2D penalized spline (continuous-by-continuous interaction)

Two examples (RWC, Section 13.1):

e Number of scallops caught off Long Island

» Counts are made at specific coordinates.

e Incidence of AIDS in Italian MSM

» Predictors are calendar year and age at diagnosis.

In one sense, these problems are identical; in another sense, they're not:
» AIDS: The predictors are on meaningful scales.

» Scallops: The coordinate axes have no inherent meaning; the
analysis should be invariant to translations and rotations.

This difference could affect the choice of basis functions.



Basis #1: Tensor product basis (RWC Sec. 13.2)

We want to model y; = f(s;, t;) + ¢; for s and t continuous.
The natural extension of the truncated-lines basis in 1-D is:
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The first block is the main effects, the second block is the interactions.

The next slide shows the basis functions (2 knots in each of s and t).
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Basis #2: Radial basis functions (RWC Sec. 13.2)

We saw a special case of these when we talked about penalized splines.

A more general form depends on a function C(| (s;, ti) — (x5, r) ||)

where: C(e) is a function from R* — R, and
| @ |l is a distance measure.

The value of this basis function for observation i and knots (j, k)
depends only on the distance || o || from (s;, t;) to (3, k}).

With a radial basis built using such a C, the fit is invariant to axis
translations and rotations.



General radial smoothing (RWC Sec. 13.4)

We'll develop this in 1 dimension; generalizing to > 1D is trivial.

This involves a lot of ad hoc tinkering, starting with a particular model
and using a few kluges to achieve desirable properties.

I am OK with that, though some would not be.

This path’s ad hockery suggests that many other paths could be fruitful.



Radial bases — start with a simple case
Full-rank truncated-line basis for a 1D spline fit of y; = f(x;) + error.

X has rows [1 x;].

For now, consider a full-rank basis in which each unique value of x is a
knot: Z has entry (x; — x;)+ in row i and column j.

The columns of X and Z for 20 x;, iid draws from a UJ[0, 1]:
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Step 1: Transform to a radial basis

Given A2, the fit is § = X3 + Z{, where (,AB, i) solves
argming ,, {(y = XB + Zu)'(y — XB + Zu) + \2u'u} .

We'd like to have a radial basis in Zu, while leaving X unchanged.

If each x; is unique, then 3L (n+2) x (n+2) >

[X|Zr] = [X|Z]L,

where the columns of Zg form a radial basis and Zg is symmetric.

The next slide shows the resulting radial basis.



Step 1: Transform to a radial basis (continued)
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Step 2: A kluge to make the penalty radially symmetric

With this new basis, the fitted values are
§ = XBr + Zriig, where (B, lig) solves
argminﬂR,uR {(y = XBg + Zrugr)'(y — XBg + Zgug) + N>uixL'DLug} ,
where D is diagonal with diagonal elements (0,0,1/)".

Problem: The penalty AukL'DLug isn't radially symmetric, and
it doesn't generalize readily to higher dimensions.

First kluge: Change the penalty to \uZgu.
The spline fit is now the solution of
argming , {(y = XB + Zgu)'(y — XB + Zgu) + NuZgu} .

This is a member of the thin-plate spline family of smoothers.



Step 2 (continued): Why we'll need another kluge

The spline fit is now the solution of

argming |, {(y = XB + Zgu)'(y — XB + Zru) + \uZgu}.

Problem: Zg can’t be G™* because it's not necessarily p.s.d.

Example:
Let x; take values 1,2,...,100; Zg has 99 negative eigenvalues.



Step 3: Second kluge + reduce the rank of the spline

Define Z¢ = [C(|x; — k])], where C(e) : RT — R as before.
Zc hasrows i =1,...,nand columns k=1,..., K, for knots xy.

Setting C(r) = r and K = n gives the radial basis we've used until now.

Now we fit a penalized spline by fitting this MLM:

y = XB+Zcu+te, R =2,
G = ()Y
where Qx = [C(|kk — kir|)] for k, k' =1,..., K.

QEM —-U diag(d_o's) V', where Qx = UDV’ is the SVD.

This is a legal mixed linear model.



Step 4: Make this look like earlier penalized splines

To make this model look like earlier penalized splines,
re-parameterize the random effect.

Replace Z¢ with Z = ZCQ;O‘S, giving
y=XB+ Zu+¢, R =21, G = 2lgk,

recalling that Z¢ = [C(|x; — k«|)] is n x K and
QK = [C(|I€k — likr|)] is K x K.



Step 5: Extend to > 1 dimension

Up to this point, the development has been for 1-D splines.

The extension to p > 1 dimensions is now trivial:

, and

In the definition of Z¢, replace |x; — k| with ||x; — Kk
Q, replace |kx — Kir| with ||k — Kk,

where || o || is a p-D distance and x; and ki are p-D.

This gives a penalized spline with a basis and penalty that are invariant
to translations or rotations in the coordinate system.



You have to choose C(e) and knots

Thin-plate splines have a polynomial in each row of X and
C(r) =| r ||>™= for odd d,
C(r) =] r || log || r || for even d,

where d is the dimension of r, m > degree of polynomial.

A Matérn covariance function implies a C; the simplest are

C(r)=exp(— | r| /p) v = 0.5 in Matérn class
C(r)=ewp(=rl/pA+ 1l /p) v=15

where p is a scale parameter.

Note: C(r) is increasing (decreasing) in || r || for the
thin-plate (Matérn-based) splines.

Knots: Use a space-filling algorithm.



That’s nice ...l suppose

| have no intuition at all for this construction. | have no idea

» what the columns of Z = ZCQEO‘5 look like;

» how much they depend on C, e.g., whether C is increasing or
decreasing in r; or

» within the Matérn class, how they depend on v or p.

To get some intuition, you can spend a lot of time with a user-hostile
literature, or you can look at some examples.



Dumbest, simplest case: 1-D, C(r) = |r|

For: e observations at {x;} = {1, 2, ..., 100} - 50.5
o knots at {100/11, 200/11, ..., 1000/11} - 50.5

Here are the first five columns of Z (the last 5 are symmetric):
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C(r) from a Matérn covariance gives Z with similar-looking columns.




Dumbest, simplest 2-D case

Euclidean distance.

e,

For: e C(r)
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Here are four columns of Z (the other 4 are symmetric):
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