Smoothing the interaction of two categorical predictors

(This is not in RWC.)

I'll present balanced ANOVA with one error term, as in
Hodges, Cui, Sargent, Carlin ( Technometrics 2007).

Cui & Hodges (manuscript; web site) do the general balanced case.

We call this “Smoothed ANOVA" and our analysis uses MLMs.

Other versions of smoothed ANOVA:
Gelman (Ann Stat 2005) also uses MLMs.
Nobile & Green (Biometrika 2000) doesn't use MLMs.



Smoothed ANOVA, general and specific motivation

General motivation: Statistical folklore and experience say that

» interactions are often absent or small, but

> it's unwise to assume any specific interaction is absent.

Many analyses use significance tests to delete interactions, but
model-averaging and smoothing outperform stepwise methods.

This suggests shrinking or smoothing interactions instead.

Specific motivation: Dixon & Simon’s (1991) subgroup analysis.

Treatment effects in (say) males and females are considered after first
shrinking the treatment-by-sex interaction.

This filters out some error and shrinks spurious apparent differences
between subgroups.



Dataset: Soft denture-liner materials

Soft denture liners are fabricated on a hard denture base, then polished
and finished.

Polishing and finishing can leave a gap between the liner and base.

Such gaps harbor Candida and other oral pathogens, which is bad.

Pesun et al. (2002) compared gaps, measured in um, for
> 2 soft-liner materials, standard and new (factor M), with
» 4 four polishing methods (factor P) and
> 8 finishing methods (factor F), with

> no replication within design cells.

We analyzed log;,gap.



Problems, which smoothed ANOVA addresses

(1) Standard analysis: Use the highest-order interaction as the error term.
But there's an outlier and it matters with this approach.
Analysis MxP MxF PxF

All data 0.12 0.097 0.15
Omit outlier 0.096 0.004 0.16

Are there alternatives to this error term and a keep/omit choice
for the outlier?

(2) The PxF and MxPxF interactions have 21 DF each. The (likely)
many null contrasts dilute the (likely) few “live” ones.

(3) Special interest: MxP and MxF, with 3 and 7 DF.
Shrinking (smoothing) these would reduce clutter.



Model set-up and notation

I'll develop this using a 23 design with 6 replicates per design cell.

Assume: balanced design with ¢ cells and m > 1 reps per cell, so n = cm.

23 design with 6 reps per cell, c =23 =8,m=6, n = cm = 48.

Write the ANOVA as a linear model with each effect having design-matrix
columns orthogonal to each other and to columns for other effects.

X: The p columns for the grand mean and main effects, cm X p.

Z: The g columns for interactions, cm X q.

Scale the columns of X and Z so X'X = cml, and Z'Z = cml,,.



Model set-up and notation, continued

The usual ANOVA model is y = [X|Z]© + ¢, where
> y is the cm-vector of data,
> © = (01,05) conforming to [X|Z],

» € ~ Ngn(0,R) for R = %Icm with 779 unknown.

23 example: One choice of [X|Z] is H® 1 for H =

H's first 4 columns give X; its last 4 columns give Z.
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The key to smoothed ANOVA: The prior on ©

The usual ANOVA model is y = [X|Z]© + ¢, where

© = (©}]05)’ conforming to [main effects | interactions].

The interactions are shrunk by means of G = cov(©y).
In this lecture, for 8y in ©2 = (0p11, ..., 0p+q),

Ox|dk ~ N(0,1/¢k) independently given the ¢.

You specify a set of distinct random-effect precisions {n;,...,ns},s < g,

and a function j(k) > ¢k = nj(k), so G'l= diag(njc1), - - - » Mj(q))-

This groups the 6, and the columns in Z:
group j has n; 0, which are smoothed by 7;.

Let n = (10,71, --,7s), the error precision and smoothing precisions.



Smoothed ANOVA in mixed-linear-model terms
MLM standard form: y = X3+ Zu + €

SANOVA: y = X0O; +Z0; + ¢, with R = %Icm
i, 0 .. 0
0 .l ... 0
and G = cov(©,) = . .
0 0o ... ilns
DF are easy because the design is balanced:
q s
DF = p+> (cmmo)/(cmmo+ ¢i) = p+ Y _ ni(cmmo)/(crmmo + n;)
k=1 j=1

s
= p+ Z nicm/(cm+ r;), for r; = n;/no
j=1

S
= p+ ij, where p; = DF controlled by n;.
j=1



A prior on nn completes the specification

Unconditional priors:

® 7; ~ Gamma, independently
Note: (0.001,0.001) has mean 1, var 1000, 95 %ile 3 x 10=20 (1)

e p; € [0, nj] gets a prior (DF controlled by 7;)
» flat prior is proper (= uniform-shrinkage prior)
> pj/nj ~ Beta(a, b), mean a/(a+ b), var ab/(a+ b)?>(a+ b+ 1)
» Cui et al (2010): These priors are invariant to re-parameterizations.

e Two-point prior:
> P(pj =¢) = 0.5, for small £ >0,
> P(pj = nj — f) =05



Prior on 7, conditional on DF

Condition on p; = K: This = r; = n;/m0 = cm(n; — K)/K is fixed.

Condition on 3 ;s pj = K or < K, for S a subset of {1,...,s}:
This does not fix any of the p;,j € S.
It fixes the total complexity of {0«|j(k) € S} at K or < K DF.
The groups of 0y, for j € S, compete for the K DF.

One way to specify such a prior:
» Specify unconditional priors on {p;} or {r;} or {n;},
» Then impose the condition.



The prior on DF does matter (HCSC 2007 Technometrics)

The two-point prior performs poorly if error variation is substantial:
SANOVA + two-point prior = guess whether to include each effect,
and the machinery guesses wrong frequently.

These other priors performed similarly as unconditional priors:
> gamma on 7;
» flat on p;
» Beta(0.5, 0.5) on p;.



Analysis of the polishability data

Next slide: Main effect design matrix columns (NOT scaled).

| show three analyses, all using these priors:

v

MxP and MxF interactions: each 6 has its own 7;.
PxF interaction: smooth its 21 contrasts using a single 7;.

A flat prior on 1o (error precision).

vV v v

A flat prior on all p;, including the MxPxF interaction.

The analyses differ in the prior on the MxP xF interaction:

> Analysis 1: Each of MxPxF's 21 contrasts has its own 7;; they're
smoothed separately.

» Analysis 2: Smooth all 21 contrasts using one n;; E(DF|y) = 6.75.

» Analysis 3: Each of MxPxF's 21 contrasts has its own 7;, but
condition the prior on MxPxF's total DF = 6.75.



Finishing
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M x P xF interaction: contrasts, unshrunk and shrunken

The plot shows absolute values of posterior mean for the 21 contrasts.
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(b) Contrasts sorted by absolute value of unsmoothed estimate



MxP xF interaction: E(pj|y)

Posterior mean of contrast’s DF

The plot shows posterior mean of DF in each of the 21 contrasts.
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(a) Contrasts sorted by absolute value of unsmoothed estimate




Observations about the two preceding plots

Analysis 1:
The outlier pulls up the right-most contrast; it has E(DF|y) = 0.8 DF.
The left-most contrasts have E(DF|y) a2 0.4 versus prior mean 0.5.

Analysis 2:

All 21 contrasts have E(DF|y) = 0.32.

All are smoothed more than in Analysis 1; E(DF|y) = 6.75 total.
The most striking effect is on the largest contrast.

Analysis 3:
Conditioning on 6.75 DF “unmasks” the outlier.



Subgroup analysis: New vs. old for the 8 finishing methods

Solid lines: Unsmoothed estimates and 95% Cl for standard minus new.
Dashed line & gray: Analysis 2 estimates and 95% posterior intervals.

standard - new

Level of F



Observations about the preceding plot

Analyses 1, 2, and 3 give nearly identical posterior means for the M xF
interaction.

I've shown Analysis 2, which gave the widest posterior intervals.

The 7 contrasts in the M xF interaction are smoothed by different 7; =
shrinkage differs for the levels of F.



