
Oddity #1: Adding a spatial RE wipes out a clear
association

A lot is known about the mechanics of what’s happening (“spatial
confounding”).

We know how to alter the spatial random e↵ect so it doesn’t happen.

There’s now a debate underway about

I how to interpret spatial confounding, and

I what, if anything, to do about it.

I’ll summarize what’s in Hodges (2013) and some recent developments.



Recap of Oddity #1
Dr. Vesna Zadnik was interested in the association of stomach cancer
with socioeconomic status in Slovenia.

Dataset: For the i = 1, . . . , 194 municipalities that partition Slovenia

I Oi is the observed count of stomach cancer cases

I Ei is the expected count using indirect standardization

I SEci is the centered socioeconomic status (SES) score

Outcome: SIRi = Oi/Ei Predictor SEci .



First, a non-spatial model

Dr. Zadnik first did a non-spatial analysis:

Oi ⇠ Poisson with log{E (Oi )} = log(Ei ) + ↵+ �SEci ,

with flat priors on ↵ and �.

This analysis gave the obvious result: �|{Oi} had

I median �0.14
I 95% interval (�0.17,�0.10).

This result captures the negative association that’s obvious in the plots.



Now, a spatial analysis

Object: Discount the sample size to account for spatial correlation.
(Other people have di↵erent objectives, as we’ll see.)

Oi ⇠ Poisson with log{E (Oi )} = log(Ei ) + �SEci + Si + Hi ,

This has two intercepts:

I Spatial similarity: Si ⇠ L2-norm ICAR, precision ⌧s .

I Heterogeneity: Hi ⇠ iid Normal, mean zero, precision ⌧h.

Priors:

I independent gammas for ⌧h and ⌧s , mean 1 and variance 100,

I flat prior for �.



SURPRISE!

DIC pD �’s median �’s 95% interval
Non-spatial model 1153 2 -0.14 (-0.17, -0.10)
Spatial model 1082 62 -0.02 (-0.10, 0.06)

After adding the spatial and heterogeneity random e↵ects:

I �’s posterior SD increased, which we expected

I �’s posterior median became e↵ectively zero, which we didn’t.

Adding the spatial random e↵ect makes an obvious association go away.

Why?

Apparently faulty analogy: In GEE analyses, in my [previous] experience,
you needed a huge within-cluster correlation to a↵ect point estimates.



Mechanics of spatial confounding – Hodges & Reich (2010)

Let’s consider the normal-errors version of this model:

For n-dimensional y, model y = F� + InS+ ✏:

I y, F, S, and ✏ are n ⇥ 1, � is scalar;

I F is centered and scaled;

I S ⇠ ICAR with precision parameter ⌧s , neighbor matrix Q;

I ✏ ⇠ Nn(0,
1
⌧e
I), where ⌧e = 1/�2

e

The intercept is implicit in the ICAR model for S.

Obvious concern: A regression with n observations and n+p predictors.

The potential for collinearity is obvious.

To clarify this, let’s re-parameterize the random e↵ect S.



Spatial confounding: re-parameterizing S

Original: y = F� + InS+ ✏, S ⇠ ICAR(⌧s ,Q).

Re-parameterized: y = F� + Vb+ ✏, where

I Q = VDV0 is Q’s spectral decomposition

I V is orthogonal, so VV0 = V0V = In
I D is diagonal, d1 � d2 � . . . dn�I > 0 = dn�I+1 = · · · = dn
I b ⇠ Normal, mean 0, precision ⌧sD; b = V0S.

Why does this help? ⌧s controls shrinkage of bi , i  n � I , and:

I b’s elements are smoothed independently of each other

I b1 is smoothed most (d1 is largest)

I bn�I is smoothed least (d1 is the smallest positive dj)

I bn�I+1, . . . , bn aren’t smoothed at all.

and V’s columns are interpretable.



Eigenvector for d193 = 0.03, roughly east-west gradient.

Eigenvector for d1 = 14.46, regions with most neighbors vs. . . .



Spatial confounding in linear-model terms

Without the ICAR random e↵ect, y ⇠ N(1n↵+ F�, I/⌧e), and

E (�|y, ⌧e) = (F0F)�1F0y flat prior on �

With the ICAR random efect, y ⇠ N(F� + Vb, I/⌧e),b has precision ⌧sD

E (�|⌧e , ⌧s , y) = (F0F)�1F0y� (F0F)�1F0VE (b|⌧e , ⌧s , y),

where E (b|⌧e , ⌧s , y) is not conditional on �

E (b|⌧e , ⌧s , y) = (V0PcV+ rD)�1V0Pcy,

for r = ⌧s/⌧e = �2
e/�

2
s and Pc = I� F(F0F)�1F0.

The change from adding the spatial RE is �(F0F)�1F0VE (b|⌧e , ⌧s , y).



When does spatial confounding occur?

Change from adding the spatial RE: �(F0F)�1F0 VE (b|⌧e , ⌧s , y).

V is orthogonal and F is centered and scaled (F0F = n � 1), so

correlation(F,V) = (n � 1)�0.5V0F.

) E (�|⌧e , ⌧s , y) = �̂OLS � (n � 1)1/2⇢0E (b|⌧e , ⌧s , y).

Spatial confounding will occur when:

1. F is highly correlated with Vj , the j th column of V,

2. y is correlated with Vj after accounting for F,

3. dj is small.

(1) and (2) define confounding in linear models;

(3) implies bj is not shrunk much.



Spatial confounding is just collinearity

Spatial confounding occurs in the Slovenia data because, for j = 193:

1. F is highly correlated with V193, the 193rd column of V.
I Correlation(SEc,V193) = 0.72

2. y is correlated with both F and V193.
I This is visible in the plot of SIR.

3. dj is small.
I

d193 = 0.03, the smallest positive eigenvalue.

S is not smoothed much: the e↵ective number of parameters is
pD = 62.3.

In linear model terms, the e↵ect on �’s estimate is the e↵ect of adding a
collinear regressor to a linear model. (Variance inflation occurs, too.)



The mechanics, in a more spatial-statistics style

Rewrite the model as y = F� +  , where  = Vb+ ✏; assume I = 1.

S = Vb has a singular covariance matrix, so we proceed indirectly.

Partition V = (V(1)|V(2)), so V(1) is n ⇥ (n � I ), V(2) is n ⇥ I .

Partition b = (b(1)
0
|b(2)0)0, so b(1) is (n � I )⇥ 1, b(2) is I ⇥ 1.

Pre-multiply the model equation by V0, so it becomes

V(1)0y = V(1)0F� + e1, prec(e1i ) = ⌧e(rdi )/(1 + rdi ) < ⌧e

V(2)0y = b(2) + e2, prec(e2i ) = ⌧e

where e1 = b(1) + V(1)0✏ and e2 = V(2)0✏, r = ⌧s/⌧e = �2
e/�

2
s .

V(2) / 1n and V(2)0F = 0 because F is centered.

All the information about � comes from V(1)0y.



The transformed model equation becomes

V(1)0y = V(1)0F� + e1, prec(e1i ) = ⌧e(rdi )/(1 + rdi ) < ⌧e

V(2)0y = b(2) + e2, prec(e2i ) = ⌧e

where e1 = b(1) + V(1)0✏ and e2 = V(2)0✏, r = ⌧s/⌧e = �2
e/�

2
s .

Without S: prec(�|y, ⌧e) = F0F⌧e = (n � 1)⌧e

With S: prec(�|y, ⌧s , ⌧e) = (n � 1)⌧e � (n � 1)⌧e
Pn�1

i=1 ⇢
2
i /(1 + rdi ),

⇢i = correlation(F,Vi ) = (n � 1)�1/2V 0
i F.

Information loss is large if: r is small and ⇢i is large for i with small di .

Di↵erent rows of V(1)0y have di↵erent information about � )
if row i is e↵ectively deleted by large ⇢i & small di , then
E (�|y) can change a lot after adding S to the model.



Avoiding spatial confounding: restricted spatial regression

Idea: Attribute to F all the variation in y that F and S compete over.

Simplest (not necessarily best) way to do this:

Replace y = F� + InS+ ✏ with y = F� + PcS+ ✏.

where Pc = In � F(F0F)�1F0,
the residual projection for a regression on F.

Conditional on (⌧s , ⌧e), � has the same posterior mean as in the analysis
without S, but larger posterior variance (as it should).



How to interpret spatial confounding? What to do?

The answer depends on whether S is an old-style or new-style RE.

I S is a new-style RE, a formal device to implement a smoother
I (i) Spatially correlated errors remove bias in estimating � and are

generally conservative.
I (ii) Spatially correlated errors can introduce or remove bias in

estimating � and are not necessarily conservative.

I S is an old-style RE
I (iii) The regressors V implicit in the spatial e↵ect S are collinear with

the fixed e↵ect F, but neither estimate of � is biased.
I (iv) Adding the spatial e↵ect S creates information loss, but neither

estimate of � is biased.
I (v) Because error is correlated with the regressor F in the sense

commonly used in econometrics, both estimates of � are biased.

Except for (v), these interpretations treat F as measured without error
and not drawn from a probability distribution.



S is just a formal device to implement a smoother

“Adding spatially correlated errors adjusts �̂ for spatially structured
missing covariates” even if we don’t know what those covariates are.

Does it?

Suppose data arise from y = 1n↵+ F� +H� + ✏, where H is centered
and scaled.

Suppose we fit these three models to the data:

I Model 0: y = 1n↵+ F� + ✏

I Model H: y = 1n↵+ F� +H� + ✏  correct model

I Model S: y = F� + Vb+ ✏,  “hope it works!”

where S = Vb is modeled as an ICAR.

It’s not that hard to derive E (�|y, ⌧s , ⌧e).



Here’s what you actually get

I Model 0: y = 1n↵+ F� + ✏

I Model H: y = 1n↵+ F� +H� + ✏  correct model

I Model S: y = F� + Vb+ ✏,  “hope it works!”

Conditional on y, ⌧s , ⌧e ,

�̂(H) = �̂(0)
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75 , supposedly like �̂(H)

I ⇢AB = correlation(A,B)

I ⇢0
FY

= F0(I + rQ)�1y/((n � 1)y0y)0.5

I q = F0(I + rQ)�1F/(n � 1)



Comments on the previous slide’s results

�̂(H) and �̂(S) have no necessary relation to each other.

If ⇢FH = 0, then �̂(H) = �̂(0) but �̂(S) can be larger or smaller than �̂(H).

When ⇢0
FY
⇡ ⇢FY , �̂

(S) ⇡ 0.

This happens if there’s a j such that

I the correlation of F and Vj is large;

I the correlation of y and Vj is large;

I and dj and r are small,

as in the Slovenian data.



Assuming y = 1n↵+ F� +H� + ✏, taking the expectation of these
conditional means over the distribution of y gives

E (�̂(H) � �̂(0)|⌧e) = ⇢FH�

E (�̂(S) � �̂(0)|⌧e , ⌧s) =

2

64

⇢0
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⇢
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� q

1� q

3

75 ⇢FH� if ⇢FH 6= 0

=
⇢0

FH

1� q
� if ⇢FH = 0,

where ⇢0
FH

= F0(I + rQ)�1H/(n � 1).

If � 6= 0, the adjustment under Model S can be biased + or -.

If � = 0, i.e., H doesn’t matter, Model S gives an unbiased adjustment.



Interpretation (i) is wrong; interpretation (ii) is right

I (i) Spatially correlated errors remove bias in estimating � and are
generally conservative.

I (ii) Spatially correlated errors can introduce or remove bias in
estimating � and are not necessarily conservative.

Conclusion: Adding spatially correlated errors is not conservative:

A canonical regressor Vi that is collinear with F
can cause �’s estimate to increase in magnitude.

In cases in which �’s estimate should not be adjusted, introducing
spatially correlated errors can adjust the estimate haphazardly.



S is an old-style random e↵ect

I (iii) The regressors V implicit in the spatial e↵ect S are collinear
with the fixed e↵ect F, but neither estimate of � is biased.

I (iv) Adding the spatial e↵ect S creates information loss, but neither
estimate of � is biased.

Assume F is fixed and known: Both (iii) and (iv) are correct.

Interpretation (iv) follows because GLS gives unbiased estimates even
when the error covariance is specified incorrectly.

Interpretation (iii):

E (�|⌧e , ⌧s , y) = �̂OLS � (n � 1)�1/2⇢0E (b|⌧e , ⌧s , y) = �̂OLS �KPcy,

and Pc = I� F(F0F)�1F0 ) Pcy = Pc(Vb+ ✏).

) the spatial and OLS estimates of � have the same expectation wrt y,
and the OLS is unbiased, so both are.



S is an old-style random e↵ect

I (v) Because error is correlated with the regressor F in the sense
commonly used in econometrics, both estimates of � are biased.

Now assume F is a random variable.

The model is y = F� + ;
the error  = Vb+ ✏ has a non-diagonal covariance matrix.

Because F0V 6= 0, F is correlated with  .

) both the OLS and spatial estimates of � are biased
(standard result in econometrics).



My view until a couple years ago:

You should always use restricted spatial regression.

Hodges & Reich (2010 TAS) was deliberately provocative, intended to
start a discussion.

A discussion has indeed started.



On the mechanics of spatial confounding

How the data determine the variances: H2013 Section 15.2.3

I In the RL, all variation in y that’s in the column space of X is
credited to the fixed e↵ects.

I Thus, all the information in y about �2
s is in Pc

Xy.

Hughes & Haran (JRSSB 2013) give a better restricted spatial random
e↵ect that has:

I a more intuitive covariance matrix.

I much smaller dimension ) much faster computing.

Hanks et al (Environmetrics 2015) extended spatial confounding and RSR
to random e↵ects distributed as Gaussian processes.



On whether to use restricted spatial regression (RSR)

Mixed linear models with spatial REs are used for disparate purposes.

The choice to use RSR or not should depend on the purpose.

• Interpolation/prediction: Use RSR , it improves a beauty measure.

G. Page on interpolation: “[T]he bias [in interpolation/prediction]
depends crucially on spatial scale in [y and F] . . . spatial confounding can
actually improve prediction performance in terms of MSPE” although
RSR is better in some circumstances.

• Causal inference: The jury is out.

G. Papadogeorgou (spoke here last semester!): Adjust for unmeasured
spatially-distributed covariates using a weighted average of

I a conventional propensity score and

I a measure of spatial distance.



Oddity #2: Adding a RE changes a group comparison

Recall:

I Each child (cluster) had 1-4 crowns.

I Comparisons of crown types (groups) changed a lot when we
included a random e↵ect for child (cluster).

Summary:
I Adding the RE for child changes the estimated e↵ects only if

I � 1 contrast in a group’s cluster sizes is large, and
I the same contrast in a group’s cluster averages ȳi is also large.

I H2013 , X and Z are collinear in certain way.

This is an instance of “informative cluster size”:

I If cluster size is informative as described above,

I then design matrices X and Z are collinear in a certain way, and

I adding the RE to the model changes the estimated tx e↵ect.



Oddity #3: Di↵erential shrinkage of equal-sized e↵ects

Recall:

I Smoothed ANOVA in cancer clinical trial data.

I Equal-sized unshrunk e↵ects were shrunk to di↵erent extents.

Hypothesis: Collinearity among fixed and random e↵ects causes this.

I Tested using normal-errors, normal-RE model with 1 FE, 2 REs.

I Hypothesis fails: collinearity per se did not produce di↵erential
shrinkage.

New hypotheses:

1. (Boring) Coding error or MCMC failure in the original analysis.

2. Di↵erential shrinkage can happen in normal-errors problems but only
if > 3 predictors.

3. It’s caused by some aspect of the time-to-event analysis that is
absent in the normal-errors analysis.



Oddity #4: Adding an RE wipes out two other REs

Testing a new method to localize epileptic activity (Lavine et al).

yt = % change in average pixel value for light of wavelength 535 nm,
t = 0, . . . , 649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Object: Estimate the response to the stimulus.

Complication: artifacts from heartbeat and respiration, with periods of
2–4 and 15–25 time steps.

Time
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Model 1: Smooth response, quasi-cyclic terms for artifacts

yt = % change in average pixel value for light of wavelength 535 nm,
t = 0, . . . , 649, with time steps of 0.28 sec.

Stimulus was applied during time steps t = 75 to 94

Model: a DLM with observation equation

yt = st + ht + rt + vt

I st = smoothed response, the object of this analysis

I ht , rt are heartbeat and respiration respectively

I vt ⇠ iid N(0,Wv ).



State equations for st , ht , rt

State equation for st is the linear growth model:
✓

st
slopet

◆
=


1 1
0 1

�✓
st�1

slopet�1

◆
+ws,t ,

w0
s,t = (0,wslope,t) and wslope,t ⇠ iid N(0,Ws).

State equation for quasi-cyclic components (this is for heartbeat):

✓
bt cos↵t

bt sin↵t

◆
=


cos �h sin �h
� sin �h cos �h

�✓
bt�1 cos↵t�1

bt�1 sin↵t�1

◆
+wh,t ,

w0
h,t = (wh1,t ,wh2,t) ⇠ iid N2(0,Wh) for Wh = WhI2.

Periods: Heartbeat 2.78 time steps (�h = 1/2.78); respiration 18.75.



Here's the fit of this model: 

 

jagged line:  data

smooth line:  fitted signal

fitted slope_t



Approx period 117 steps



fitted heartbeat



fitted respiration





Add a component to filter out the odd pattern in slope

Model 1’s “signal” fit showed an unexpected pattern, roughly cyclic with
period ⇠117 time steps.

Let’s filter it out of the signal by adding a third quasi-cyclic component:

Model 2: yt = st + ht + rt +mt + vt ,

where mt is the new mystery term

The model for mt has the same form as ht and rt with period 117.

Simple, right?



SURPRISE!  The mystery term changes everything 

 

jagged line:  data

straight line:  fitted signal



fitted slope_t

fitted heartbeat

fitted respiration



fitted mystery



Variation formerly captured by signal and respiration are now captured by mystery



What happened? Two possible explanations

(1) The likelihood is bi-modal; the fit really didn’t change that much, the
fitter just found a di↵erent mode.

This appears not to be the case.

(2) The model is spectacularly overparameterized; it’s collinearity.

Model 2: yt = st + ht + rt +mt + vt ,

I st has n parameters

I ht , rt , mt each have 2n parameters.

These e↵ects are identified only because they’re shrunk/smoothed.

As if all that wasn’t weird enough, by inspection the investigators decided
to add second harmomics to mystery and respiration . . .



Now add second harmonics to mystery and respiration 

 

 

data & fitted signal



fitted slope_t

fitted heartbeat

fitted respiration

fitted mystery



What’s going on? (A road map for this section)

I Detour: Generate hypotheses using a simpler model

I Hypotheses: To get this e↵ect, you need 2 things:
I Collinearity between the design matrices of the random e↵ects
I A certain kind of lack of fit

I Collinearity: H2013 Section 12.2.1 shows a sense in which
I Mystery is more collinear with signal than with respiration
I All three are more collinear with each other than with heartbeat.

I Lack of Fit
I I’ll use artificial datasets to examine the e↵ects of specific kinds of

lack of fit.

I Later, a di↵erent tool will let us see lack of fit more clearly



Detour: A model with clustering and heterogeneity

I Model one person’s attachment loss measurements
I 7 teeth, 6 sites per tooth, each site measured twice
I 7⇥ 6⇥ 2 = 84 total measurements

I yik is the k th measurement of site i , i = 1, . . . ,N for N = 42

yik = �i + ⇠i + ✏ik ,

I � = (�1, . . . , �42)0 captures spatial clustering

I ⇠ = (⇠1, . . . , ⇠42)0 captures heterogeneity.

I Like the DLMs: Each component has one unknowns for each site.

I Unlike the DLMs: Only two components (clustering + hetero).



I Clustering component: � ⇠ normal ICAR model, N ⇥ N precision
matrix Q/�2

c and these neighbor pairings:

I Heterogeneity component: ⇠ ⇠ N(0N ,�2
hIN).

I Sort the observations: 42 first measurements on each site
then 42 second measurements on each site.

I Write the model as

y =


IN
IN

�
� +


IN
IN

�
⇠ + ✏. (1)

I Clustering and heterogeneity have identical design matrices but
di↵erent covariance matrices.



Now derive the restricted likelihood

I Let Q = �D�0 (spectral decomposition)
I D is diagonal, d1 � d2 � · · · � dN�1 and dN = 0
I � is orthogonal, N th column (zero eigenvalue) / 1N .

I Reparameterize:
I Clustering: ✓ = �0�; ✓ has precision D/�2

c

✓N = N

�0.510
N� has precision zero.

I Hetero: � = �0⇠, � ⇠ N(0N ,�
2
hIN)

�N is redundant with ✓N , so drop it.

I Now the model is

y = 12N�0 +


��
��

�
✓� +


��
��

�
�� + ✏,

I �� is N ⇥ (N � 1), the N � 1 columns of � with dj > 0.

I ✓�, �� are (N � 1)⇥ 1; they’re ✓ and � without N th element.



The restricted likelihood is the likelihood from �0
�y,

/ (�2
e )

�N/2 exp


� 1

2�2
e
SSE

�
info from replicate measures

N�1Y

j=1

�
�2
c/dj + �2

h + �2
e/2

��1/2
info from ✓̂2j

exp

2

4�1

2

N�1X

j=1

✓̂2j
�
�2
c/dj + �2

h + �2
e/2

��1

3

5 , info from ✓̂2j

where

I SSE =
P

i,k(yik � ȳi.)2

I ȳi. is the average of yi1 and yi2
I ✓̂j is the j th element of the unshrunk estimate of ✓�

✓̂� =
⇥
�0
� �0

�
⇤
y/2,



RL / (�2
e )

�N/2 exp


� 1

2�2
e
SSE

�
info from replicate measures

N�1Y

j=1

�
�2
c/dj + �2

h + �2
e/2

��1/2
info from ✓̂2j

exp

2

4�1

2

N�1X

j=1

✓̂2j
�
�2
c/dj + �2

h + �2
e/2

��1

3

5 , info from ✓̂2j

I Note that var(✓̂j |�2
c ,�

2
h,�

2
e ) = �2

c/dj + �2
h + �2

e/2

I The contributions from heterogeneity and error are the same for all j .
I The contribution from clustering, �2

c/dj , is
I large for j with small dj (little smoothing), and
I small for j with large dj (much smoothing).



Collinearity + specific lack of fit ) DLM e↵ect

In the het + clust model: var(✓̂j |�2
c ,�

2
h,�

2
e ) = �2

c/dj + �2
h + �2

e/2

Suppose the data actually fit the het + clust model, i.e., the magnitudes
of the ✓̂j decline as the dj increase.

I If you fit a heterogeneity-only model, �̂2
h will be big and so will the

fitted heterogeneity component.

I If you then fit the het + clust model, �̂2
h and the fitted heterogeneity

component will be small; �̂2
c and the fitted clustering component will

be large.

I Adding clust here is analogous to adding mystery to the DLM.

Thus, a hypothesis: To get the e↵ect we see with the DLM, we need

I The two e↵ects (hetero and clust) are collinear

I The hetero-only model doesn’t fit but hetero + clust does.



Back to DLMs: The collinearity part of the hypothesis

H2013, Section 12.2.1 shows a specific sense in which

I Mystery is more collinear with signal than with respiration

I Signal, mystery, and respiration are more collinear with each other
than with heartbeat.

Arm-waving explanation:

I Signal, mystery, respiration, and heartbeat have nominal frequencies
0.0015, 0.0085, 0.053, 0.36 per time step.

I Signal and mystery are more similar than any other pair [etc.].

I won’t belabor this further; read the book if you’re keen to know.



DLMs: Lack of fit (H2013, Section 12.2.2)

I I used Model 3’s fit to construct fake datasets with known lack of
fit, then fit Models 1 and 2 to see which aspects of lack of fit
produced the DLM puzzle.

I Model 3’s fit has three pieces that do not fit Model 1:
I Respiration’s 2nd harmonic.
I Mystery’s 1st and 2nd harmonics.

I I constructed fake datasets by adding:
I Model 3’s fitted signal + heartbeat + respiration 1st harmonic
I + some pieces that do not fit Model 1.

respiration mystery
Fake Dataset 2nd harmonic 1st harmonic 2nd harmonic

A X
B X
C X X

Real data X X X



Recap:  Here's the fit of Model 3 

 
 

Data & fitted signal

fitted slope_t
(6.5 DF in signal fit)

fitted hb
(291 DF)

fitted resp, 2 harmonics
(189 DF)

fitted mystery, 2 harmonics
(235 DF)





respiration mystery
Fake Dataset 2nd harmonic 1st harmonic 2nd harmonic

A X
B X
C X X

Real data X X X

I Models considered
I Model 1: signal + respiration + heartbeat
I Model 2: signal + respiration + heartbeat + mystery

I Results for fake dataset A:
I Model 1: Signal fit smooth, 13 DF; hb and resp like real data;
I Model 2: Almost unchanged – mystery gets 2.06 DF.

I Results for fake dataset B:
I Model 1: Signal 42 DF (real data 33), hb favored over resp;
I Model 2: Signal 17 DF, mystery 39 DF, hb & resp ⇠unchanged.



respiration mystery
Fake Dataset 2nd harmonic 1st harmonic 2nd harmonic

C X X
Real data X X X

I Model 1: signal + respiration + heartbeat

I Model 2: signal + respiration + heartbeat + mystery

I Fake dataset C, DF in components of fit

Model obj fcn signal hb resp mystery error
1 49.2 62.6 217.3 137.3 – 232.8
1 60.3 48.6 297.2 304.1 – 0.0005
2 6.6 248.6 56.3 338.5 0.002

This partly reproduces the e↵ects in the real data:

I Respiration is radically smoothed in Model 2.

I Signal is much smoother in Model 2 but not flat as in the real data.



Conclusion re lack of fit

I To reproduce fully the DLM puzzle, lack of fit must include both
I Respiration’s 2nd harmonic.
I Mystery’s 1st and 2nd harmonics.

I It’s not enough to include only:
I 2nd harmonic of respiration (Fake data A).
I 1st harmonic of mystery (Fake data B).
I 1st and 2nd harmonic of mystery (Fake data C), though this gets

closest to reproducing the full e↵ect.


