or mixed terms with large di , and also give
some terms with small di , provide information about both variances and generally lead to well-identified posteriors.
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2.2. Marginal posterior of r

The variances can also be parameterized as (�2
e, r) where r = �2

s /�
2
e . If �2

e is given an Inverse Gamma(ae/2, be/2)
prior parameterized so E(�2

e) = be/(ae − 2), it can be integrated out of p(�2
e, r|y) leaving the marginal posterior of r,

p(r|y) ∝
[

c∏
i=1

1

�̂2
e(1 + r/di)

]1/2
⎡
⎣1 + 1

�

c∑
i=1

�̂
2
i

�̂2
e(1 + r/di)

⎤
⎦

−(c+�)/2

p(r), (9)

where �=N −p+ae and �̂2
e = (SSE +be)/�. For models with N =p, such as the CAR model of Section 1, �̂2

e =be/ae

is a function only of �2
e’s prior. The likelihood piece of (9) is the marginal density of �̂ given r and SSE, i.e., integrating

out (�, �2
e). It has the form of a multivariate t density with c-dimensional variate (�̂1, . . . , �̂c), � degrees of freedom,

location vector zero and a diagonal scale matrix with diagonal entries �̂2
e(1 + r/di).

Information about r arises, loosely speaking, by comparing the �̂
2
i to �̂2

e . If �̂
2
i is near �̂2

e , the estimated error variance

from �2
e’s free terms, this suggests 1 + r/di is near one and r is near zero. If �̂

2
i is considerably greater than �̂2

e , this
is evidence of variability in the data that cannot be explained by measurement error, and indicates r?0. Conversely,
each di controls the sensitivity of its 1 + r/di to changes in r and thus controls contrast i’s contribution of information
to p(r|y). If di is large, 1 + r/di ≈ 1 for a large range of r, so the ith term of (9) is flat in r except for very large r. As
di is reduced, 1 + r/di becomes more sensitive to changes in r and thus �̂i becomes informative over a wider range of
r. Note that this and other interpretations we give for di are invariant to changes in the data’s scale because di refers to
r = �2

s /�
2
e .

A two-variance model assumes that smoothing in each orthogonal direction is controlled by the same smoothing
parameter, r. Verifying this assumption by visual inspection of the data may be difficult due to the often obscure nature

of the canonical directions. Recalling from (7) that E(�̂
2
i |�2

e, r)=�2
e(1 + r/di), define r̂i by solving �̂

2
i = �̂2

e(1 + r̂i/di),
i.e.,

r̂i = di

⎛
⎝ �̂

2
i

�̂2
e

− 1

⎞
⎠

+
. (10)

This measures the data’s smoothness in the ith direction. Plotting the r̂i is an exploratory tool that can be used for
checking that smoothing in each direction is similar. For known (�2

e, r), �̂i/
√

�2
e(1 + r/di) have independent standard

normal distributions. Although (�2
e, r) is not actually known, to gauge the magnitude of the r̂i , �2

e and r could be
replaced by the posterior medians, �̃2

e and r̃ , and smoothing in the ith direction could be identified as outlying if

|�̂i | > 3
√

�̃2
e(1 + r̃/di) or equivalently

r̂i = di

⎛
⎝ �̂

2
i

�̂2
e

− 1

⎞
⎠

+
> di

(
9�̃2

e(1 + r̃/di)

�̂2
e

− 1

)+
. (11)

If an r̂i exceeds this threshold, the corresponding �i could be given a separate smoothing parameter or smoothing in
that direction could be removed altogether by setting the di to zero. This diagnostic is illustrated in Section 3.2 using
the periodontal data of Section 1.

3. Illustrative special cases

Section 2 showed that the number of free terms and the di capture the design information that determines variance
identification. The number of free terms for �2

e is straightforward: it is the degrees of freedom for error in the usual
linear model (ignoring the higher level structure on �1 or �). However, the di are less obvious. This section describes
model features that give large and small di for the one-way random effect models, the periodontal example of Section
1, and then for CAR models more generally.
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Fig. 4. Identification of the variance components in the one-way random effect model. Panel (a) gives the unidentified modal lines for various
within-group samples sizes n assuming the overall sample size is N = 100, �̂2

e = SSE/(N − p) = 1 and �̂2
s = SSM/(p − 1) = 1. Panel (b) plots the

medians across 1000 data sets, generated assuming N = 100 and �2
e = �2

s = 1, of the posterior standard deviations of �2
e and �2

s and the posterior
correlation between �2

e and �2
s . (a) Unidentified model lines. (b) Medians of the posterior standard deviations of �2

e and �2
s .

3.1. One-way random effect model

The one-way random effect model with p groups and ni observations in group i, n1 � · · · �np, is

ykj |	k, �
2
e ∼ N(	k, �

2
e), j = 1, . . . , nk ,

	k|	, �2
s ∼ N(	, �2

s ), k = 1, . . . , p. (12)

This is a special case of the general two-variance model obtained by setting N =∑p

k=1 nk , �′
1 = (	1, . . . , 	p), �′

2 = 	,
Z = 1p, Q = Ip and

X1 =

⎛
⎜⎜⎝

1n1 0 0 . . . 0
0 1n2 0 . . . 0

...

0 . . . 0 1np

⎞
⎟⎟⎠ .

Both variances are identified if and only if p > 1 and n1 > 1. There are N − p free terms for �2
e and p − 1 mixed terms

for �2
e and �2

s .
The balanced case with n1 = · · · = np ≡ n and N = np has d1 = · · · = dp−1 = 1/n and �1, . . . , �p−1 can be any

orthogonal contrasts in the 	k that sum to zero. The term with di = 0 has �i = (1/
√

p)
∑p

j=1 	j , which represents
the overall mean and provides no information about the variances. Since each di equals 1/n, the mixed terms can be
combined, and the marginal distribution of the variances (8) reduces to

p(�2
e, �

2
s |y) ∝ p(�2

e, �
2
s ) (�2

e)
−(N−p)/2 exp

(
−SSE

2�2
e

)
(�2

s + �2
e/n)−(p−1)/2 exp

(
− SSM

2(�2
s + �2

e/n)

)
, (13)

where SSM =∑p

i−1 (ȳi − ȳ)2. The marginal posterior of the variances can be factored into two pieces: the free terms,
which provide information for only �2

e via SSE, and the mixed terms, which provide information for both �2
s and �2

e
via SSM.

Fig. 4a plots the unidentified modal lines for different n assuming N = 100, �̂2
e = SSE/(N − p) = 1, and �̂2

s =
SSM/(p − 1) = 1. The vertical line �2

e = 1 is the free term’s unidentified modal line and is the same for all n. The
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mixed terms’ unidentifed modal line is �2
s = �̂2

s − �2
e/n. The slope is −1/n, so as n increases the mixed terms more

closely resemble free terms for �2
s and there are essentially a full p − 1 degrees of freedom for estimating �2

s .
To show how the unidentified modal lines relate to the posterior of the variance components, we generate 1000 data

sets assuming N =100 and �2
e =�2

s =1 for various n. Fig. 4b plots the median (over the 1000 data sets) of the posterior
standard deviations of �2

e and �2
s and the correlation between �2

e and �2
s . For n = 4 (N = 100, so p = 25 groups) the

slope of the mixed term is − 1
4 and there is generally a negative posterior correlation between �2

e and �2
s . For large n, the

slope of the mixed terms is near zero and the correlation decreases. Also, for n = 25 the posterior standard deviation
of �2

s is large because there are only p = 4 groups and p − 1 = 3 mixed terms involving �2
s .

As (9) shows, the data provide information about r by comparing the �̂
2
i to �̂2

e . For the balanced design, each

1 + r/di = 1 + rn and
∑p−1

i=1 �̂
2
i = n(p − 1)�̂2

s . The marginal posterior of r thus reduces to

p(r|y) ∝
(

1

1 + rn

)(p−1)/2
(

1 + n(p − 1)�̂2
s

�(1 + rn)�̂2
e

)−(p−1+�)/2

p(r). (14)

The r̂i statistics in (10) measure the data’s smoothness in the ith direction. Because the balanced model has only one
unique di , the terms can be combined to give one r̂i ,

r̂ = 1

n

⎛
⎝∑p−1

i=1 �̂
2
i /(p − 1)

�̂2
e

− 1

⎞
⎠

+
=
(

�̂2
s

�̂2
e

− 1

n

)+
, (15)

which is also r’s posterior mode (ignoring its prior).

3.2. Analysis of periodontal data

As mentioned earlier, Fig. 2a shows a contour plot of the joint log posterior of (�2
e, �

2
s ) modeling one subject’s AL

data with a CAR prior on true AL and a flat prior on (�2
e, �

2
s ). This model has no free terms for �2

e and N − G mixed
terms for �2

e and �2
s , where G is the number of islands in the spatial structure; the G= 2 coordinates of � corresponding

to the average AL of each jaw have prior precision zero and do not contribute to the marginal distribution of (�2
e, �

2
s ).

Both variances are fairly well identified, but �2
e is better identified than �2

s in the sense that the posterior mass is more
concentrated. Fig. 2b plots the unidentified modal lines for the periodontal data. While there are no free terms for either
variance, several terms have large di and thus nearly vertical unidentified lines, resembling free terms for �2

e . Some
lines have small di and thus nearly horizontal unidentified lines, resembling free terms for �2

s .
In the periodontal grid, terms with large di are more informative for �2

e because they measure high-frequency trends
in the data which are implicitly presumed to be “noise”. For a “half-mouth”, a 14-tooth periodontal grid, the largest
distinct eigenvalue, d1=5.56, has multiplicity 12. Fig. 3a shows one of the 12 corresponding eigenvectors (i.e., contrasts
in �1, the true AL). It is non-zero only at locations around the second tooth from the left and contrasts the two sides
of the tooth according to lag-one differences. The eigenvectors having the analogous pattern at each of the 12 interior
teeth are an orthogonal basis for the span of eigenvectors with d1 = 5.56.

Several terms have di near zero. These resemble free terms for �2
s and are more informative about �2

s because they
measure low-frequency trends in the data. Fig. 3c and d show the eigenvectors associated with the two smallest distinct
eigenvalues of a 14-tooth periodontal grid. These two di are associated with the linear and quadratic trends, averaged
over the inner and outer sides (in Fig. 3, the upper and lower sides) of the jaw. The eigenvector in Fig. 3b is associated
with a medium-sized di and will be discussed later.

This data set also gives a nice example of the sometimes non-intuitive way that data determine smoothing. Fig. 1a
plots the raw data and posterior mean of �1 for the AL data set. The posterior mean of �1 is smoothed considerably; the
posterior median of r = �2

s /�
2
e is 0.20. The posterior median of the degrees of freedom � (Hodges and Sargent, 2001)

is 23.5 of a maximum possible 168 coordinates of �1, and the effective model size, pD , is 26.0 (Spiegelhalter et al.,
2002). Fig. 5 plots the r̂i statistics (10) for this model fit. Most of the r̂i are near zero, suggesting that these contrasts
are smooth. A few other terms have r̂i above 10: the two terms with di = 3 have r̂i > 100 and appear to be outliers.
The solid line in Fig. 5 represents the threshold (11) evaluated at the posterior median of (�2

e, �
2
s ) from the fit of

Fig. 1a, (1.25, 0.25). Only the two terms with di = 3 exceed the threshold.
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Fig. 5. Plot of the r̂i for the attachment loss data set. The solid line is the threshold (11) for declaring an r̂i to be outlying.

These outlying r̂i suggest a spatially varying covariate that is not included in the model. Each jaw has one outlying
r̂i and both are associated with the contrast in site means shown in Fig. 3b. The corresponding �̂i are proportional to
the difference between the average observed AL at direct sites (those that do not border an interproximal region) and
the average observed AL at non-direct sites (those that border the interproximal region) for each jaw. This pattern has
also been found in more conventional mixed model analyses (e.g., Roberts, 1999).

Fig. 1b shows the posterior mean of �1 from modeling the two terms with outlying r̂i as fixed effects, by setting their
di to zero in (5). Since the prior in this model is less restrictive, it is not surprising that the measures of effective model
size increase: the posterior median of � increases from 23.5 to 45.6 and the posterior median of pD from 26.0 to 46.8.
Despite the increased complexity, the DIC statistic (Spiegelhalter et al., 2002) prefers this model 139.4–231.6.

It is somewhat surprising that the posterior median of r actually increases from 0.25 to 0.63 after removing the two
terms with the largest r̂i . It seems clear that this happens because removing the r̂i outliers reduced �2

e and increased
�2

s : the posterior median of (�2
e, �

2
s ) changed from (1.25,0.25) to (0.63,0.41). Section 3.3 explores this further.

3.3. General CAR model

The CAR model is a special case of (2) with X1 = IN and Z�2 = 0, i.e., Z is null. Each observation in this model
has its own mean parameter, that is, p = N , leaving no free terms for �2

e , but both variances are identified unless each
island is the same size and its neighborhood structure is saturated (Appendix A.1). However, identification is poor for
some spatial structures.

In the periodontal grid of Section 3.2, the orthogonal contrasts in Fig. 3 having large and small di measured high and
low frequency trends, respectively, providing mainly information about �2

e and �2
s , respectively. Similarly interpretable

contrasts are present in relatively unstructured spatial lattices, like the map of Minnesota’s counties in Fig. 6. Although
we do not analyze data using the Minnesota map, inspecting the eigenstructure of the Minnesota county adjacency
matrix illustrates the types of contrasts generally associated with large and small di . As Fig. 6a shows, the eigenvector
associated with the largest di measures the difference between the counties with largest number of neighbors and their
neighbors (high-frequency contrast), while Fig. 6b shows that the smallest di corresponds to Minnesota’s north/south
gradient (low-frequency contrast).

Because there are no free terms for the CAR model, the di alone determine whether a grid favors identification of �2
e

or �2
s . High-frequency contrasts are always present in a spatial lattice, so there will always be some terms with large di ,

which favor �2
e . Appendix A.2 shows that for any CAR grid, d1, the largest di , is in the interval [mmax + 1, 2 ∗ mmax],

where mi is the number of sites neighboring the ith site and mmax = max(mi), so d1 �3 except for spatial structures
consisting only of “islands” with two connected regions.
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Fig. 6. Eigenvectors associated with the largest and smallest eigenvalues of the counties of Minnesota adjacency matrix. Panel (a) shows the contrast
in county means �1i associated with the largest di , while panel (b) shows the contrast associated with the smallest di .

For a large class of spatial maps, a CAR grid has more di > 1 (good for �2
e) than di < 1 (good for �2

s ). This can be
shown using Horn’s theorem (Fulton, 2000), which states that for any positive semi-definite matrices A and B,


i (A + B)�
i (A) + 
1(B), (16)

where 
i (A) is the ith largest eigenvalue of A. A simple path through a spatial lattice is a path that uses each location
exactly once. If Q is the adjacency matrix for a spatial grid with a simple path, let QSP be the adjacency matrix of the
neighbor pairs that make up a simple path. Then the adjacency matrix Q can be written as the sum of QSP (using the
edges that form the simple path) and a residual adjacency matrix, Qrest (using the edges not in the simple path). Horn’s
theorem then gives


i (Q)�
i (QSP), (17)

i.e., a lower bound for di is the ith largest eigenvalue of QSP. Although no proof is available, inspection of each QSP
grid with N < 1000 shows that each of these grids has more di greater than one than di less than one, so the same is
true for any grid of under 1000 locations containing a simple path. This suggests �2

e will generally be better identified
than �2

s for CAR models.
In the class of size N connected grids,

∑c
i=1 di = trace(Q) =∑n

j=1 mj is maximized by the saturated grid where
each pair of locations are neighbors, and it is minimized by the simple path grid. Generally speaking, it seems that
more densely connected graphs have larger di , favoring identification of �2

e at the expense of �2
s .

In Section 3.2, the posterior of r changed in a non-intuitive way when the contrasts �i with the two largest r̂i were
changed to fixed effects. We conjecture that this can be explained in general in the following way. As discussed in
Section 2.1, each mixed term has the form of a gamma density with variate di/(�2

s + di�2
e), shape parameter 3

2 , rate

parameter �̂
2
i /2 and mode 1/�̂

2
i . Fig. 2b shows the unidentified modal line of each mixed term for the periodontal

example, i.e., the set of points (�2
e, �

2
s ) such that di/(�2

s + di�2
e)= 1/�̂

2
i . The two outlying terms have large �̂

2
i and thus

large intercepts, suggesting that both variances are large, but since di = 3 > 1, it seems that these �̂
2
i have more effect

on �2
e than �2

s ; the posterior median of (�2
e, �

2
s ) changed from (1.25, 0.25) to (0.63, 0.41) and the posterior median of

r increased from 0.25 to 0.63 after removing these two terms.
Removing terms with outlying r̂i has the opposite effect on r when the outlying terms have small di . Consider the

hypothetical CAR model with no free terms for �2
e , 50 mixed terms for �2

e and �2
s and d = {0.1, 0.2, . . . , 5}. Fig. 7a

plots the 50 unidentified modal lines and the log marginal posterior of (�2
e, �

2
s ) assuming r̂ = {10, 1.02, 1.04, . . . , 2}
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Fig. 7. Joint log posterior of (�2
e ,�2

s ) (scaled to be zero at the posterior mode) assuming flat priors for the variances with and without the term with
outlying r̂i . (a) d = {0.1, 0.2, . . . , 5}, r̂ = {10, 1.02, 1.04, . . . , 2}. (b) d = {0.2, 0.3, . . . , 5}, r̂ = {1.02, 1.04, . . . , 2}.

was observed, so the outlying r̂i has the smallest di , 0.1. The modal lines all intersect near (1,1) except the dashed line
representing the term with d1 =0.1 and r̂1 =10. The presence of this term pulls the center of the posterior up and to the
left, away from (1,1). Removing the term with di = 0.1 (Fig. 7b) affects �2

s more than �2
e and shifts the posterior down

and to the right; the posterior median of (�2
e, �

2
s ) changes from (0.82, 2.25) to (1.23, 1.02) and the posterior median

of r decreases from 2.86 to 0.83.

4. Discussion

This paper explored identification of variance parameters in two-variance linear models. In Section 2.1, the marginal
posterior of (�2

e, �
2
s ) is decomposed (Eq. (8)) into the product of N − p free terms for �2

e and c = p − G mixed terms
for �2

e and �2
s . This decomposition illuminates the sufficient statistic relevant to variances, (SSE, �̂1, . . . , �̂c), and the

design information that determines how well the variances are identified, (N − p, d1, . . . , dc). The statistics r̂i (10)
were used in Section 2.2 to summarize each mixed term’s contribution to the information about r and a method for
identifying outlying r̂i was proposed (11). Section 3 used these ideas to explain variance identification in the periodontal
CAR example as well as other models.

The methods proposed here also apply to more elaborate random effect models, such as the multiple membership
model (Browne et al., 2001; McCaffrey et al., 2004) which allows observations to be “members” of more than one
classification level (group). Also, the main ideas presented here apply to the standard mixed effect model (Laird and
Ware, 1982)

y|b1, b2, �
2
e ∼ N

(
Z1b1 + Z2b2,

1

�2
e
IN

)
,

b2|�2
s ∼ N

(
0,

1

�2
s
Q

)
, (18)

where b1 has a flat prior. This mixed effect model differs from (2) because there are fixed effects in the likelihood.
However, the present paper proceeded by integrating out y’s fixed effects; after integrating out b1, the mixed effect
model (18) can be written as a special case of (2), i.e.,

y2|b2, �
2
e ∼ N

(
X2b2,

1

�2
e
IN

)
,

b2|�2
s ∼ N

(
0,

1

�2
s
Q

)
, (19)
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where y2 =�zy, X2 =�zZ2, and �z is the matrix with columns equal to the eigenvectors of I −Z1(Z
′
1Z1)

−1Z′
1 having

non-zero eigenvalues.
Our data analysis has been done from a Bayesian perspective; we now show connections to other areas of statistics.

4.1. Shrinkage: di controls the bias vs. variance tradeoff

In the standardized model (5), � has prior precision (1/�2
s )D. The di represent the strength of the prior for �i relative

to the prior on the other �i ; many models have some di = 0. A given prior constraint structure (Z, Q) risks bias in
contrasts �i with large di (much smoothing) for the sake of reducing posterior variance in those directions. However,
the prior precisions are tuned by �2

s , so even models with large di permit unsmooth fits if the data indicate a large �2
s .

4.2. The di in constrained regression

The maximum likelihood estimate of � (ignoring �’s prior), �̂ = X′y, solves the normal equation

1

�2
e
X′(y − X�) = 0. (20)

To achieve better prediction, penalized regression techniques have been proposed that choose �̂ to maximize (20) subject
to constraints on �. For example, ridge and Lasso regression impose the constraints

∑p

i=1 �2
i < t and

∑p

i=1 |�i | < t ,
respectively (Tibshirani, 1996). Although the resulting estimates are biased, they are attractive because they have
smaller variance and often smaller mean squared error (MSE) compared to the maximum likelihood estimate.

Implicit in the standardized general two-variance model, specifically the posterior (7), is the weighted ridge regression
constraint

∑p

i=1 di�
2
i < t . To see this, note that for fixed r, the solution to (20) under this constraint solves

1

�2
e
X′
(

y − X

(
I + 1

r
D

)
�

)
= 0. (21)

The solution �i = �̂i r/(r + di) is the mean of the conditional posterior of �i in the second row of (7). This weighted
ridge estimate smooths each �i towards zero by its own factor r/(r + di). Terms with large di are smoothed more than
terms with small di and the degree of smoothing is controlled by r = �2

s /�
2
e . In ridge regression and related methods, r

is fixed to optimize a criterion that penalizes model complexity, while in a Bayesian analysis r is just another unknown
parameter. This suggests a way to apply the Lasso and related methods to any two-variance model, e.g., to scatter-plot or
lattice smoothers, by imposing the constraint

∑p

i=1 di |�i | < t , which is equivalent to giving the �i independent double
exponential priors and using the posterior mode as the estimator.
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Appendix A

A.1. Proof that �2
e and �2

s are unidentified in the CAR model if and only if each island is the same size and saturated

If each island has n locations and is saturated, each positive eigenvalue of Q is n and p(y|�2
e, �

2
s ) can be written as

a function of �2
s + n�2

e , so the variance parameters are not individually identified.
Assume the grid is connected and that �2

e and �2
s are unidentified, i.e., all the di equal a common value, say d. Using the

facts that trace(Q)=∑n
j=1 mj =∑n

i=1 di and
∑n

j=1 (m2
j +mj)= trace(QQ)= trace(DD)=∑n−1

i=1 d2
i , where mj is the

number of regions neighboring the j th site, one can show that n ·var(mj )=∑n
j=1 m2

j −(1/n)(
∑n

j=1 mj)
2 > 0 implies

d > n. This implies
∑n

j=1 mj =∑n−1
i=1 di > n(n − 1), which is a contradiction because each of the n mj are at most

n−1. So, if the di are equal, the mj are equal. The solution of the
∑n

j=1 mj =∑n−1
i=1 di and

∑n
j=1 m2

j +mj =∑n−1
i=1 d2

i

assuming common mj and di are d = n and m = n − 1, i.e., the grid is saturated.
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If there are multiple islands and all the di equal a common value, we have shown above that each island must be
saturated. If the kth island has nk > 1 locations, the di corresponding to that island will be nk . Therefore, if all the di

are equal, all the islands are saturated and the same size.

A.2. Proof that mmax + 1�d1 �2mmax for any spatial grid

Say the j th site has mmax = max(mj ) neighbors. If z is the N-vector with zj = 1 and zk = −1/mmax if k ∼ j , 0
otherwise, then z′Qz/z′z=mmax+1. Since d1=maxy{y′Qy/y′y}, d1 �mmax+1. Also, di =maxy{y′Qy/y′y}�2mmax

because y′Qy/y′y > 2mmax implies
∑N

j=1 mjy
2
j >

∑N
j=1 mmaxy

2
j , a contradiction.
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