Two-variance models, re-expressed to give a simple RL

For the next bit we consider two-variance models, defined as:
» mixed linear models y = X3 + Zu + ¢, cov(u) = G, cov(e) = R
» R=02%,, G=02%,
» o2 and o2 are unknown

» 3. and X, are known and positive definite
» WLOG set e =1, and X5 = I,.

We proceed by
> re-parameterizing (3, u) to a canonical parameterization, which

» immediately gives the desired simple form for the RL.

Complication: (X|Z) is often not of full rank = some messiness.



Overview of the following math-choked slides

Here's what the math does:

(1) Derive orthonormal bases for R(X), R(X|Z)/R(X), and R(X|Z)c.
These three spaces partition real n-space.

Projecting y onto these spaces partitions it into info about, respectively,
> the fixed effects;
» the random effects and error mixed together; and

> error.

(2) Pick the basis for R(X|Z)/R(X) so that the re-parameterized RE has
diagonal covariance.

(3) That makes the RL have a simple form, which opens a lot of doors.



Define
> sx =rank(X) € {1,2,...,p}; sz =rank(X|Z) —sx € {1,2,...,q}

> sx + sz < p+ q; assume sx, sz > 0.

Define
» [x n X sx with columns an orthonomal basis for the col(X).
» Tz nxsz >T,Mx =0 and the columns of (Fx|lz) are an
orthonormal basis for col(X|Z).
» . nx (n — Sx — Sz) = I"CI'X =0, F’CI'Z =0, and (I'X|I'Z|I'C) is an
orthonormal basis for real n-space.

Define M (sx + sz) x (p+ q) 2 (X|Z) = ([ x|Fz)M, partitioned as

M_{Mxx sz} Mxx sx X p Mxz sx X q

0 Mz 0szxp Mzz sz x q

so X=FxMxx and Z =T xMxz + ;M.



(X|Z) = (Fx|Fz)M for

M — Mxx Mxz Mxx sx x p Mxz sx x q
0 Mz, OSZXp MzzszXq

Let Mzz have SVD Mzz = PA>’L’, so MzzM%, = PAP’
» Ps; xszand L
» A sz X sz and diagonal

» L' is sy x g with orthonormal rows.

Now re-parameterize the mixed linear model as

y=xz)| 0 | +e = meram| ] e

u

= (Mx[rzP) [ [?,* } +e€

> 3% = Mxx3 + Mxzu is a fixed effect: Precision(3*) =0
» v=A%L'uis s; x 1 with cov(v) = ¢2A, diagonal



Deriving the RL from the re-parameterized model

Having re-parameterized the mixed linear model as

y:(rx|rzp)[€ ]—l—e, v~ Ng,(0,07A), A diagonal, (1)

define K = (FzP|T'.), n x (n — sx); pre-multiply (1) by K’ to give

\")
Ky = { 0( )x1 } e & N(07U§I"7$X)
n—sx—Sz

So
» PTy =v+& ~ N(0,02A + o2l,), independent of
> r/cy =&~ N(Ovagln—sx—sz)



The RL is the likelihood for (02, 02) arising from the transformed data

» P'T,y =v+¢& ~ N, (0,02A + 02lg,), independent of
> r/c.y = 52 ~ N(O,Ugln—sx—sz)

Specifically,
n—sx — Sy 1
og RL(o%.o2ly) = B "5 —Tlog(od) — 5 yTelly
1 & 07
-= log(o2a; + 02) + 51—
2 = g( s e) Ugaj _1_0_5

for v = (V1,...,7s,) = P'I',y, a known function of y.
» Vsz V4



Examining the restricted likelihood

n—sx — Sz 1
ogRL(02.02ly) = B "X Ziog(ed) - L yTlly (2)
e
[ 012 3
_72 og(o2aj +02) + 25102 | (3)
for b = (V1,...,0s,) = P'T',y, a known function of y.

Eq'n (2) are the free terms for o2 they
» are a function of 02 but not J

» use y only through y'T' ..y, the residual sum of squares from an
unshrunk fit of y on (X|Z)

Eq'n (3) are the mixed terms for 02; they
» are a function of both 02 and o2

> use y through ¥, the estimate of v from the unshrunk fit.



The RL is the likelihood from a particular GLM

Specifically, a GLM with gamma errors, identity link, and:

J mixed term Free terms
GLM notation j=1...,sz j=sz+1
Data y; v? 02,1 =Y Teley/(n—sx —sz)
Canonical parameter 0; | —1/(02a; + 02) —1/0?
Shape parameter v; 1/2 (n—sx —sz)/2
E(y;)=-1/6; o2aj + o2 o2
Var(y;) = [E(vi)PP/vi | 2(02aj +02)? 2(02)?/(n— sx — sz)

GLMs provide a lot of tools (residuals, case influence, etc.).



Alternative derivation: The RL as a marginal posterior
Begin with the re-parameterized mixed linear model
= (Fx|zP) [ Li ] +e€, v~ N,(0,02A), A diagonal.

Pre-multiply both sides by the | matrix (Fx|[zP|F.) to give

rl a2
P/II-/Z y= v + €, (4)
rc 0(nfsxfsz)><1

The distribution of € is unchanged

Let (02, 02) be the prior distribution for (02, 02)

e’ S e? S

2

The joint posterior distribution of (3*,v, 02, 02) is easily shown to be ...



(8", v, 02, 2ly) o< (02, 02)

(02) ™2 exp (—(B" — Txy) (8" — Txy)/20?) ()
sz a: —0.5 sz a: -1
2_ 9 2_ €9 L )2

H(o a,+r> exp —Z<2oea,+r> (vi = )* | (6)
j=1 J j=1 J
(02) (=2 2 exp (—y'T T y/207) (7)
Sz 05 Sz

0 2ai+02) Texp| - Z \71-2/2(0331- +02) ], (8)
j=1 j=1

where ¥; = %\“@ and r = 02/02.

Eq'n (5) is m(B"|y, 02,02); Eq'n (6) is w(v]y, 02,02); (7) + (8) is the RL.
(6): vjlo2,02 ~ indep't N(¥;,02a;/(aj +r)), with DF a;/(a; +r).

Thus given r = 02 /02, v; is shrunk more for j with smaller a;.



Why this re-expression is cool

The ¥; are known linear functions of y; if 3 includes an intercept, they
are data contrasts.

Vjlo2,02 ~ indep't N(0,02a; 4+ 02); that's why the RL decomposes.

The a; determine how ¥; and y'T Iy inform about 02 and 2.

» The a; are (obscure) functions of X and Z, explored below.

vj|y,o§,a_f ~ indep't normal with mean 0, simple variance and DF.

By assumption sz > 0; thus o2 and o2 are identified <> either
(a) 3 free terms (i.e., n — sx — sz > 0) or (b) 3 > 2 distinct aj.



Recall: Penalized spline fit to the GMST data

n = 125, truncated quadratic basis, 30 knots at years 1880+ {4,...,120}

T T T T T T T
1880 1900 1020 1040 1960 1980 2000

Year

1 % (a—r1)d ... (a-—kk)i
X = ) Z=
1 X.n 2 (xn —Kk1)2 ... (xa— KK)2

sx = 3, sz = 30, though just barely



Recall: We re-parameterized the mixed linear model as
y = (Tx|TzP) [ % } +€, v~ Ng,(0,02A), A =diag{a;},

Here are the aj, in decreasing order:

36.0 3.15 0.562 0.147 0.0493  0.0195
8.76e-3 4.32e-3 2.30e-3 1.30e-3 7.68e-4 4.75e-4
3.05e-4 2.0le-4 1.37e-4 9.5leb 6.76e-5 4.8%-5
3.6le-5 2.71le-5 2.06e-5 1.60e-5 1.26e-5 1.01e-5
8.32e-6 7.00e-6 6.06e-6 5.42¢-6 5.06e-6 3.75e-6

The a; decline quickly: a;/as = 1841, the last 18 a;/a; < 10°

Later we'll see this implies
> the first few 0; are almost all of the data’s info about 2.

> the remaining 0; are almost exclusively about o2.



Here are the columns of I'zP that go with selected a;:

For a; = 36.0 (solid), a; = 3.15 (dashed), a3 = 0.562 (dotted)

canonical predictor

T T T T T T T
1880 1900 1920 1940 1960 1980 2000

For a, = 0.147 (solid), as = 0.049 (dashed), ag = 0.0195 (dotted)

0.4

canonical predictor
0.0 0.2

T T T T T T T
1880 1900 1920 1940 1960 1980 2000

For axg = 5.42e-6 (solid), axg = 5.06e-6 (dashed), asp = 3.75e-6 (dotted)

canonical predictor

1880 1900 1920 1940 1960 1980 2000



This penalized spline can be understood as
> a quadratic regression with unshrunk coefficients PLUS
> a regression on higher-order polynomials with shrunken coefficients

» WHERE the extent of shrinkage increases with the polynomial order.

What controls shrinkage:
» o2 controls shrinkage of all coefficients

> the a; control the relative degrees of shrinkage of different v;

> v; with smaller a; are shrunk more; broadly, variation in those
directions is mostly treated as error.

This appears to generalize for splines with truncated polynomial bases.



The RL is a gamma regression of 97 on a; with slope o2 and intercept o?.

Here are plots vs. j of \71-2 (top) and a; (bottom).
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For large j, the 0? are telling you about the intercept o2.

J



Contributions to the log RL of free and mixed terms (1 log contours)

log mixed terms
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Example: Simple ICAR model for periodontal data

ICAR with these neighbor pairs for n = 168 sites.

CHEHEICHEICHC]

Priors: Flat on the two island (arch) means; 02 and o2 ~ 1G(0.01,0.01).

Posterior medians: 2 1.25, 02 0.25, 02/02 4.0 — very smooth fit.

11
Tooth Number

7 Maxilaryilingual A Maxilary/Buccal - MandibulariLingual O Mandibular/Buccal
O+ Observed Data —— Posterior Mean



Re-expressing this ICAR model

Recall that the ICAR's precision matrix is Q/02, where
> Qji = number of region i's neighbors

» @ =-1if i~ j and 0 otherwise.

Spectral decomposition: Q =V diag(dy, .. ., dies, 0,0) V'
> dp > > dige >0, V= (V1|V2) where
» V; has sx = 2 columns, one for each arch (island)
» Vi has sy = 166 columns.

In the re-expression,
» ['x =V, the two arch (island) means are the fixed effects;
> P =l Mz =Vy[,166: 1];
> aj =1/dig7—j S0 a1 > -+ > aie6 > 0.



Here are the a; (multiplicities are even because the 2 arches are identical):

aj multiplicity ~ # distinct a;

149.0 2 1
37.33 2 1
16.64 2 1
940to 1 2 11
0.843 4 1
0.695 24 1
0.672 to 0.288 20r4 15
0.200 24 1
0.1996 to 0.1800 2or4 14
0.1798 24 1

a1/as: p-spline 1,841; ICAR 9 (a;/a;» = 35).
a1/ais: p-spline 263,083; ICAR, 61 (a1/az = 177).
31/ asmaliest: P-spline 9,593,165; ICAR 829.

= shrinkage of the v; is much less differentiated for the ICAR.



Columns of canonical predictors 7P = 'z (for one side of one arch)

0.05 010 0.15

-0.05

-0.15
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(a) Canonical predictors 1, 2

(b) Canonical predictors 3, 4
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(e) Canonical predictors 7, 8
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These are similar to the p-spline’'s canonical regressors.




The RL is a gamma regression of 97 on a; with slope o2 and intercept o?.

Here are plots vs. j of \71-2 (top) and a; (bottom).
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If this model fits, the \7J-2 should generally decline as j increases.

The outliers Vg3, Vg4 contrast direct vs interprox sites (one per arch).



Contour plot of log RL (1 log contours) — mixed terms only, but not bad.
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Other examples in the book

Spatial confounding with the ICAR model
» This machinery gives some insight into

> how the data determine o2, o2, and thus
» which true underlying models can produce spatial confounding.

Dynamic linear model with one quasi-cyclic component

> The a; decline like the ICAR's, not like the p-spline’s.
» Canonical predictors look like superpositions of pairs of sine curves.

> Broadly, the canonical predictors’ frequency increases as a;
decreases.

| use fake data to illustrate how the \?J-Z

v

can show lack of fit.



A tentative collection of tools

Tools from generalized linear models.
> | use residuals, measures of leverage, case influence.

> | haven't used deviance, though it might be useful.

The canonical observations ¥;: mean 0, variance 02a; + 2.

A modified restricted likelihood that omits j > m;
» This helps show which mixed terms inform about which variance.

DF in the fit for v;: a;/(a; + r) for r = 02 /02
» This is the contribution (I zP); makes to the fit.
» Larger DF indicate a greater contribution.



