Some time series models (not in RWC)

There are \geq 3 different-looking methods for analyzing time series:

- frequency-domain methods;
- autoregressive-moving-average (ARMA) models, aka Box-Jenkins;
- state-space models, aka dynamic linear models (DLMs).

We'll focus on DLMs, a close relative of Kalman filters.

A DLM can be used as a

- filter: estimate a system's state in real time.
- smoother: estimate a system's state post hoc at a series of times.

In this course, we talk about DLMs used as smoothers.

ARMA models can be written as DLMs.

Example of a DLM: Linear Growth Model

We have a series of observations y_i , $i = 0, \ldots, T$.

A DLM has two parts:

Observation equation: Model y_t as a function of the state μ_t :

$$y_t = \mu_t + n_t, \quad t = 0, \cdots, T,$$

 $n_t \sim N(0, \sigma_n^2)$ is observation error.

State equation: Model the state μ_t 's evolution over time:

$$\mu_t = \mu_{t-1} + \theta_{t-1} + w_{1,t}, \quad t = 1, \cdots, T, \\ \theta_t = \theta_{t-1} + w_{2,t}, \quad t = 1, \cdots, T-1,$$

 μ_t is the current level, θ_t is the current slope or time trend, $w_{1,t} \sim N(0, \sigma_1^2)$, $w_{2,t} \sim N(0, \sigma_2^2)$ are evolution "error"s. The DLM literature customarily adds

 $(\mu_0, \theta_0) \sim$ Normal with specified mean and variance.

This is sometimes called a prior distribution even by those who do a maximum-likelihood analysis.

Such a prior is necessary for filtering, specifically to allow Bayesian updating of the posterior for the state (μ_t, θ_t) at each time t.

In smoothing, μ_0 and θ_0 are often given mean zero and large variances.

This DLM in constraint-case form

It is easier to write this in constraint-case form than as a MLM:

$$\begin{array}{rcl} y_t &=& \mu_t & +n_t, & t=0,\cdots,T\\ 0 &=& \mu_{t-1}-\mu_t & +\theta_{t-1} & +w_{1,t} & t=1,\cdots,T\\ 0 &=& +\theta_{t-1}-\theta_t & +w_{2,t} & t=1,\cdots,T-1. \end{array}$$

Note: the index *t* has different ranges in the three equations.

Hodges (2014) writes this as one large equation.

This DLM written as a mixed linear model

<u>Observation equation</u>: $y_t = \mu_t + n_t$, $t = 0, \dots, T$, State equation:

Re-parameterize θ_t : $\theta_1 = \theta_0 + w_{2,1}$ $\theta_2 = \theta_1 + w_{2,2} = \theta_0 + \sum_{i=1}^2 w_{2,i}$ $\theta_3 = \theta_2 + w_{2,3} = \theta_0 + \sum_{i=1}^3 w_{2,i}$ \vdots $\theta_t = \theta_0 + \sum_{i=1}^t w_{2,i}.$ State equation:

$$\mu_t = \mu_{t-1} + \theta_{t-1} + w_{1,t}, \quad t = 1, \cdots, T,$$

$$\theta_t = \theta_0 + \sum_{i=1}^t w_{2,i}, \quad t = 1, \cdots, T - 1$$

Now re-parameterize μ_t :

$$\begin{split} \mu_1 &= \mu_0 + w_{1,1} + \theta_0 \\ \mu_2 &= \mu_1 + w_{1,2} + \theta_1 = \mu_0 + \sum_{i=1}^2 w_{1,i} + 2\theta_0 + w_{2,1} \\ \mu_3 &= \mu_2 + w_{1,3} + \theta_2 = \mu_0 + \sum_{i=1}^3 w_{1,i} + 3\theta_0 + 2w_{2,1} + w_{2,2} \\ &\vdots \\ \mu_t &= \mu_0 + \sum_{i=1}^t w_{1,i} + t\theta_0 + \sum_{i=1}^{t-1} (t-i)w_{2,i}. \end{split}$$

This is almost in MLM form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_1\mathbf{u}_1 + \mathbf{Z}_2\mathbf{u}_2 + \boldsymbol{\epsilon}$.

This model is doubly saturated; users often set $w_{1t} = 0$, then this is ...

DLM for *r*-dimensional outcome \mathbf{y}_t

Observation equation: $\mathbf{y}_t = \mathbf{F}_t \boldsymbol{\theta}_t + \mathbf{n}_t, \quad \mathbf{n}_t \sim N_r(0, \Sigma_t^n),$

 $\mathbf{F}_t \ r \times p$ is known; $\boldsymbol{\theta} \ p \times 1$, $\mathbf{n}_t \ r \times 1$ are unknown; $\boldsymbol{\Sigma}_t^n \ r \times r$ is either.

State equation: $\boldsymbol{\theta}_t = \mathbf{H}_t \boldsymbol{\theta}_{t-1} + \mathbf{w}_t, \quad \mathbf{w}_t \sim N_p(0, \Sigma_t^w),$

 \mathbf{H}_t and Σ_t^w are $p \times p$; \mathbf{H}_t is known, Σ_t^w is known or unknown.

 θ_0 usually has a fully specified *p*-variate normal prior.

This defines a huge class of models with covariates, intervention effects, flexible cyclic and quasi-cyclic effects. Example coming next slide!

The linear growth model has r = 1, p = 2, $\theta_t = (\mu_t, \theta_t)'$, $\mathbf{F}_t = [1 \ 0]$,

$$\mathbf{H}_t = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \Sigma_t^n = \sigma_n^2, \text{ and } \Sigma_t^w = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}.$$

West & Harrison (1997) is an encyclopedia of DLMs.

Example: Localizing epileptic activity (Lavine et al)

 $y_t = \%$ change in average pixel value for light of wavelength 535 nm, $t = 0, \dots, 649$, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Object: Estimate the response to the stimulus.

Complication: artifacts from heartbeat and breathing (respiration), with periods of 2-4 and 15-25 time steps.

Here is ~ 100 time steps:

Time

Use a DLM to filter out the artifacts, smooth the response

 $y_t = \%$ change in average pixel value for light of wavelength 535 nm, $t = 0, \dots, 649$, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Model: a DLM with observation equation

$$y_t = s_t + h_t + r_t + v_t$$

- ▶ *s_t* is the smoothed response, the object of this analysis;
- *h_t*, *r_t* are heartbeat and respiration respectively;
- v_t is iid $N(0, W_v)$ error.

State equation for s_t

The state equation for s_t is the linear growth model:

$$\begin{pmatrix} s_t \\ \text{slope}_t \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} s_{t-1} \\ \text{slope}_{t-1} \end{pmatrix} + \mathbf{w}_{s,t},$$
$$\mathbf{w}'_{s,t} = (0, w_{slope,t}) \text{ and } w_{slope,t} \sim \text{ iid } N(0, W_s).$$

Note that the variance for s_t , the level at time t, has been set to zero, so this is the truncated-linear spline, as noted on an earlier slide.

State equations for h_t , r_t

These components have quasi-cyclic state equations. I'll show h_t 's.

This 2-D recursion describes steps around a circle of radius b; each step is of angle δ_h radians.

$$\begin{pmatrix} b\cos\alpha_t\\b\sin\alpha_t \end{pmatrix} = \begin{bmatrix} \cos\delta_h & \sin\delta_h\\-\sin\delta_h & \cos\delta_h \end{bmatrix} \begin{pmatrix} b\cos\alpha_{t-1}\\b\sin\alpha_{t-1} \end{pmatrix}$$

If we plot the first coordinate, $b\cos\alpha_t$ as a function of time, the plot describes a cyclic curve.

State equations for h_t , r_t (2)

If we add a bivariate normal error with "small" error, the recursion steps around a rough circle, which no longer has constant radius:

$$\begin{pmatrix} b_t \cos \alpha_t \\ b_t \sin \alpha_t \end{pmatrix} = \begin{bmatrix} \cos \delta_h & \sin \delta_h \\ -\sin \delta_h & \cos \delta_h \end{bmatrix} \begin{pmatrix} b_{t-1} \cos \alpha_{t-1} \\ b_{t-1} \sin \alpha_{t-1} \end{pmatrix} + \mathbf{w}_{h,t},$$
$$\mathbf{w}'_{h,t} = (w_{h1,t}, w_{h2,t}) \sim \text{ iid } N_2(0, \mathbf{W}_h) \text{ for } \mathbf{W}_h = W_h \mathbf{I}_2.$$

The first coordinate, $h_t = b_t \cos \alpha_t$, as a function of time, describes a quasi-cyclic curve.

This is the state equation for the heartbeat component, h_t .

Like the signal's state equation, it has an extra component that is not included in the observation equation.

Periods: Heartbeat 2.78 time steps ($\delta_h = 1/2.78$); respiration 18.75.

Here's the fit of this model:

Alternative syntaxes for richly-parameterized models

Main syntax: Mixed linear models.

 $\label{eq:Keyidea: Write models as mixed linear models by clever choice of X, Z, G, and R.$

Key tools:

- Mixed linear model theory, methods, and computing, and ideas adapted from simple linear models.
- The conventional analysis uses the restricted likelihood, large-sample approximations, and bootstrapping.
- Bayesian methods rely on MCMC, INLA, or variational Bayes (aka approximate Bayes computing).

Alternative #1: Gaussian Markov random fields (Rue & Held 2005)

Key idea: Represent components of models and priors as Gaussian Markov random fields (GMRFs), using conditional dependence.

Key tools:

- Model the mean structure in a modular fashion, with components being GMRFs or simple effects (e.g., fixed effects).
- Rue & Held emphasize Bayesian analyses.
- "Exact" MCMC exploits sparse precision matrices.
- Approximate analyses use INLA.
- Many models can be represented in this syntax, at worst closely analogous to models we've expressed as MLMs.

Alternative #2: Likelihood inference for models with unobservables (Lee et al 2006)

Key ideas: Extend generalized linear models in several directions using likelihood-like functions.

Key tools:

- Modular modelling of the observation error (exponential family), the linear predictor, error dispersion, random effects dispersion.
- Can handle unobservable random variables other than random effects, e.g., missing data or predictions.
- Analysis: Estimates are maxima of likelihood-like functions; uncertainty is described using the curvature at the maximum.

Alternative #1: GMRFs, the key idea

If $\mathbf{x} = (x_1, \dots, x_n)' \sim MV$ Normal, the precision matrix expresses conditional dependence and independence.

If $\mathbf{x} \sim \mathsf{Normal}$ with mean $\boldsymbol{\mu}$ and precision matrix \mathbf{P} , then

$$\operatorname{cov}(x_i, x_j | \mathbf{x}_{(-ij)}) = 0 \Leftrightarrow P_{ij} = 0$$

where • $\mathbf{x}_{(-ij)}$ is **x** without its i^{th} and j^{th} elements,

• P_{ij} is the $(i,j)^{th}$ element of **P**.

If many $P_{ij} = 0$, **P** is "sparse" and computing can exploit this. Many familiar models have sparse **P**.

Examples: One-way random effects model, ICAR model

 $\frac{\text{One-way RE model: Model } y_{ij} = \theta_i + \epsilon_{ij}, \quad \theta_i = \mu + \delta_i,}{\text{with } \epsilon_{ij}, \ \delta_i \sim \text{Normal and mutually independent.}}$

$$\begin{array}{rcl} \operatorname{cov}(y_{ij},\theta_{i'}|\theta_i) &=& 0 \text{ for } i \neq i' \\ \operatorname{cov}(y_{ij},\mu|\theta_i) &=& 0 \\ \operatorname{cov}(\theta_{i'},\theta_i|\mu) &=& 0. \end{array}$$

If **x** includes **y**, θ , and $\mu \Rightarrow$ **x**'s precision matrix **P** is sparse.

ICAR: Model
$$y_i = \delta_i + \epsilon_i$$
 with $\epsilon_i \sim \text{iid } N(0, \sigma_e^2)$,
indep't of $\boldsymbol{\delta} = (\delta_1, \dots, \delta_n)' \sim \text{ICAR with precision } \mathbf{Q}/\sigma_s^2$

$$\operatorname{cov}(y_i, \delta_j | \delta_i) = 0 \text{ for } i \neq j$$

 $\operatorname{cov}(\delta_j, \delta_i | \delta_{(-ij)}) = 0 \text{ if } i \text{ and } j \text{ are not neighbors.}$

Neighbor pairs are relatively few $\Rightarrow \mathbf{Q}$ is sparse $\Rightarrow \mathbf{P}$ is sparse.

Example: Autoregressive model of order 1 (AR1)

Suppose
$$x_t = \phi x_{t-1} + \epsilon_t$$
 with $|\phi| < 1$ and $\epsilon_t \sim \text{iid } N(0,1)$.

$$\Rightarrow x_t | x_1, \dots, x_{t-1} \sim N(\phi x_{t-1}, 1) x_t | x_{t-1} \text{ is conditionally independent of } x_1, \dots, x_{t-2} x_t | x_{t-1}, x_{t+1} \text{ is independent of } x_{t'} \text{ for } t' \notin \{t - 1, t, t + 1\}.$$

If $x_1 \sim \textit{N}(0, (1-\phi)^{-1}) \Rightarrow \textbf{x}$ is a GMRF with precision matrix

٠

Example: Dynamic linear model (DLM)

Observation equation $y_t = \mathbf{F}_t \boldsymbol{\theta}_t + \mathbf{n}_t$ with $\mathbf{n}_t \sim N_r(0, \Sigma_t^n)$ independently.

State equation $\theta_t = \mathbf{H}_t \theta_{t-1} + \mathbf{w}_t$ with $\mathbf{w}_t \sim N_p(0, \Sigma_t^w)$ independently.

This gives a sparse **P** for the data y_t and θ_t :

$$\begin{array}{rcl} \operatorname{cov}(y_t, \theta_{t'} | \theta_t) &=& 0 \text{ if } t \neq t', \\ \operatorname{cov}(\theta_t, \theta_{t'} | \theta_{t-1}) &=& 0 \text{ if } t' < t-1, \text{ and} \\ \operatorname{cov}(\theta_t, \theta_{t'} | \theta_{t-1}, \theta_{t+1}) &=& 0 \text{ if } t' \notin \{t-1, t, t+1\}. \end{array}$$

Any MLM has at least an analogous model here

Modeling = adding components for different features of the data.

In the combined vector of outcomes ${\bf y}$ and unknowns, the components are unconditionally independent of each other.

Simple random effect = a GMRF with a diagonal precision matrix.

Time series: DLMs are GMRFs; ARMA models can be written as DLMs.

Longitudinal analyses: See "Simple RE" and "Time Series".

Graphical models: An edge between 2 nodes = conditional dependence.

Penalized splines: Rue & Held (2005) propose GMRFs using differences and the Weiner process.

<u>Geostatistical models</u>: GPs can be represented as GMRFs for computing, but this is not identical to the original GP.

Alternative #2: Likelihood Inference for Models with Unobservables

Generalized linear models (GLMs) have these key elements:

- Error distribution (exponential family);
- Linear predictor and link function; and
- Analysis using maximum likelihood, standard large-sample approximations, and IRLS for computing.

This system extends GLMs by:

- Adding random effects to the linear predictor.
- Modeling the error distribution's dispersion parameter with its own GLM and random effects.
- ► Modelling "unobservables," e.g., missing data and predictions.
- Analysis using the so-called h-likelihood; a model with all these pieces is analyzed as a series of linked GLMs.

This approach has generated some controversy

Commentators (e.g., on Lee & Nelder 2009):

- Lee et al propose some new models and unify existing models.
- They mainly disagree with Lee et al's claims about the value of their unified analytic approach.
- The model syntax and computing method are not controversial; the theory of analysis is.

Lee et al say about their theory of analysis:

- It's a principled extension of the Likelihood Principle.
- It "avoids prior probability" \Rightarrow it's superior to Bayes.
- It solves all problems in analysis apart from minor technical issues they can solve with 2nd order approximations.

My 2 cents worth on this

I and discussants of Lee & Nelder (2009) find these claims overstated.

Some simple points:

- The analysis approach is an *ad hoc* patchwork.
 - They do different things for different unknowns to avoid Bayes and avoid known problems.
- *Ad hoc*kery is OK if it performs; these methods cannot perform as claimed because of:
 - Multiple maxima
 - Maxima at boundary values
 - Measures of uncertainty defined using curvature at the maximum, rationalized by large-sample theory.

Lee et al (2006), Lee & Nelder (2009) do not mention these problems.

Summing up the first part of the course

A theory of a class of models like MLMs has two parts:

- A syntax for expressing many models.
- ► Tools for understanding analyses of models expressed in that syntax.

The right syntax, expressing many models, allows:

- Powerful, unified computing for a large class of models.
- Theory for many models simultaneously; precedents include linear models and generalized linear models.

What do I want in a theory of MLMs?

The obvious place to start is the tools we get from the powerful, beautiful theory of linear models:

- ► Find discrepant features of the data (residuals/outliers).
- Seek deviations form model assumptions (residuals: non-linearity, non-constant variance, transformations of y).
- Seek data features with large influence on the results.
- Assess evidence for adding predictors (added variable plots).
- Understand indeterminate results and competition among predictors (collinearity).

We'll begin by looking at simple extensions of these ideas from linear model theory to MLMs.

BUT before we do that ...

MLMs provide a whole new set of ways to generate mysteries and complications, and they're much more complicated than linear models.

 \Rightarrow We need to consider a different style for learning about our methods, a scientific style, complementing the traditional mathematical style.

The next lecture will demonstrate this scientific style on a problem that arises in fitting the "random regressions" model.

The rest of the course will use both styles.