
2D penalized spline (continuous-by-continuous interaction)

Two examples (RWC, Section 13.1):

• Number of scallops caught off Long Island

I Counts are made at specific coordinates.

• Incidence of AIDS in Italian MSM

I Predictors are calendar year and age at diagnosis.

In one sense, these problems are identical; in another sense, they’re not:

I AIDS: The predictors are on meaningful scales.

I Scallops: The coordinate axes have no inherent meaning; the
analysis should be invariant to translations and rotations.

This difference could affect the choice of basis functions.



Basis #1: Tensor product basis (RWC Sec. 13.2)

We want to model yi = f (si , ti ) + εi for s and t continuous.

The natural extension of the truncated-lines basis in 1-D is:
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The first block is the main effects, the second block is the interactions.

The next slide shows the basis functions (2 knots in each of s and t).





Basis #2: Radial basis functions (RWC Sec. 13.2)

We saw a special case of these when we talked about penalized splines.

A more general form depends on a function C (‖ (si , ti )− (κsj , κ
t
k) ‖)

where: C (•) is a function from R+ → R, and

‖ • ‖ is a distance measure.

The value of this basis function for observation i and knots (j , k)
depends only on the distance ‖ • ‖ from (si , ti ) to (κsj , κ

t
k).

With a radial basis built using such a C , the fit is invariant to axis
translations and rotations.



General radial smoothing (RWC Sec. 13.4)

We’ll develop this in 1 dimension; generalizing to > 1D is trivial.

This involves a lot of ad hoc tinkering, starting with a particular model
and using a few kluges to achieve desirable properties.

I am OK with that, though some would not be.

This path’s ad hockery suggests that many other paths could be fruitful.



Radial bases – start with a simple case
Full-rank truncated-line basis for a 1D spline fit of yi = f (xi ) + error.

X has rows [1 xi ].

For now, consider a full-rank basis in which each unique value of x is a
knot: Z has entry (xi − xj)+ in row i and column j .

The columns of X and Z for 20 xi , iid draws from a U[0, 1]:
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Step 1: Transform to a radial basis

Given λ2, the fit is ŷ = Xβ̂ + Zû, where (β̂, û) solves

argminβ,u
{

(y− Xβ + Zu)′(y− Xβ + Zu) + λ2u′u
}
.

We’d like to have a radial basis in Zu, while leaving X unchanged.

If each xi is unique, then ∃ L (n + 2)× (n + 2) 3

[X|ZR ] = [X|Z]L,

where the columns of ZR form a radial basis and ZR is symmetric.

The next slide shows the resulting radial basis.



Step 1: Transform to a radial basis (continued)
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Step 2: A kluge to make the penalty radially symmetric

With this new basis, the fitted values are

ŷ = Xβ̂R + ZR ûR , where (β̂R , ûR) solves

argminβR ,uR

{
(y− XβR + ZRuR)′(y− XβR + ZRuR) + λ2u′RL

′DLuR
}
,

where D is diagonal with diagonal elements (0, 0, 1′n)′.

Problem: The penalty λ2u′RL
′DLuR isn’t radially symmetric, and

it doesn’t generalize readily to higher dimensions.

First kluge: Change the penalty to λ2uZRu.

The spline fit is now the solution of

argminβ,u
{

(y− Xβ + ZRu)′(y− Xβ + ZRu) + λ2uZRu
}
.

This is a member of the thin-plate spline family of smoothers.



Step 2 (continued): Why we’ll need another kluge

The spline fit is now the solution of

argminβ,u
{

(y− Xβ + ZRu)′(y− Xβ + ZRu) + λ2uZRu
}
.

Problem: ZR can’t be G−1 because it’s not necessarily p.s.d.

Example:
Let xi take values 1, 2, . . . , 100; ZR has 99 negative eigenvalues.



Step 3: Second kluge + reduce the rank of the spline

Define ZC = [C (|xi − κk |)], where C (•) : R+ → R as before.

ZC has rows i = 1, . . . , n and columns k = 1, . . . ,K , for knots κk .

Setting C (r) = r and K = n gives the radial basis we’ve used until now.

Now we fit a penalized spline by fitting this MLM:

y = Xβ + ZCu + ε, R = σ2
e In

G = σ2
s (Ω−0.5K )(Ω−0.5K )′

where ΩK = [C (|κk − κk′ |)] for k , k ′ = 1, . . . ,K .

Ω−0.5K = U diag(d−0.5) V′, where ΩK = UDV′ is the SVD.

This is a legal mixed linear model.



Step 4: Make this look like earlier penalized splines

To make this model look like earlier penalized splines,

re-parameterize the random effect.

Replace ZC with Z = ZCΩ−0.5K , giving

y = Xβ + Zu + ε, R = σ2
e In, G = σ2

s IK ,

recalling that ZC = [C (|xi − κk |)] is n × K and

ΩK = [C (|κk − κk′ |)] is K × K .



Step 5: Extend to > 1 dimension

Up to this point, the development has been for 1-D splines.

The extension to p > 1 dimensions is now trivial:

In the definition of ZC , replace |xi − κk | with ‖xi − κk‖, and

ΩK , replace |κk − κk′ | with ‖κk − κk′‖,
where ‖ • ‖ is a p-D distance and xi and κk are p-D.

This gives a penalized spline with a basis and penalty that are invariant
to translations or rotations in the coordinate system.



You have to choose C (•) and knots

Thin-plate splines have a polynomial in each row of X and

C (r) =‖ r ‖2m−d for odd d ,

C (r) =‖ r ‖2m−d log ‖ r ‖ for even d ,

where d is the dimension of r, m > degree of polynomial.

A Matérn covariance function implies a C ; the simplest are

C (r) = exp(− ‖ r ‖ /ρ), ν = 0.5 in Matérn class

C (r) = exp(− ‖ r ‖ /ρ)(1+ ‖ r ‖ /ρ), ν = 1.5

where ρ is a scale parameter.

Note: C (r) is increasing (decreasing) in ‖ r ‖ for the

thin-plate (Matérn-based) splines.

Knots: Use a space-filling algorithm.



That’s nice . . . I suppose

I have no intuition at all for this construction. I have no idea

I what the columns of Z = ZCΩ−0.5K look like;

I how much they depend on C , e.g., whether C is increasing or
decreasing in r; or

I within the Matérn class, how they depend on ν or ρ.

To get some intuition, you can spend a lot of time with a user-hostile
literature, or you can look at some examples.



Dumbest, simplest case: 1-D, C (r) = |r |

For: • observations at {xi} = {1, 2, . . . , 100} - 50.5

• knots at {100/11, 200/11, . . . , 1000/11} - 50.5

Here are the first five columns of Z (the last 5 are symmetric):

C (r) from a Matérn covariance gives Z with similar-looking columns.



Dumbest, simplest 2-D case
For: • C (r) =‖ r ‖, Euclidean distance.

• observations at {xi} = {1, 2, . . . , 100} - 50.5,
{yi} = {1, 2, . . . , 10} - 5.5

• knots at ( 20*(1:4), 1+3*(1:2) ) - (50.5,5.5)

Here are four columns of Z (the other 4 are symmetric):


