
The Constraint-Case Formulation of MLMs

Here’s another way to write MLMs, which sometimes has advantages.

Consider the balanced one-way random effect model:

yij = θi + εij , where εij
iid∼ N(0, σ2

e ) (1)

θi = µ+ δi , where δi
iid∼ N(0, σ2

s ) (2)

µ = M + ξ, where ξ ∼ N(0, σ2
p) (3)

for i = 1, . . . , q and j = 1, . . . ,m.

M, σ2
p are known; θi , εij , µ, δi , σ

2
e , σ2

s are unknown.

Rewrite (2) and (3) as, respectively,

0 = −θi + µ+ δi (4)

M = µ− ξ. (5)

Equations (1), (4), and (5) now have the form of a linear model.



Equations (1), (4), and (5) have the form of a linear model.

 y
0q

M

 =

 Iq ⊗ 1m 0qm

−Iq 1q

0′q 1



θ1
...
θq
µ

+

 ε
δ
−ξ

 ,
where ⊗ is the Kronecker product A⊗ B = (aijB).

Left side: known (qm + q + 1)-vector.

Right side: (qm + q + 1)× (q + 1) design matrix times

(q + 1)-vector of coefficients, plus (qm + q + 1)-vector of errors.

The error vector has diagonal covariance matrix

 σ2
e Iqm 0 0
0 σ2

s Iq 0
0 0 σ2

p


Nothing deep here; it’s an “accounting identity” (Whittaker).



There’s more than one way to do this

Write the balanced one-way RE model in the standard MLM form:

X = 1qm, β = µ, Z = Iq ⊗ 1m, u = (δ1, . . . , δq)′, G = σ2
s Iq, R = σ2

e Iqm.

That implies these three equations:

y = Xβ + Zu + ε, where ε ∼ Nqm(0, σ2
e Iqm) (6)

u = δ, where δ ∼ Nq(0, σ2
s Iq) (7)

µ = M + ξ, where ξ ∼ N(0, σ2
p), (8)

Using the same trick as above, rewrite (7) and (8) as

0q = −u + δ (9)

M = µ− ξ. (10)

Now stack (6), (9), and (10).



Stack (6), (9), and (10): y
0q

M

 =

 1qm Iq ⊗ 1m

0q −Iq
1 0′q

[ µ
u

]
+

 ε
δ
−ξ

 .
Again, this has the form of a linear model with heteroscedastic errors.

All MLMs can be written in constraint-case form as y
0q

M

 =

 X Z
0q −Iq
Ip 0p×q

[ β
u

]
+

 ε
δ
−ξ



cov

 ε
δ
−ξ

 =

 R 0 0
0 G 0
0 0 Σ

 .



Some jargon for the constraint-case formulation

An MLM written in constraint-case form: y
0q

M

 =

 X Z
0q −Iq
Ip 0p×q

[ β
u

]
+

 ε
δ
−ξ

 data cases
constraint cases
prior cases

cov

 ε
δ
−ξ

 =

 R 0 0
0 G 0
0 0 Σ

 .
This formulation, conditioning on R and G, makes some derivations easy
in the conventional theory.

It’s also been used to speed computing, by Henderson et al (1959) and in
lme4 (Bates & DebRoy 2004).



Sometimes it’s easier to write a model this way

Plots in a field are in one long row, labeled i = 1, ..., n.

Two treatments are allocated randomly to plots, Ti = 0 or 1.

Fi is plot i ’s unobserved fertility: Fi = Fi−1 + δi , where δi
iid∼ N(0, σ2

s ).

Model the yield in plot i as yi = Tiβ + Fi + εi , where εi
iid∼ N(0, σ2

e ).

Rewrite the model for Fi as 0 = −Fi + Fi−1 + δi , i = 2, . . . , n.

Put a N(M, σ2
p) prior on β and stack these “cases”:

 y
0n−1
M

 =



T In

0n−1

1 −1 0 . . . 0 0
0 1 −1 . . . 0 0

...
. . .

...
0 0 0 . . . 1 −1

1 01×n




β
F1

...
Fn

+

 ε
δ
−ξ

 ,

Much simpler than the MLM formulation.



Measuring model complexity: Degrees of freedom (DF)

DF are used to describe the complexity of an MLM fit.

For mixed linear models, DF are used to:

I Specify F -tests.

I Describe a model’s size to penalize it in a model-selection criterion.

I Specify a prior distribution on φ, the unknowns in G and R.

I’ll emphasize using DF to specify priors for the unknowns in G and R.

DF can also be used to measure the complexity of parts of a fit.



Motivation

Consider again the balanced one-way random effects model:

yij = θi + εij , where εij
iid∼ N(0, σ2

e )

θi = µ+ δi , where δi
iid∼ N(0, σ2

s )

for i = 1, . . . , q and j = 1, . . . ,m.

The fitted values are ŷij = µ̂+ δ̂i . What is the fit’s complexity?

If σ̂2
s →∞ for fixed σ̂2

e , then ŷij = ȳi. and this fit has q DF.

If σ̂2
s → 0 for fixed σ̂2

e , then ŷij = ȳ.. and this fit has 1 DF.

It seems awkward to suggest that the fit’s complexity changes

discontinuously at either extreme.

We’ll define a continuous complexity measure instead.



Motivating a more general DF measure

OLS regression: y = Xβ + ε: the fitted values are ŷ = Hy for

H = X(X′X)−1X′. The DF in the fit is rank(X) = trace(H).

Linear smoother: ŷ = Sλy, where λ is a known tuning parameter. By
analogy with linear models, the DF in the fit is trace(Sλ).

An MLM is a linear smoother with C = [X|Z], λ = (φG ,φR), and

Sλ = C

[
C′R−1C +

(
0 0
0 G−1

)]−1
C′R−1

Thus the DF in an MLM fit is

trace(Sλ) = trace

(
C

[
C′R−1C +

(
0 0
0 G−1

)]−1
C′R−1

)
⇒ DF is a function of φG and φR .



Example: Balanced one-way RE model (BOWREM)

BOWREM in standard form:

X = 1qm, β = µ, Z = Iq ⊗ 1m, u = (δ1, . . . , δq)′, G = σ2
s Iq, R = σ2

e Iqm.

For C = [X|Z], the DF in the BOWREM fit is

= trace

(
C

[
C′R−1C +

(
0 0
0 G−1

)]−1
C′R−1

)

(homework) =

[(
qm m1′q
m1q mIq

)
+

(
0 0
0 Iqσ2

e/σ
2
s

)]−1(
qm m1′q
m1q mIq

)
(homework) = 1 + (q − 1)m/(m + r) for r = σ2

e/σ
2
s



Example: Balanced one-way RE model (BOWREM)

DF in BOWREM fit: = 1 + (q − 1)m/(m + r) for r = σ2
e/σ

2
s

This has some features that are true about DF much more generally.

• DF ∈ [1, q] and increases continuously with σ2
s for given σ2

e ,

as our motivation suggested it should.

• For models with normal errors and random effects, DF is a function of

the ratio of variances r = σ2
s /σ

2
e , not the individual variances.



Example: Plots in a field

Yield in plot i is yi = Tiβ + Fi + εi , where εi
iid∼ N(0, σ2

e ), Ti = 0 or 1

Fi = Fi−1 + ui , where ui
iid∼ N(0, σ2

s ), so Fi = F1 + u2 + · · ·+ ui , i ≥ 2

Thus yi = F1 + Tiβ +
∑i

j=2 uj + εi

In the standard form:

 y1
...
yn

 =

 1 T1

...
1 Tn

[ F1

β

]
+



0 0 0 0
1 0 0 . . . 0
1 1 0 0
1 1 1 0

...
. . .

...
1 1 1 . . . 1


 u2

...
un

+ ε

with G = σ2
s In−1 and R = σ2

e In.



Example: Plots in a field (2)

 y1
...
yn

 =

 1 T1

...
1 Tn

[ F1

β

]
+



0 0 0 0
1 0 0 . . . 0
1 1 0 0
1 1 1 0

...
. . .

...
1 1 1 . . . 1


 u2

...
un

+ ε

with G = σ2
s In−1 and R = σ2

e In.

The DF in this fit is 2 +
∑n−2

j=1

[
1 +

σ2
e

σ2
s

1
dj

]−1
where the dj are the eigenvalues of Z′(I− PX )Z.

Intuition: Along the j th singular vector of (I− PX )Z, the fit is shrunk to[
1 +

σ2
e

σ2
s

1
dj

]−1
of its original length.



DF is a convenient way to put a prior on (φG , φR)

The idea:

I Put a prior on DF ≡ DF(φG , φR), about which you have intuition;

I This induces a prior on (φG , φR), at least partly.

Example: 1-way RE model, q groups, m observations/group

DF(r) = 1 + (q − 1)m/(m + r) for r = σ2
e/σ

2
s

Flat prior on DF: F (DF ≤ x) = x/(q − 1) for x ∈ [1, q]

⇒ Prob(r ≤ ξ) = ξ/(m + ξ) for ξ ∈ (0,∞).

Interpretable alternative to a prior on (σ2
s , σ

2
e ):

Re-parameterize to (DF, σ2
e ), put independent priors on DF and σ2

e .

Cui et al (2010) treats this much more generally and has cool examples.


