
If you believe in things
that you don’t understand

then you suffer

Stevie Wonder, ”Superstition”



For Slovenian municipality i, i = 1, . . . , 192, we have

SIRi = (observed stomach cancers 1995-2001 / expected )i = Oi/Ei

SEci = Socioeconomic score (centered and scaled)i

Dark is high. There’s a clear negative association.

SIR SEc



First do a non-spatial analysis: Oi ∼ Poisson(µi ), where

logµi = logEi + α + βSEci

No surprise: β|Oi ∼ median -0.14, 95% interval -0.17 to -0.10.

Now do a spatial analysis:

logµi = logEi + α + βSEci + Si + Hi

S = (S1, . . . ,S194)′ ∼ improper CAR, precision parameter τs ,
H = (H1, . . . ,H194)′ ∼ iid Normal mean 0, precision τs .

SURPRISE!! β|Oi ∼ median -0.02, 95% interval -0.10 to +0.06.

DIC improved 1153.0 → 1081.5; pD: 2.0 → 62.3.

The obvious association has gone away. What happened?



Two premises underlying much of the course

(1) Writing down a model and using it to analyze a dataset = specifying
a function from the data to inferential or predictive summaries.

I It is essential to understand that function from data to summaries.

I When I fit this model to this dataset, why do I get this result, and
how much would the result change if I made this change to the data
or model?

(2) We must distinguish between the model we choose to analyze a given
dataset and the process that we imagine produced the data.

In particular, our choice to use a model with random effects does not
imply that those random effects correspond to any random mechanism
out there in the world.



Mixed linear models in the standard form

Mixed linear models are commonly written in the form

y = Xβ + Zu + ε, where

I The observation y is an n-vector;

I X, the fixed-effects design matrix, is n × p and known;

I β, the fixed effects, is p × 1 and unknown;

I Z, the random-effects design matrix, is n × q and known;

I u, the random effects, is q × 1 and unknown;

I u ∼ N(0,G(φG )), where φG is unknown;

I ε ∼ N(0,R(φR)), where φR is unknown; and

I The unknowns in G and R are φ = (φG ,φR).



The novelty here is the random effects

y = Xβ + Zu + ε, where

u ∼ N(0,G(φG )) ε ∼ N(0,R(φR))

Original meaning (old-style random effects): A random effect’s levels are
draws from a population, and the draws are not of interest in themselves
but only as samples from the larger population, which is of interest.

The random effects Zu are a way to model sources of variation that affect
several observations the same way, e.g., all observations in a cluster.

Current meaning (new-style random effects): Also, a random effect Zu is
a kind of model that is flexible because it has many parameters but that
avoids overfitting because u is constrained by means of its covariance G.



Example: Pig weights (RWC Sec. 4.2), Longitudinal data

48 pigs (i = 1, . . . , 48), weighed 1x/week for 9 weeks (j = 1, . . . , 9)

Dumb model: weightij = β0 + β1 weekj + εij , εij iid N(0, σ2)

This model assigns all variation between pigs to εij , when pigs evidently
vary in both intercept and slope.



Pig weights: A less dumb model

weightij = β0i + β1 weekj + εij , εij iid N(0, σ2
e )

= β0 + ui + β1 weekj + εij

where β0 and β1 are fixed and ui iid N(0, σ2
u)

This model

I shifts pig i’s line up or down as ui > 0 or ui < 0.

I partitions variation into
I variation between pigs, ui , and
I variation within pigs, εij .

Note that cov(weightij , weightij′) = cov(ui , ui ) = σ2
u.



Pig weights: Possibly not dumb model

weightij = β0 + ui0 + (β1 + ui1) weekj + εij ,(
ui0
ui1

)
∼ N

(
0,

[
σ2
00 σ2

01

σ2
01 σ2

11

])

This is the so-called “random regressions” model.



Random regressions model in the standard form

y = Xβ + Zu + ε, where

X =



1 week1
...

...
1 week9
...

...
1 week1
...

...
1 week9


, Z =



1 week1
...

... 09×2 . . . 09×2
1 week9

1 week1

09×2
...

... . . . 09×2
1 week9

...
...

. . .
...

1 week1

09×2 09×2 . . .
...

...
1 week9



,



Random regressions model in the standard form (2)

y = Xβ + Zu + ε, where

y =



weight1,1
...

weight1,9
weight2,1

...
weight2,9

...
weight48,9


, β =

[
β0
β1

]
, u =



u10
u11
u20
u21

...
u48,0
u48,1


, ε =



ε1,1
...
ε1,9
ε2,1

...
ε2,9

...
ε48,9


Conventional fits of this model commonly give an estimate of ±1 for the
correlation between the random intercept and slope. Nobody knows why.



Example: Molecular structure of a virus

Peterson et al. (2001) hypothesized a molecular description of the outer
shell (prohead) of the bacteriophage virus φ29.

Goal: Break the prohead or phage into constituent molecules and weigh
them; the weights (and other information) test the hypotheses about the
components of the prohead (gp7, gp8, gp8.5, etc.)

There were four steps in measuring each component:

I Select a parent: 2 prohead parents, 2 phage parents.

I Prepare a batch of the parent.

I On a gel date, create electrophoresis gels, separate the molecules on
the gels, cut out the relevant piece of the gel.

I Burn gels in an oxidizer run; each gel gives a weight for each
molecule.

Here’s a sample of the design for the gp8 molecule.



Parent Batch Gel Date Oxidizer Run gp8 Weight
1 1 1 1 244
1 1 2 1 267
1 1 2 1 259
1 1 2 1 286
1 3 1 1 218
1 3 2 1 249
1 3 2 1 266
1 3 2 1 259
1 7 4 3 293
...

...
...

...
...

1 7 4 3 297
1 7 5 4 315
...

...
...

...
...

1 7 5 4 283
1 7 7 4 311
...

...
...

...
...

1 7 7 4 334
2 2 1 1 272
2 2 2 1 223



To analyze these data, I treated each of the four steps as an old-style
random effect.

Model: For yi the i th measurement of the number of gp8 molecules

yi = µ+ parentj(i) + batchk(i) + gell(i) + runm(i) + εi

parentj(i)
iid∼ N(0, σ2

p), j = 1, . . . , 4

batchk(i)
iid∼ N(0, σ2

b), k = 1, . . . , 9

batches are nested within parents

gell(i)
iid∼ N(0, σ2

g ), l = 1, . . . , 11

runm(i)
iid∼ N(0, σ2

r ), m = 1, . . . , 7

εi
iid∼ N(0, σ2

e ), i = 1, . . . , 98

Deterministic functions j(i), k(i), l(i), and m(i) map i to parent, batch,
gel, and run indices.



Molecular-structure model in the standard form

In y = Xβ + Zu + ε, X = 198, β = µ,

Z98×31 =

parent (4 cols) batch (9 cols) gel (11 cols) run (7 cols)︷︸︸︷
1000

︷ ︸︸ ︷
10 . . . 0

︷ ︸︸ ︷
10 . . . 0

︷ ︸︸ ︷
10 . . . 0

1000 10 . . . 0 01 . . . 0 10 . . . 0
...

...
...

...
0001 00 . . . 1 00 . . . 1 00 . . . 1

,

u31×1 = [parent1, . . . , parent4, batch1, . . . , batch9,

gel1, . . . , gel11, run1, . . . , run7]′,

G =


σ2
pI4 0 0 0
0 σ2

bI4 0 0
0 0 σ2

g I4 0
0 0 0 σ2

oI4





Example: Rating vocal fold images

ENT docs evaluate speech/larynx problems by taking videos of the inside
of the larynx during speech and having trained raters assess them.

Standard method (2008): strobe lighting with period slightly longer than
the vocal folds’ period.

Kendall (2009) tested a new method using high-speed video (HSV),
giving a direct view of the folds’ vibration.

Each of 50 subjects was measured using both image forms (strobe/HSV).

Each of the 100 images was assessed by ≥ 1 raters, CR, KK, KUC.

Each rating consisted of 5 quantities on continuous scales.

Interest: compare image forms, compare raters, measure their interaction.



Subject ID Imaging Method Rater % Open Phase
1 strobe CR 56
1 strobe KK 70
1 strobe KK 70
1 HSV KUC 70
1 HSV KK 70
1 HSV KK 60
2 strobe KUC 50
2 HSV CR 54
3 strobe KUC 60
3 strobe KUC 70
3 HSV KK 56
4 strobe CR 65
4 HSV KK 56
5 strobe KK 50
5 HSV KUC 55
5 HSV KUC 67
6 strobe KUC 50
6 strobe KUC 50
6 HSV KUC 50



Vocal folds example: the design

This is a repeated-measures design

I The subject effect is “study number”.

I There are 3 fixed effect factors:
I image form, varying entirely within subject;
I rater, varying both within and between subjects;
I image form-by-rater interaction.

The random effects are:

I study number;

I study number by image form;

I study number by rater;

I residual (3-way interaction)



First rows of the FE design matrix X
Intercept Image form Rater Interaction

1 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 1 0 1
1 1 0 0 0 0
1 1 0 0 0 0
1 0 0 1 0 0
1 1 1 0 1 0
1 0 0 1 0 0
1 0 0 1 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
1 1 0 1 0 1
1 1 0 1 0 1
1 0 0 1 0 0

...



Random effects: Construct u first, then Z

Study number: u1, . . . , u50, one per subject.

Study number by image form: u1H , u1S , . . . , u50H , u50S ,

one per subject/form.

Study number by rater: Complicated! One per unique combination of a
rater and a study number:

u10,CR , u10,KK , u10,KUC
u60,CR , u60,KUC

u66,KK , u66,KUC
u79,CR , u79,KK ,

...
u931,CR ,
u967,CR



Non-zero columns of the RE design matrix Z

Sub ID Form Rater Sub Sub-by-Method Sub-by-Rater

1 strobe CR
︷︸︸︷
100

︷ ︸︸ ︷
100000

︷ ︸︸ ︷
1000000

1 strobe KK 100 100000 0100000
1 strobe KK 100 100000 0100000
1 HSV KUC 100 010000 0010000
1 HSV KK 100 010000 0100000
1 HSV KK 100 010000 0100000
2 strobe KUC 010 001000 0001000
2 HSV CR 010 000100 0000100
3 strobe KUC 001 000010 0000010
3 strobe KUC 001 000010 0000010
3 HSV KK 001 000001 0000001

...
...

JMP’s RL maximizing algorithm converged for 4 of 5 outcomes. The
designs are identical, so the difference arises from y. Nobody knows how.



A key point of these examples — and of this course — is that we now
have tremendous ability to fit models in this form but little
understanding of how the data determine the fits.

This course and book are my stab at developing that understanding.

The next section’s purpose is to emphasize three points:

I The theory and methods of mixed linear models are strongly
connected to the theory and methods of linear models, though the
differences are important;

I The restricted likelihood is the posterior distribution from a
particular Bayesian analysis; and

I Conventional and Bayesian analyses are incomplete or problematic in
many respects.



Doing statistics with MLMs: Conventional analysis

The conventional analysis usually proceeds in three steps:

I Estimate φ = (φG ,φR), the unknowns in G and R.

I Treating φ̂ as if it’s true, estimate β and u.

I Treating φ̂ as if it’s true, compute tests and confidence intervals for
β and u.

We will start with estimating β and u (mean structure), move to
estimating φ (variance structure), and then on to tests, etc.

The obvious problem — treating φ̂ as if it’s true — is well known.



Mean structure estimates (β and u)

This area has a long history and a lot of jargon has accrued:

I fixed effects are estimated;

I random effects are predicted;

I fixed + random effects are (estimated) best linear unbiased
predictors, (E)BLUPs

I avoid this as much as I can and instead use the more recent . . .

Unified approach, based on likelihood ideas

I Assume normal errors and random effects (the same approach is
used for non-normal models).

I For estimates of β and u, use likelihood maximizing values given the
variance components.



We have: y = Xβ + Zu + ε, u ∼ Nq(0,G(φG )), ε ∼ Nn(0,R(φR))

In the conventional view, we can write the joint density of y and u as

f (y,u|β,φ) = f (y|u,β,φR)f (u|φG ),

Taking the log of both sides gives log f (y,u|β,φ) =

K − 1

2
log |R(φR)| − 1

2
log |G(φG )|

− 1

2

{
(y− Xβ − Zu)′R(φR)−1(y− Xβ − Zu) + u′G−1(φG )u

}
.

Treat G and R as known, set C = [X|Z], estimate β and u by minimizing[
y− C

(
β
u

)]′
R−1

[
y− C

(
β
u

)]
︸ ︷︷ ︸

“likelihood”

+ [β|u]

(
0 0
0 G−1

)[
β
u

]
︸ ︷︷ ︸

“penalty”



It’s easy to show that for C = [X|Z], this gives point estimates:[
β̃
ũ

]
φ

=

[
C′R−1C +

(
0 0
0 G−1

)]−1
C′R−1y

The tildes and subscript mean these estimates depend on φ.

I Omit the penalty term and this is just the GLS estimate.

I The penalty term is an extra piece of information about u; this is
how it affects the estimates of both u and β.

These estimates give fitted values:

ỹφ = C

[
β̃
ũ

]
φ

= C

[
C′R−1C +

(
0 0
0 G−1

)]−1
C′R−1y.

Insert estimates for G and R to give EBLUPs.



Estimates of φG and φR , the unknowns in G and R

Obvious [?] approach: Write down the likelihood and compute MLEs.

But this has problems.

(1) [Dense, obscure] It’s not clear exactly what the likelihood is.

(2) [Pragmatic] Avoid problem (1) by getting rid of u, writing

E(y|β) = Xβ

cov(y|G,R) = ZGZ′ + R ≡ V

So y ∼ N(Xβ,V), for V ≡ V(G,R).

But maximizing this likelihood gives biased estimates.

Example: If X1, . . . ,Xn ∼ iid N(µ, σ2), the ML estimator
σ̂2
ML = 1

n

∑
(Xi − X̄ )2 is biased.

MLEs are biased because they don’t account for estimating fixed effects.



Solution: The restricted (or residual) likelihood

Let QX = I−X(X′X)−1X′ be the projection onto R(X)⊥, the orthogonal
complement of the column space of the fixed-effect design matrix X.

First try: The residuals QXy = QXZu + QXε are n-variate normal

with mean 0 and covariance QXZGZ′QX + QXRQX .

The resulting likelihood is messy: QXy has a singular covariance matrix.

Instead, do the same thing but with a non-singular covariance matrix.



Solution: The restricted (or residual) likelihood

Second try: QX has spectral decomposition K0DK′0,

where D = diag(1, . . . , 1, 0′p), for p = rank(X);

K0 is an orthogonal matrix with first n − p columns K.

Then QX = KK′; K is n × (n − p), its columns are a basis for R(X)⊥.

Project y onto the column space of K = the residual space of X:

K′y = K′Zu + K′ε is (n − p)-variate normal with mean 0 and

covariance K′ZGZ′K + K′RK, which is non-singular.

The likelihood arising from K′y is the restricted (residual) likelihood.

Pre-multiplying the previous equation by any non-singular B with |B| = 1
gives the same restricted likelihood.



The RL also arises as a Bayesian marginal posterior

The previous construction has intuitive content: Attribute to β the part
of y that lies in R(X) and use only the residual to estimate G and R.

Unfortunately, when derived this way, the RL is obscure.

It can be shown that you get the same RL as the Bayesian marginal
posterior of φ with flat priors on everything. I’ll derive that posterior.



The RL as a marginal posterior

Use the likelihood from a few slides ago

y ∼ N(Xβ,V), for V = ZGZ′ + R

with prior π(β, φG , φR) ∝ 1. (DON’T USE THIS in a Bayesian analysis.)

Then the posterior is

π(β, φG , φR) ∝ |V|− 1
2 exp

(
− 1

2 (y− Xβ)′V−1(y− Xβ)
)
.

To integrate out β: expand the quadratic form and complete the square:

(y− Xβ)′V−1(y− Xβ)

= y′V−1y + β′X′V−1Xβ − 2β′X′V−1y

= y′V−1y− β̃
′
X′V−1Xβ̃ + (β − β̃)′X′V−1X(β − β̃),

for β̃ = (X′V−1X)−1X′V−1y, the GLS estimate given V.



Integrating out β is just the integral of a multivariate normal density, so∫
L(β,V)dβ = K |V|− 1

2 |X′V−1X|− 1
2 exp

(
−1

2

[
y′V−1y− β̃

′
X′V−1Xβ̃

])
for β̃ = (X′V−1X)−1X′V−1y.

Take the log and expand β̃ to get the log restricted likelihood

log RL(φ|y) = K − 0.5
(
log |V|+ log |X′V−1X|

)
− 0.5 y′

[
V−1 − V−1X(X′V−1X)−1X′V−1

]
y,

where V = ZG(φG )Z′ + R(φR) is a function of φ = (φG , φR).

This is more explicit than the earlier expression, though not closed-form.



Standard errors for β̂ in standard software

For the model y ∼ Nn (Xβ,V(φ)), V(φ) = ZG(φG )Z′ + R(φR):

Set φ = φ̂, giving V̂.

β̂ is the GLS estimator β̂ = (X′V̂
−1

X)−1X′V̂
−1

y,

which has the familiar covariance form cov(β̂) ≈ (X′V̂
−1

X)−1,

giving SE (β̂i ) ≈ cov(β̂)0.5ii .

Non-Bayesian alternative: Kenward-Roger approximation (in SAS):

cov(β̂) ≈ (X′V̂
−1

X)−1

+ adjust for bias of (X′V̂
−1

X)−1as an estimate of (X′V−1X)−1

+ adjust for bias of (X′V−1X)−1 (Kackar-Harville)



Two covariance matrices for (β,u)′

Unconditional covariance:

cov

(
β̂

û− u

)
=

[
C′R(φ̂R)−1C +

(
0 0

0 G(φ̂G )−1

)]−1
,

This is wrt the distributions of ε and u and gives the same SEs as above.

Conditional on u.

cov

 β̂
û

∣∣∣∣∣∣ u

 =

[
C′R(φ̂R)−1C +

(
0 0

0 G(φ̂G )−1

)]−1
C′R−1C

×
[

C′R(φ̂R)−1C +

(
0 0

0 G(φ̂G )−1

)]−1
.

This is wrt the distribution of ε. Later we’ll see how this can be useful.



Tests for fixed effects in standard software

Tests and intervals for linear combinations l ′β use

z =
l ′β̂

(l ′ ˆcov(β̂)l)0.5
≈ N(0, 1). (1)

RWC (p. 104):

[T]heoretical justification of [(1)] for general mixed models is
somewhat elusive owing to the dependence in y imposed by the
random effects. Theoretical back-up for [(1)] exists in certain
special cases, such as those arising in analysis of variance and
longitudinal data analysis. . . . For some mixed models, including
many used in . . . this book, justification of [(1)] remains an
open problem.

Use them at your own risk. The LRT has the same problem.

RWC suggest a parametric bootstrap instead (e.g., p. 144).



Tests and intervals for random effects

I’ll say little about these because (a) they have only asymptotic
rationales, which are incomplete, and (b) mostly they perform badly.

• Restricted LRT: Compare G, R values for the same X.

• Test for σ2
s = 0: Asymptotic distribution of LRT is a mixture of χ2s.

• The XICs: AIC, BIC (aka Schwarz criterion), etc.

• Satterthwaite approximate confidence interval for a variance (SAS):

νσ̂2
s

χ2
ν,1−α/2

≤ σ2
s ≤

νσ̂2
s

χ2
ν,α/2

The denominators are quantiles of χ2
ν for ν = 2

[
σ̂2
s /(Asymp SE σ̂2

s )
]2

.


