
Some time series models (not in RWC)

There are � 3 di↵erent-looking methods for analyzing time series:

I frequency-domain methods;

I autoregressive-moving-average (ARMA) models, aka Box-Jenkins;

I state-space models, aka dynamic linear models (DLMs).

We’ll focus on DLMs, a close relative of Kalman filters.

A DLM can be used as a

I filter: estimate a system’s state in real time.

I smoother: estimate a system’s state post hoc at a series of times.

In this course, we talk about DLMs used as smoothers.

ARMA models can be written as DLMs.



Example of a DLM: Linear Growth Model

We have a series of observations yi , i = 0, . . . ,T .

A DLM has two parts:

Observation equation: Model yt as a function of the state µt :

yt = µt + nt , t = 0, · · · ,T ,

nt ⇠ N(0,�2
n) is observation error.

State equation: Model the state µt ’s evolution over time:

µt = µt�1 + ✓t�1 + w1,t , t = 1, · · · ,T ,

✓t = ✓t�1 + w2,t , t = 1, · · · ,T � 1,

µt is the current level, ✓t is the current slope or time trend,

w1,t ⇠ N(0,�2
1), w2,t ⇠ N(0,�2

2) are evolution “error”s.



The DLM literature customarily adds

(µ0, ✓0) ⇠ Normal with specified mean and variance.

This is sometimes called a prior distribution even by those who do a
maximum-likelihood analysis.

Such a prior is necessary for filtering, specifically to allow Bayesian
updating of the posterior for the state (µt , ✓t) at each time t.

In smoothing, µ0 and ✓0 are often given mean zero and large variances.



This DLM in constraint-case form

It is easier to write this in constraint-case form than as a MLM:

yt = µt +nt , t = 0, · · · ,T
0 = µt�1 � µt +✓t�1 +w1,t t = 1, · · · ,T
0 = +✓t�1 � ✓t +w2,t t = 1, · · · ,T � 1.

Note: the index t has di↵erent ranges in the three equations.

Hodges (2014) writes this as one large equation.



This DLM written as a mixed linear model

Observation equation: yt = µt + nt , t = 0, · · · ,T ,

State equation:

µt = µt�1 + ✓t�1 + w1,t , t = 1, · · · ,T ,

✓t = ✓t�1 + w2,t , t = 1, · · · ,T � 1,

Re-parameterize ✓t : ✓1 = ✓0 + w2,1

✓2 = ✓1 + w2,2 = ✓0 +
2X

i=1

w2,i

✓3 = ✓2 + w2,3 = ✓0 +
3X

i=1

w2,i

...

✓t = ✓0 +
tX

i=1

w2,i .



State equation:

µt = µt�1 + ✓t�1 + w1,t , t = 1, · · · ,T ,

✓t = ✓0 +
tX

i=1

w2,i , t = 1, · · · ,T � 1

Now re-parameterize µt :

µ1 = µ0 + w1,1 + ✓0

µ2 = µ1 + w1,2 + ✓1 = µ0 +
2X

i=1

w1,i + 2✓0 + w2,1

µ3 = µ2 + w1,3 + ✓2 = µ0 +
3X

i=1

w1,i + 3✓0 + 2w2,1 + w2,2

...

µt = µ0 +
tX

i=1

w1,i + t✓0 +
t�1X

i=1

(t � i)w2,i .
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This is almost in MLM form: y = X� + Z1u1 + Z2u2 + ✏.

This model is doubly saturated; users often set w1t = 0, then this is . . .



DLM for r -dimensional outcome yt

Observation equation: yt = Ft✓t + nt , nt ⇠ Nr (0,⌃n
t ),

Ft r ⇥ p is known; ✓ p ⇥ 1, nt r ⇥ 1 are unknown; ⌃n
t r ⇥ r is either.

State equation: ✓t = Ht✓t�1 +wt , wt ⇠ Np(0,⌃w
t ),

Ht and ⌃w
t are p ⇥ p; Ht is known, ⌃w

t is known or unknown.

✓0 usually has a fully specified p-variate normal prior.

This defines a huge class of models with covariates, intervention e↵ects,
flexible cyclic and quasi-cyclic e↵ects. Example coming next slide!

The linear growth model has r = 1, p = 2, ✓t = (µt , ✓t)0, Ft = [1 0],

Ht =


1 1
0 1

�
,⌃n

t = �2
n, and ⌃w

t =


�2
1 0
0 �2

2

�
.

West & Harrison (1997) is an encyclopedia of DLMs.



Example: Localizing epileptic activity (Lavine et al)

yt = % change in average pixel value for light of wavelength 535 nm,
t = 0, . . . , 649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Object: Estimate the response to the stimulus.

Complication: artifacts from heartbeat and breathing (respiration), with
periods of 2–4 and 15–25 time steps.

Here is ⇠100 time steps:
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Use a DLM to filter out the artifacts, smooth the response

yt = % change in average pixel value for light of wavelength 535 nm,
t = 0, . . . , 649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Model: a DLM with observation equation

yt = st + ht + rt + vt

I st is the smoothed response, the object of this analysis;

I ht , rt are heartbeat and respiration respectively;

I vt is iid N(0,Wv ) error.



State equation for st

The state equation for st is the linear growth model:

✓
st

slopet

◆
=


1 1
0 1

�✓
st�1

slopet�1

◆
+ws,t ,

w
0
s,t = (0,wslope,t) and wslope,t ⇠ iid N(0,Ws).

Note that the variance for st , the level at time t, has been set to zero, so
this is the truncated-linear spline, as noted on an earlier slide.



State equations for ht , rt

These components have quasi-cyclic state equations. I’ll show ht ’s.

This 2-D recursion describes steps around a circle of radius b;

each step is of angle �h radians.

✓
b cos↵t

b sin↵t

◆
=


cos �h sin �h
� sin �h cos �h

�✓
b cos↵t�1

b sin↵t�1

◆

If we plot the first coordinate, b cos↵t as a function of time, the plot
describes a cyclic curve.



State equations for ht , rt (2)

If we add a bivariate normal error with “small” error, the recursion steps
around a rough circle, which no longer has constant radius:

✓
bt cos↵t

bt sin↵t

◆
=


cos �h sin �h
� sin �h cos �h

�✓
bt�1 cos↵t�1

bt�1 sin↵t�1

◆
+wh,t ,

w
0
h,t = (wh1,t ,wh2,t) ⇠ iid N2(0,Wh) for Wh = WhI2.

The first coordinate, ht = bt cos↵t , as a function of time, describes a
quasi-cyclic curve.

This is the state equation for the heartbeat component, ht .

Like the signal’s state equation, it has an extra component that is not
included in the observation equation.

Periods: Heartbeat 2.78 time steps (�h = 1/2.78); respiration 18.75.



Here's the fit of this model: 

 



Alternative syntaxes for richly-parameterized models

Main syntax: Mixed linear models.

Key idea: Write models as mixed linear models by clever choice

of X, Z, G, and R.

Key tools:

I Mixed linear model theory, methods, and computing, and ideas
adapted from simple linear models.

I The conventional analysis uses the restricted likelihood, large-sample
approximations, and bootstrapping.

I Bayesian methods rely on MCMC, INLA, or variational Bayes (aka
approximate Bayes computing).



Alternative #1: Gaussian Markov random fields (Rue &
Held 2005)

Key idea: Represent components of models and priors as Gaussian
Markov random fields (GMRFs), using conditional dependence.

Key tools:

I Model the mean structure in a modular fashion, with components
being GMRFs or simple e↵ects (e.g., fixed e↵ects).

I Rue & Held emphasize Bayesian analyses.

I “Exact” MCMC exploits sparse precision matrices.

I Approximate analyses use INLA.

I Many models can be represented in this syntax, at worst closely
analogous to models we’ve expressed as MLMs.



Alternative #2: Likelihood inference for models with
unobservables (Lee et al 2006)

Key ideas: Extend generalized linear models in several directions using
likelihood-like functions.

Key tools:

I Modular modelling of the observation error (exponential family), the
linear predictor, error dispersion, random e↵ects dispersion.

I Can handle unobservable random variables other than random
e↵ects, e.g., missing data or predictions.

I Analysis: Estimates are maxima of likelihood-like functions;
uncertainty is described using the curvature at the maximum.



Alternative #1: GMRFs, the key idea

If x = (x1, . . . , xn)0 ⇠ MV Normal, the precision matrix expresses
conditional dependence and independence.

If x ⇠ Normal with mean µ and precision matrix P, then

cov(xi , xj |x(�ij)) = 0 , Pij = 0

where • x(�ij) is x without its i th and j th elements,

• Pij is the (i , j)th element of P.

If many Pij = 0, P is “sparse” and computing can exploit this.

Many familiar models have sparse P.



Examples: One-way random e↵ects model, ICAR model

One-way RE model: Model yij = ✓i + ✏ij , ✓i = µ+ �i ,

with ✏ij , �i ⇠ Normal and mutually independent.

cov(yij , ✓i 0 |✓i ) = 0 for i 6= i 0

cov(yij , µ|✓i ) = 0

cov(✓i 0 , ✓i |µ) = 0.

If x includes y, ✓, and µ ) x’s precision matrix P is sparse.

ICAR: Model yi = �i + ✏i with ✏i ⇠ iid N(0, �2
e ),

indep’t of � = (�1, . . . , �n)0 ⇠ ICAR with precision Q/�2
s .

cov(yi , �j |�i ) = 0 for i 6= j

cov(�j , �i |�(�ij)) = 0 if i and j are not neighbors.

Neighbor pairs are relatively few ) Q is sparse ) P is sparse.



Example: Autoregressive model of order 1 (AR1)

Suppose xt = �xt�1 + ✏t with |�| < 1 and ✏t ⇠ iid N(0,1).

) xt |x1, . . . , xt�1 ⇠ N(�xt�1, 1)

xt |xt�1 is conditionally independent of x1, . . . , xt�2

xt |xt�1, xt+1 is independent of xt0 for t 0 62 {t � 1, t, t + 1}.

If x1 ⇠ N(0, (1� �)�1) ) x is a GMRF with precision matrix

2

66666664

1 �� 0 0 0 0 0
�� 1 + �2 �� 0 . . . 0 0 0
0 �� 1 + �2 �� 0 0 0

...
. . .

...
0 0 0 0 �� 1 + �2 ��
0 0 0 0 . . . 0 �� 1
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Example: Dynamic linear model (DLM)

Observation equation yt = Ft✓t + nt with nt ⇠ Nr (0,⌃n
t ) independently.

State equation ✓t = Ht✓t�1 +wt with wt ⇠ Np(0,⌃w
t ) independently.

This gives a sparse P for the data yt and ✓t :

cov(yt ,✓t0 |✓t) = 0 if t 6= t 0,

cov(✓t ,✓t0 |✓t�1) = 0 if t 0 < t � 1, and

cov(✓t ,✓t0 |✓t�1,✓t+1) = 0 if t 0 62 {t � 1, t, t + 1}.



Any MLM has at least an analogous model here

Modeling = adding components for di↵erent features of the data.

In the combined vector of outcomes y and unknowns, the components
are unconditionally independent of each other.

Simple random e↵ect = a GMRF with a diagonal precision matrix.

Time series: DLMs are GMRFs; ARMA models can be written as DLMs.

Longitudinal analyses: See “Simple RE” and “Time Series”.

Graphical models: An edge between 2 nodes = conditional dependence.

Penalized splines: Rue & Held (2005) propose GMRFs using di↵erences
and the Weiner process.

Geostatistical models: GPs can be represented as GMRFs for computing,
but this is not identical to the original GP.



Alternative #2: Likelihood Inference for Models with
Unobservables

Generalized linear models (GLMs) have these key elements:

I Error distribution (exponential family);

I Linear predictor and link function; and

I Analysis using maximum likelihood, standard large-sample
approximations, and IRLS for computing.

This system extends GLMs by:

I Adding random e↵ects to the linear predictor.

I Modeling the error distribution’s dispersion parameter with its own
GLM and random e↵ects.

I Modelling “unobservables,” e.g., missing data and predictions.

I Analysis using the so-called h-likelihood; a model with all these
pieces is analyzed as a series of linked GLMs.



This approach has generated some controversy

Commentators (e.g., on Lee & Nelder 2009):

I Lee et al propose some new models and unify existing models.

I They mainly disagree with Lee et al’s claims about the value of their
unified analytic approach.

I The model syntax and computing method are not controversial; the
theory of analysis is.

Lee et al say about their theory of analysis:

I It’s a principled extension of the Likelihood Principle.

I It “avoids prior probability” ) it’s superior to Bayes.

I It solves all problems in analysis apart from minor technical issues
they can solve with 2nd order approximations.



My 2 cents worth on this

I and discussants of Lee & Nelder (2009) find these claims overstated.

Some simple points:

• The analysis approach is an ad hoc patchwork.

I They do di↵erent things for di↵erent unknowns to avoid Bayes and
avoid known problems.

• Ad hockery is OK if it performs; these methods cannot perform

as claimed because of:

I Multiple maxima

I Maxima at boundary values

I Measures of uncertainty defined using curvature at the maximum,
rationalized by large-sample theory.

Lee et al (2006), Lee & Nelder (2009) do not mention these problems.



Summing up the first part of the course

A theory of a class of models like MLMs has two parts:

I A syntax for expressing many models.

I Tools for understanding analyses of models expressed in that syntax.

The right syntax, expressing many models, allows:

I Powerful, unified computing for a large class of models.

I Theory for many models simultaneously; precedents include linear
models and generalized linear models.



What do I want in a theory of MLMs?

The obvious place to start is the tools we get from the powerful,
beautiful theory of linear models:

I Find discrepant features of the data (residuals/outliers).

I Seek deviations form model assumptions (residuals: non-linearity,
non-constant variance, transformations of y).

I Seek data features with large influence on the results.

I Assess evidence for adding predictors (added variable plots).

I Understand indeterminate results and competition among predictors
(collinearity).

We’ll begin by looking at simple extensions of these ideas from linear
model theory to MLMs.



BUT before we do that . . .

MLMs provide a whole new set of ways to generate mysteries and
complications, and they’re much more complicated than linear models.

) We need to consider a di↵erent style for learning about our methods,

a scientific style, complementing the traditional mathematical style.

The next lecture will demonstrate this scientific style on a problem that
arises in fitting the “random regressions” model.

The rest of the course will use both styles.


