
Collinearity/Confounding in richly-parameterized models

For MLM, it often makes sense to consider

X� + Zu

to be the mean structure, especially for new-style random e↵ects.

This is like an ordinary linear model, but with u shrunk toward zero.

The idea of collinearity/confounding from ordinary linear models should
be applicable here.

The novelty is

I collinearity of columns in X (fixed e↵ects) and Z (random e↵ects);

I u is shrunk toward zero, to a degree determined as part of the fit.

We’ll use collinearity to examine four odd things that happened in real
problems.



Oddity #1: Add a spatial RE, wipe out a clear association

Dr. Vesna Zadnik was interested in the association of stomach cancer
with socioeconomic status in Slovenia.

Dataset: For the i = 1, . . . , 194 municipalities that partition Slovenia

I O
i

is the observed count of stomach cancer cases

I E
i

is the expected count using indirect standardization

I SEc
i

is the centered socioeconomic status (SES) score

Outcome: SIR
i

= O
i

/E
i

Predictor SEc
i

.



First, a non-spatial model

Dr. Zadnik first did a non-spatial analysis:

O
i

⇠ Poisson with log{E (O
i

)} = log(E
i

) + ↵+ �SEc
i

,

with flat priors on ↵ and �.

This analysis gave the obvious result: �|{O
i

} had

I median �0.14

I 95% interval (�0.17,�0.10).

This result captures the negative association that’s obvious in the plots.



Now, a spatial analysis

Object: Discount the sample size to account for spatial correlation.
(Other people have di↵erent objectives.)

O
i

⇠ Poisson with log{E (O
i

)} = log(E
i

) + �SEc
i

+ S
i

+ H
i

,

This model has two intercepts:

I Spatial similarity: S
i

⇠ L2-norm ICAR, precision ⌧
s

.

I Heterogeneity: H
i

⇠ iid Normal, mean zero, precision ⌧
h

.

Priors:

I independent gammas for ⌧
h

and ⌧
s

, mean 1 and variance 100,

I flat prior for �.



SURPRISE!

DIC p
D

�’s median �’s 95% interval
Non-spatial model 1153 2 -0.14 (-0.17, -0.10)
Spatial model 1082 62 -0.02 (-0.10, 0.06)

After adding the spatial and heterogeneity random e↵ects:

I �’s posterior SD increases, which we expected, and

I �’s posterior median to move to zero, which we didn’t.

Adding the spatial random e↵ect makes an obvious association go away.

Why?

Apparently faulty analogy: In GEE analyses, in my [previous] experience,
you needed a huge within-cluster correlation to a↵ect point estimates.



Oddity #2: Adding a random e↵ect changes one fixed
e↵ect but not another

The study (kids’n’crowns):

I Badly decayed primary teeth are often capped with a crown.

I Do crown types di↵er in failure behavior?

I Compare types I, III, IV by time to failure.

The dataset:

I 202 children from pediatric dental practices.

I Each child has between 1 and 4 crowns in the dataset.

I A given child’s crowns are all the same type.

I We have covariates (e.g., age) but they don’t matter for the present
purpose.



Analyses using Cox regression with a random e↵ect

We did analyses both without (wrong) and with (right) an RE for child.

Parameterization: Indicators for Types III and IV (reference is Type I).

Crown Type Random E↵ect? Estimate Standard Error P-Value
III Absent 0.48 0.20 0.015

Present 0.22 0.41 0.59
IV Absent 0.14 0.14 0.33

Present 0.16 0.26 0.54

Estimated SD of child RE is ⇠1.2; e4.7 = 106 ) the child e↵ect is big.

Expected: The standard errors got bigger.

Unexpected: One fixed e↵ect estimate changed a lot, the other didn’t.

Why?



Oddity #3: Di↵erential shrinkage of equal-sized e↵ects in
smoothed ANOVA

Dataset: ⇠2900 people with colon cancer, after surgery to remove
tumors (combining 7 clinical trials of the same treatment)

Question: We know there’s a treatment main e↵ect; does the tx e↵ect
depend on patient age (4 groups) and cancer stage (II vs. III)?

Analysis:

I Outcome: Disease-free survival (event = progression or death)
I Analysis:

I Include all interactions and shrink them (smoothed ANOVA).
I Mostly Bayesian, but using Cox’s partial likelihood.
I Design-matrix columns were scaled (same Euclidean length).



No shrinkage Shrinkage
E↵ect Est Interval Est Interval
treatment-by-stage �4.2 (�8.3, 0.02) �2.5 (�5.9, 0.3)
treatment-by-age 1 �4.6 (�8.8,�0.5) �2.9 (�5.9, 0.3)
treatment-by-age 2 �4.2 (�8.3, 0.01) �0.6 (�2.6, 0.6)
treatment-by-age 3 �4.8 (�9.0,�0.6) �1.1 (�5.7, 1.8)
stage main e↵ect �25.9 (�30.1,�21.8) �23.4 (�26.7,�20.0)

“Est” is the posterior mean; “Interval” is an equal-tailed 95% interval.

Unsmoothed CIs are all about the same width.

Why are the e↵ects shrunk to di↵erent extents?

• In balanced SANOVA with normal errors, this can’t happen.

• But here, design matrix columns are not orthogonal, in two senses:

I The design is not balanced.

I The error variance is not independent of the design-cell mean.



Oddity #4: Adding a RE wipes out two other REs
Testing a new method to localize epileptic activity (Lavine et al).

y
t

= % change in average pixel value for light of wavelength 535 nm,
t = 0, . . . , 649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Object: Estimate the response to the stimulus.

Complication: artifacts from heartbeat and breathing (respiration), with
periods of 2–4 and 15–25 time steps.

Here’s about 100 time steps:
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Model 1: Smooth response, quasi-cyclic terms for artifacts

y
t

= % change in average pixel value for light of wavelength 535 nm,
t = 0, . . . , 649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Model: a DLM with observation equation

y
t

= s
t

+ h
t

+ r
t

+ v
t

I s
t

is the smoothed response, the object of this analysis;

I h
t

, r
t

are heartbeat and respiration respectively;

I v
t

is iid N(0,W
v

) error.



State equations for st , ht , rt

State equation for s
t

is the linear growth model:
✓

s
t

slope
t

◆
=


1 1
0 1

�✓
s
t�1

slope
t�1

◆
+w

s,t ,

w0
s,t = (0,w

slope,t) and w
slope,t ⇠ iid N(0,W

s

).

State equation for quasi-cyclic components (this is for heartbeat):

✓
b
t

cos↵
t

b
t

sin↵
t

◆
=


cos �

h

sin �
h

� sin �
h

cos �
h

�✓
b
t�1 cos↵t�1

b
t�1 sin↵t�1

◆
+w

h,t ,

w0
h,t = (w

h1,t ,wh2,t) ⇠ iid N2(0,Wh

) for W
h

= W
h

I2.

Periods: Heartbeat 2.78 time steps (�
h

= 1/2.78); respiration 18.75.



Here's the fit of this model: 

 

jagged line:  data

smooth line:  fitted signal

fitted slope_t



Approx period 117 steps



fitted heartbeat



fitted respiration





Add a component to filter out the odd pattern in slope

Model 1’s “signal” fit showed an unexpected pattern, roughly cyclic with
period ⇠117 time steps.

Let’s filter it out of the signal by adding a third quasi-cyclic component:

Model 2: y
t

= s
t

+ h
t

+ r
t

+m
t

+ v
t

,

where m
t

is the new mystery term

The model for m
t

has the same form as h
t

and r
t

with period 117.

Simple, right?



SURPRISE!  The mystery term changes everything 

 

jagged line:  data

straight line:  fitted signal



fitted slope_t

fitted heartbeat

fitted respiration



fitted mystery



Variation formerly captured by signal and respiration are now captured by mystery



What happened? Two possible explanations

(1) The likelihood is bi-modal; the fit really didn’t change that much, the
fitter just found a di↵erent mode.

This appears not to be the case.

(2) The model is spectacularly overparameterized; it’s collinearity.

Model 2: y
t

= s
t

+ h
t

+ r
t

+m
t

+ v
t

,

I s
t

has n parameters

I h
t

, r
t

, m
t

each have 2n parameters.

These e↵ects are identified only because they’re shrunk/smoothed.

As if all that wasn’t weird enough, by inspection the investigators decided
to add second harmomics to mystery and respiration . . .



Now add second harmonics to mystery and respiration 
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fitted mystery
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