
Smoothing the interaction of two categorical predictors

(This is not in RWC.)

I’ll present balanced ANOVA with one error term, as in

Hodges, Cui, Sargent, Carlin (Technometrics 2007).

Cui & Hodges (manuscript; web site) do the general balanced case.

We call this “Smoothed ANOVA” and our analysis uses MLMs.

Other versions of smoothed ANOVA:

Gelman (Ann Stat 2005) also uses MLMs.

Nobile & Green (Biometrika 2000) doesn’t use MLMs.



Smoothed ANOVA, general and specific motivation

General motivation: Statistical folklore and experience say that

I interactions are often absent or small, but

I it’s unwise to assume any specific interaction is absent.

Many analyses use significance tests to delete interactions, but

model-averaging and smoothing outperform stepwise methods.

This suggests shrinking or smoothing interactions instead.

Specific motivation: Dixon & Simon’s (1991) subgroup analysis.

Treatment effects in (say) males and females are considered after first
shrinking the treatment-by-sex interaction.

This filters out some error and shrinks spurious apparent differences
between subgroups.



Dataset: Soft denture-liner materials

Soft denture liners are fabricated on a hard denture base, then polished
and finished.

Polishing and finishing can leave a gap between the liner and base.

Such gaps harbor Candida and other oral pathogens, which is bad.

Pesun et al. (2002) compared gaps, measured in µm, for

I 2 soft-liner materials, standard and new (factor M), with

I 4 four polishing methods (factor P) and

I 8 finishing methods (factor F), with

I no replication within design cells.

We analyzed log10gap.



Problems, which smoothed ANOVA addresses

(1) Standard analysis: Use the highest-order interaction as the error term.

But there’s an outlier and it matters with this approach.

Analysis M × P M × F P × F
All data 0.12 0.097 0.15
Omit outlier 0.096 0.004 0.16

Are there alternatives to this error term and a keep/omit choice
for the outlier?

(2) The P×F and M×P×F interactions have 21 DF each. The (likely)

many null contrasts dilute the (likely) few “live” ones.

(3) Special interest: M×P and M×F, with 3 and 7 DF.

Shrinking (smoothing) these would reduce clutter.



Model set-up and notation

I’ll develop this using a 23 design with 6 replicates per design cell.

Assume: balanced design with c cells and m ≥ 1 reps per cell, so n = cm.

23 design with 6 reps per cell, c = 23 = 8,m = 6, n = cm = 48.

Write the ANOVA as a linear model with each effect having design-matrix
columns orthogonal to each other and to columns for other effects.

X: The p columns for the grand mean and main effects, cm × p.

Z: The q columns for interactions, cm × q.

Scale the columns of X and Z so X′X = cmIp and Z′Z = cmIq.



Model set-up and notation, continued

The usual ANOVA model is y = [X|Z]Θ + ε, where

I y is the cm-vector of data,

I Θ = (Θ′1,Θ
′
2)′ conforming to [X|Z],

I ε ∼ Ncm(0,R) for R = 1
η0
Icm with η0 unknown.

23 example: One choice of [X|Z] is H ⊗ 16 for H =

+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 −1 +1 −1 −1 −1
+1 +1 −1 +1 −1 +1 −1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 +1 −1 −1 +1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 −1 −1 +1 +1 +1 −1


.

H’s first 4 columns give X; its last 4 columns give Z.



The key to smoothed ANOVA: The prior on Θ

The usual ANOVA model is y = [X|Z]Θ + ε, where

Θ = (Θ′1|Θ′2)′ conforming to [main effects | interactions].

The interactions are shrunk by means of G = cov(Θ2).

In this lecture, for θk in Θ2 = (θp+1, . . . , θp+q),

θk |φk ∼ N(0, 1/φk) independently given the φk .

You specify a set of distinct random-effect precisions {η1, . . . , ηs}, s ≤ q,
and a function j(k) 3 φk = ηj(k), so G−1 = diag(ηj(1), . . . , ηj(q)).

This groups the θk and the columns in Z:

group j has nj θk , which are smoothed by ηj .

Let η = (η0, η1, . . . , ηs), the error precision and smoothing precisions.



Smoothed ANOVA in mixed-linear-model terms

MLM standard form: y = Xβ + Zu + ε

SANOVA: y = XΘ1 + ZΘ2 + ε, with R = 1
η0
Icm

and G = cov(Θ2) =


1
η1
In1 0 . . . 0

0 1
η2
In2 . . . 0

...
...

. . .
...

0 0 . . . 1
ηs
Ins


DF are easy because the design is balanced:

DF = p +

q∑
k=1

(cmη0)/(cmη0 + φk) = p +
s∑

j=1

nj(cmη0)/(cmη0 + ηj)

= p +
s∑

j=1

njcm/(cm + rj), for rj = ηj/η0

= p +
s∑

j=1

ρj , where ρj = DF controlled by ηj .



A prior on η completes the specification

Unconditional priors:

• ηj ∼ Gamma, independently

Note: Γ(0.001, 0.001) has mean 1, var 1000, 95th %ile 3× 10−20 (!)

• ρj ∈ [0, nj ] gets a prior (DF controlled by ηj)

I flat prior is proper (= uniform-shrinkage prior)

I ρj/nj ∼ Beta(a, b), mean a/(a + b), var ab/(a + b)2(a + b + 1)

I Cui et al (2010): These priors are invariant to re-parameterizations.

• Two-point prior:

I P(ρj = ξ) = 0.5, for small ξ > 0,

I P(ρj = nj − ξ) = 0.5



Prior on η, conditional on DF

Condition on ρj = K : This ⇒ rj = ηj/η0 = cm(nj − K )/K is fixed.

Condition on
∑

j∈S ρj = K or ≤ K , for S a subset of {1, . . . , s}:
This does not fix any of the ρj , j ∈ S .

It fixes the total complexity of {θk |j(k) ∈ S} at K or ≤ K DF.

The groups of θk , for j ∈ S , compete for the K DF.

One way to specify such a prior:

I Specify unconditional priors on {ρj} or {rj} or {ηj},
I Then impose the condition.



The prior on DF does matter (HCSC 2007 Technometrics)

The two-point prior performs poorly if error variation is substantial:

SANOVA + two-point prior = guess whether to include each effect,

and the machinery guesses wrong frequently.

These other priors performed similarly as unconditional priors:

I gamma on ηj
I flat on ρj
I Beta(0.5, 0.5) on ρj .



Analysis of the polishability data

Next slide: Main effect design matrix columns (NOT scaled).

I show three analyses, all using these priors:

I M×P and M×F interactions: each θk has its own ηj .

I P×F interaction: smooth its 21 contrasts using a single ηj .

I A flat prior on η0 (error precision).

I A flat prior on all ρj , including the M×P×F interaction.

The analyses differ in the prior on the M×P×F interaction:

I Analysis 1: Each of M×P×F’s 21 contrasts has its own ηj ; they’re
smoothed separately.

I Analysis 2: Smooth all 21 contrasts using one ηj ; E(DF|y) = 6.75.

I Analysis 3: Each of M×P×F’s 21 contrasts has its own ηj , but
condition the prior on M×P×F’s total DF = 6.75.



gap (µm) Material Polishing Finishing
5.02 1 3 0 0 7 0 0 0 0 0 0
8.84 1 3 0 0 –1 6 0 0 0 0 0
3.61 1 3 0 0 –1 –1 5 0 0 0 0

10.55 1 3 0 0 –1 –1 –1 4 0 0 0
3.90 1 3 0 0 –1 –1 –1 –1 3 0 0
5.64 1 3 0 0 –1 –1 –1 –1 –1 2 0

98.95 1 3 0 0 –1 –1 –1 –1 –1 –1 1
10.75 1 3 0 0 –1 –1 –1 –1 –1 –1 –1
2.91 1 –1 2 0 7 0 0 0 0 0 0
3.00 1 –1 2 0 –1 6 0 0 0 0 0
5.94 1 –1 2 0 –1 –1 5 0 0 0 0
8.64 1 –1 2 0 –1 –1 –1 4 0 0 0

16.33 1 –1 2 0 –1 –1 –1 –1 3 0 0
7.44 1 –1 2 0 –1 –1 –1 –1 –1 2 0

11.26 1 –1 2 0 –1 –1 –1 –1 –1 –1 1
16.35 1 –1 2 0 –1 –1 –1 –1 –1 –1 –1
4.75 1 –1 –1 1 7 0 0 0 0 0 0
3.93 1 –1 –1 1 –1 6 0 0 0 0 0
4.90 1 –1 –1 1 –1 –1 5 0 0 0 0

13.44 1 –1 –1 1 –1 –1 –1 4 0 0 0
2.82 1 –1 –1 1 –1 –1 –1 –1 3 0 0
6.44 1 –1 –1 1 –1 –1 –1 –1 –1 2 0

20.88 1 –1 –1 1 –1 –1 –1 –1 –1 –1 1
9.30 1 –1 –1 1 –1 –1 –1 –1 –1 –1 –1

178.22 1 –1 –1 –1 7 0 0 0 0 0 0
1.95 1 –1 –1 –1 –1 6 0 0 0 0 0
3.70 1 –1 –1 –1 –1 –1 5 0 0 0 0

18.11 1 –1 –1 –1 –1 –1 –1 4 0 0 0
16.40 1 –1 –1 –1 –1 –1 –1 –1 3 0 0
9.61 1 –1 –1 –1 –1 –1 –1 –1 –1 2 0

36.52 1 –1 –1 –1 –1 –1 –1 –1 –1 –1 1
14.88 1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1
18.68 –1 3 0 0 7 0 0 0 0 0 0
49.02 –1 3 0 0 –1 6 0 0 0 0 0
4.55 –1 3 0 0 –1 –1 5 0 0 0 0

...
...

...
...



M×P×F interaction: contrasts, unshrunk and shrunken

The plot shows absolute values of posterior mean for the 21 contrasts.



M×P×F interaction: E(ρj |y)

The plot shows posterior mean of DF in each of the 21 contrasts.



Observations about the two preceding plots

Analysis 1:

The outlier pulls up the right-most contrast; it has E(DF|y) = 0.8 DF.

The left-most contrasts have E(DF|y) ≈ 0.4 versus prior mean 0.5.

Analysis 2:

All 21 contrasts have E(DF|y) = 0.32.

All are smoothed more than in Analysis 1; E(DF|y) = 6.75 total.

The most striking effect is on the largest contrast.

Analysis 3:

Conditioning on 6.75 DF“unmasks” the outlier.



Subgroup analysis: New vs. old for the 8 finishing methods

Solid lines: Unsmoothed estimates and 95% CI for standard minus new.

Dashed line & gray: Analysis 2 estimates and 95% posterior intervals.
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Observations about the preceding plot

Analyses 1, 2, and 3 give nearly identical posterior means for the M×F
interaction.

I’ve shown Analysis 2, which gave the widest posterior intervals.

The 7 contrasts in the M×F interaction are smoothed by different ηj ⇒
shrinkage differs for the levels of F.


