The Constraint-Case Formulation of MLMs

Here's another way to write MLMs, which sometimes has advantages.

Consider the balanced one-way random effect model:

yi = 06i+ej, where¢j iq N(O,ag)
0; = p+05;, whered; " N(0,02)
o= M+&, where &~ N(0,07)

fori=1,...,gand j=1,...,m.

M, o3 are known; 0;, €, 1, &;, 02, o2 are unknown.
Rewrite (2) and (3) as, respectively,

0 = —0;+ n+ o;

M = u-E¢

Equations (1), (4), and (5) now have the form of a linear model.



Equations (1), (4), and (5) have the form of a linear model.
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where ® is the Kronecker product A ® B = (a;B).

Left side: known (gm + g + 1)-vector.

Right side: (gm+ g+ 1) x (g + 1) design matrix times
(g + 1)-vector of coefficients, plus (gm + g + 1)-vector of errors.
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The error vector has diagonal covariance matrix 0 aly 0
2
0 0 o

Nothing deep here; it's an “accounting identity” (Whittaker).



There's more than one way to do this

Write the balanced one-way RE model in the standard MLM form:
R =02lym

X=1m, B=p, Z=130 1y u=(61,...,0q), Gzaflq,
That implies these three equations:
y = XB+Zu+e, where € ~ Nym(0,02lg,)
u = &, where § ~ Ny(0,02l,)
w = M+E where & ~ N(0,0’i),

Using the same trick as above, rewrite (7) and (8) as

0,

Now stack (6), (9), and (10).
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Stack (6), (9), and (10):
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Again, this has the form of a linear model with heteroscedastic errors.

All MLMs can be written in constraint-case form as
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Some jargon for the constraint-case formulation

An MLM written in constraint-case form:

y X z € data cases
0, | =|0,] -1, [ﬁ ] +1 6 constraint cases
M 1, m — prior cases
€ R 0 O
cov 0 =10 G O
=3 0 0 X

This formulation, conditioning on R and G, makes some derivations easy
in the conventional theory.

It's also been used to speed computing, by Henderson et al (1959) and in
Ime4 (Bates & DebRoy 2004).



Sometimes it's easier to write a model this way

Plots in a field are in one long row, labeled i =1,..., n.

Two treatments are allocated randomly to plots, 7; = 0 or 1.

Fi is plot i's unobserved fertility: F; = F;_1 + §;, where ¢; id N(0,02).
Model the yield in plot i as y; = T;8 + F; + €;, where ¢; " N(0, 02).
Rewrite the model for F;as0 = —F;+ Fi_1 +6;,i =2,...,n.

Put a N(M, 03) prior on /3 and stack these “cases”:
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Much simpler than the MLM formulation.




Measuring model complexity: Degrees of freedom (DF)

DF are used to describe the complexity of an MLM fit.

For mixed linear models, DF are used to:
» Specify F-tests.
» Describe a model’s size to penalize it in a model-selection criterion.

» Specify a prior distribution on ¢, the unknowns in G and R.

I'll emphasize using DF to specify priors for the unknowns in G and R.

DF can also be used to measure the complexity of parts of a fit.




Motivation

Consider again the balanced one-way random effects model:

yi = 0i+e¢j, where¢j ﬂ’;‘,’ N(0, 2)
0; = w4+ 9;, where d; id N(O,Ug)
fori=1,...,gandj=1,....m.

The fitted values are y; = i + 5;. What is the fit's complexity?

If 62 — oo for fixed 42, then §; = y; and this fit has g DF.
If 52 — 0 for fixed 62, then §; = y. and this fit has 1 DF.

It seems awkward to suggest that the fit's complexity changes
discontinuously at either extreme.

We'll define a continuous complexity measure instead.



Motivating a more general DF measure

OLS regression: y = X3 + €: the fitted values are y = Hy for
H = X(X'X)~!X'. The DF in the fit is rank(X) = trace(H).

Linear smoother: y = S,y, where \ is a known tuning parameter. By
analogy with linear models, the DF in the fit is trace(S,).

An MLM is a linear smoother with C = [X|Z], A = (¢, ¢r), and

-1
S, =C [C’R1C+( g qu )} C'R!

Thus the DF in an MLM fit is

~1
trace(S,) = trace (C [C'R_lc + ( g Go_l )] C'R_1>

= DF is a function of ¢ and ¢g.



Example: Balanced one-way RE model (BOWREM)

BOWREM in standard form:
X=1m, B=p, Z=1301y u=(61,...,04), G :Uflq, Rzaglqm.

For C = [X]|Z], the DF in the BOWREM fit is

—1
= trace (C [C'R_1C+ < g G(il )] C'R_1>

gm ml. 0 0 - gm ml.
- q q
(homework) - = [( ml, mlg >+ ( 0 1,02/02 )} ( ml, ml, )

(homework) = 1+ (q—1)m/(m+r) for r = 02/0?



Example: Balanced one-way RE model (BOWREM)

DF in BOWREM fit: =1+ (q — 1)m/(m+ r) for r = 02 /2

This has some features that are true about DF much more generally.

e DF € [1, q] and increases continuously with o2 for given o2,

as our motivation suggested it should.

e For models with normal errors and random effects, DF is a function of
the ratio of variances r = 02 /02, not the individual variances.



Example: Plots in a field
Yield in plot i is y; = T3 + Fi + €;, where ¢;  N(0,02), T; =0 or 1
Fi = Fi 1 + uj, where u; % N(0,02),s0 F;=F +uy+ -+ +uj, i >2

Thus y; = FL + T;8 + E};z uj + €;

In the standard form:
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with G = 02I,_; and R = o2l,,.



Example: Plots in a field (2)
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with G = 02l,_; and R = o2I,,.

The DF in this fit is 2+ Y77 [1 o1 } B

2 d
o5 dj

where the d; are the eigenvalues of Z'(1 — Px)Z.

Intuition: Along the jt singular vector of (I — Px)Z, the fit is shrunk to

-1
[1 + cﬂ of its original length.
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DF is a convenient way to put a prior on (¢¢, ¢r)

The idea:
» Put a prior on DF = DF(¢¢, ¢r), about which you have intuition;
» This induces a prior on (¢, ¢r), at least partly.

Example: 1-way RE model, g groups, m observations/group
DF(r) =1+ (q—1)m/(m+r) for r = 02 /52
Flat prior on DF: F(DF < x) = x/(q — 1) for x € [1, q]

= Prob(r < &) =¢/(m+§) for £ € (0,00).
Interpretable alternative to a prior on (02, 02):

Re-parameterize to (DF, 02), put independent priors on DF and o?2.

Cui et al (2010) treats this much more generally and has cool examples.



