Some time series models (not in RWC)

There are > 3 different-looking methods for analyzing time series:
» frequency-domain methods;
> autoregressive-moving-average (ARMA) models, aka Box-Jenkins;

> state-space models, aka dynamic linear models (DLMs).

We'll focus on DLMs, a close relative of Kalman filters.

A DLM can be used as a
> filter: estimate a system's state in real time.
> smoother: estimate a system’s state post hoc at a series of times.

In this course, we talk about DLMs used as smoothers.

ARMA models can be written as DLMs.



Example of a DLM: Linear Growth Model
We have a series of observations y;,i =0,..., T.
A DLM has two parts:

Observation equation: Model y; as a function of the state p;:

Ye=pe+n, t=0,---,T,
n; ~ N(0,02) is observation error.

State equation: Model the state u;'s evolution over time:

He = ,ut—1+9t—l+wl,t7 t:17 ) T7
0, = 9t—1+W2,t7 t=1,---,T-1

9

1 is the current level, 6, is the current slope or time trend,
wi s ~ N(0,02), wa; ~ N(0,03) are evolution “error’s.



The DLM literature customarily adds

(o0, 80) ~ Normal with specified mean and variance.

This is sometimes called a prior distribution even by those who do a
maximum-likelihood analysis.

Such a prior is necessary for filtering, specifically to allow Bayesian
updating of the posterior for the state (i, 6;) at each time t¢.

In smoothing, jp and g are often given mean zero and large variances.



This DLM in constraint-case form

It is easier to write this in constraint-case form than as a MLM:

Ye = Lt +n;, tZO,"',T
0 = pe—1—pe +0e1 +wyy t=1,---,T
O = +9t71_9t +W2,t t:].,,T—].

Note: the index t has different ranges in the three equations.

Hodges (2014) writes this as one large equation.



This DLM written as a mixed linear model

Observation equation: y; = puy +ny, t=0,---, T,

State equation:

pe = fpe—1+01+wy, t=1,---,T,
ot = 9t—1+W2,t7 t:].,"°’T71,
Re-parameterize 0;: 0; = 0y + wa;
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State equation:

Mt =  Hi—1 + 01+ wie, t= 1,---
t

Gt = 00—’-2:W27,'7 t:]_,
i=1

Now re-parameterize ;:

M1 = po+wii+6
2
Mo = p1+wip+6=po+ Z wy ;i + 200 4+ wa 1
=1
3
M3 = pz+wiz+0r=po+ Z wy,i + 300 + 2w 1 + wo o

i=1

: t t—1
Mty = LL0+ZW17;+t00+Z(t— I')Wz’,'.
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This is almost in MLM form: y = X8 + Zju; + Zyu; + €.

This model is doubly saturated; users often set wy; = 0, then this is ...



DLM for r-dimensional outcome vy,

Observation equation: y, = F:0; + n;, n; ~ N,(0,X7),

F: r x pis known; 8 p x 1, n; r x 1 are unknown; Xf r X r is either.

State equation: 0; = H;0,_1 +w;, w; ~ N,(0,X}),
H; and X} are p x p; H; is known, >} is known or unknown.

0 usually has a fully specified p-variate normal prior.

This defines a huge class of models with covariates, intervention effects,
flexible cyclic and quasi-cyclic effects. Example coming next slide!

The linear growth model has r = 1, p = 2, 0, = (u¢,6:)’, Fr =[1 0],

11 N w g2 0
Hf:{o 1},thaﬁ,and2t:{01 a%]

West & Harrison (1997) is an encyclopedia of DLMs.



Example: Localizing epileptic activity (Lavine et al)

y: = % change in average pixel value for light of wavelength 535 nm,
t=0,...,649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94
Object: Estimate the response to the stimulus.

Complication: artifacts from heartbeat and breathing (respiration), with
periods of 2—4 and 15-25 time steps.

Here is ~100 time steps:
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Use a DLM to filter out the artifacts, smooth the response

y: = % change in average pixel value for light of wavelength 535 nm,
=0,...,649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94
Model: a DLM with observation equation

Ye=5St+h+r+wv

> s, is the smoothed response, the object of this analysis;
» hy, ry are heartbeat and respiration respectively;
> v; is iid N(0, W, ) error.



State equation for s;

The state equation for s; is the linear growth model:
St _ 11 St—1
< slope, ) o [ 01 } ( slope;_ ) T Wt
w;t = (0, Wsiope,t) and Wejope ¢ ~ iid N(0, W).

Note that the variance for s;, the level at time t, has been set to zero, so
this is the truncated-linear spline, as noted on an earlier slide.



State equations for h;, r;

These components have quasi-cyclic state equations. I'll show h;'s.

This 2-D recursion describes steps around a circle of radius b;

each step is of angle dj, radians.
bcosay \ cosdy  sindy bcosay_1
bsina; |~ | —sindy cosdp bsina;_1

If we plot the first coordinate, bcosa; as a function of time, the plot
describes a cyclic curve.



State equations for h, r: (2)

If we add a bivariate normal error with “small” error, the recursion steps
around a rough circle, which no longer has constant radius:

bycosay \ cosd,  sindy by_1 cosas_1 tw
besinay )~ | —sindp  cosdp be_1sinay_q hts
W;1,t = (Whl,h Wh2,t) ~ iid Nz(O,Wh) for Wh = Whlz.

The first coordinate, h; = b; cos a¢, as a function of time, describes a
quasi-cyclic curve.

This is the state equation for the heartbeat component, h;.

Like the signal's state equation, it has an extra component that is not
included in the observation equation.

Periods: Heartbeat 2.78 time steps (05 = 1/2.78); respiration 18.75.



Here's the fit of this model:
jagged line: data @ Smooth line: fitted signal
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Alternative syntaxes for richly-parameterized models

Main syntax: Mixed linear models.

Key idea: Write models as mixed linear models by clever choice
of X, Z, G, and R.

Key tools:

» Mixed linear model theory, methods, and computing, and ideas
adapted from simple linear models.

» The conventional analysis uses the restricted likelihood, large-sample
approximations, and bootstrapping.

» Bayesian methods rely on MCMC, INLA, or variational Bayes (aka
approximate Bayes computing).



Alternative #1: Gaussian Markov random fields (Rue &
Held 2005)

Key idea: Represent components of models and priors as Gaussian
Markov random fields (GMRFs), using conditional dependence.

Key tools:

» Model the mean structure in a modular fashion, with components
being GMRFs or simple effects (e.g., fixed effects).

Rue & Held emphasize Bayesian analyses.
“Exact” MCMC exploits sparse precision matrices.

Approximate analyses use INLA.

vV v v v

Many models can be represented in this syntax, at worst closely
analogous to models we've expressed as MLMs.



Alternative #2: Likelihood inference for models with
unobservables (Lee et al 2006)

Key ideas: Extend generalized linear models in several directions using
likelihood-like functions.

Key tools:
» Modular modelling of the observation error (exponential family), the
linear predictor, error dispersion, random effects dispersion.
» Can handle unobservable random variables other than random
effects, e.g., missing data or predictions.

» Analysis: Estimates are maxima of likelihood-like functions;
uncertainty is described using the curvature at the maximum.



Alternative #1: GMRFs, the key idea

If x = (x1,...,Xn) ~ MV Normal, the precision matrix expresses
conditional dependence and independence.
If x ~ Normal with mean p and precision matrix P, then

cov(xi, Xj|x(—jj)) =0 < P; =0

where e x(_;) is x without its /™ and j™ elements,

—i
e P; is the (i,/)™ element of P.

If many P; =0, P is “sparse” and computing can exploit this.

Many familiar models have sparse P.



Examples: One-way random effects model, ICAR model

One-way RE model: Model y;j = 0; +¢j, 0 =p+d;,
with €j, 6; ~ Normal and mutually independent.

cov(yy, 0y |60i) = Ofori# i

cov(yjj, 1167 0
COV(Q,’/,O,‘“J,) = 0.

If x includes y, @, and u = x's precision matrix P is sparse.

ICAR: Model y; = §; + €; with €; ~ iid N(0, o2),
indep't of § = (61,...,3,)" ~ ICAR with precision Q/o2.

COV(y,',(Sj‘é,') = Ofori 75_1
cov(6j,6i|6(—) = 0if i and j are not neighbors.

Neighbor pairs are relatively few = Q is sparse = P is sparse.



Example: Autoregressive model of order 1 (AR1)

Suppose x; = ¢x¢—1 + € with |¢| < 1 and €; ~ iid N(0,1).

= Xt|X1a ey Xp—1 Y N(¢Xt717 1)
X¢|x¢—1 is conditionally independent of xq, ..., x;—2
X¢|Xt—1, X¢+1 1S independent of xp for t/ & {t —1,¢t,t + 1}.

If x; ~ N(O, (L — ¢)~1) = x is a GMRF with precision matrix

1 —& 0 0 0 0 0
—¢ 1+¢> —¢ 0 ... 0 0 0
0 —¢  1+¢> —¢ 0 0 0
0 0 0 0 - 1+¢*> —¢
| 0 0 0 0 0 —¢ 1




Example: Dynamic linear model (DLM)

Observation equation y; = F:6; + n; with n; ~ N,(0,X}) independently.

State equation 6, = H,0;_1 + w; with w; ~ N,(0,X?) independently.
This gives a sparse P for the data y; and 0;:

COV(yt7 Ht’let) = 0ift # tl,
COV(et,Bt/|0t71) 0if t/ <t-— ].7 and
COV(et,Ot/‘Btfl,epFl) = 0if t, g{t—l,t,t'f'].}



Any MLM has at least an analogous model here

Modeling = adding components for different features of the data.

In the combined vector of outcomes y and unknowns, the components
are unconditionally independent of each other.

Simple random effect = a GMRF with a diagonal precision matrix.

Time series: DLMs are GMRFs; ARMA models can be written as DLMs.

Longitudinal analyses: See "Simple RE" and “Time Series".

Graphical models: An edge between 2 nodes = conditional dependence.

Penalized splines: Rue & Held (2005) propose GMRFs using differences
and the Weiner process.

Geostatistical models: GPs can be represented as GMRFs for computing,
but this is not identical to the original GP.




Alternative #2: Likelihood Inference for Models with
Unobservables

Generalized linear models (GLMs) have these key elements:
» Error distribution (exponential family);
» Linear predictor and link function; and

> Analysis using maximum likelihood, standard large-sample
approximations, and IRLS for computing.

This system extends GLMs by:
» Adding random effects to the linear predictor.

> Modeling the error distribution’s dispersion parameter with its own
GLM and random effects.

» Modelling “unobservables,” e.g., missing data and predictions.

» Analysis using the so-called h-likelihood; a model with all these
pieces is analyzed as a series of linked GLMs.



This approach has generated some controversy

Commentators (e.g., on Lee & Nelder 2009):
> Lee et al propose some new models and unify existing models.

» They mainly disagree with Lee et al's claims about the value of their
unified analytic approach.

» The model syntax and computing method are not controversial; the
theory of analysis is.

Lee et al say about their theory of analysis:
> It's a principled extension of the Likelihood Principle.
» It “avoids prior probability” =- it's superior to Bayes.

> It solves all problems in analysis apart from minor technical issues
they can solve with 2"¢ order approximations.



My 2 cents worth on this

| and discussants of Lee & Nelder (2009) find these claims overstated.
Some simple points:

e The analysis approach is an ad hoc patchwork.

» They do different things for different unknowns to avoid Bayes and
avoid known problems.

e Ad hockery is OK if it performs; these methods cannot perform
as claimed because of:
» Multiple maxima
» Maxima at boundary values

> Measures of uncertainty defined using curvature at the maximum,
rationalized by large-sample theory.

Lee et al (2006), Lee & Nelder (2009) do not mention these problems.



Summing up the first part of the course

A theory of a class of models like MLMs has two parts:
» A syntax for expressing many models.

» Tools for understanding analyses of models expressed in that syntax.

The right syntax, expressing many models, allows:
» Powerful, unified computing for a large class of models.

» Theory for many models simultaneously; precedents include linear
models and generalized linear models.



What do | want in a theory of MLMs?

The obvious place to start is the tools we get from the powerful,
beautiful theory of linear models:

» Find discrepant features of the data (residuals/outliers).

» Seek deviations form model assumptions (residuals: non-linearity,
non-constant variance, transformations of y).

> Seek data features with large influence on the results.

> Assess evidence for adding predictors (added variable plots).

» Understand indeterminate results and competition among predictors

(collinearity).

We'll begin by looking at simple extensions of these ideas from linear
model theory to MLMs.



BUT before we do that . ..

MLMs provide a whole new set of ways to generate mysteries and
complications, and they’re much more complicated than linear models.

= We need to consider a different style for learning about our methods,
a scientific style, complementing the traditional mathematical style.

The next lecture will demonstrate this scientific style on a problem that
arises in fitting the “random regressions” model.

The rest of the course will use both styles.



