Two-variance models, re-expressed to give a simple RL

For the next bit we consider two-variance models, defined as:

• mixed linear models $\mathbf{y} = \mathbf{X}\beta + \mathbf{Z}\mathbf{u} + \epsilon$, $\operatorname{cov}(\mathbf{u}) = \mathbf{G}$, $\operatorname{cov}(\epsilon) = \mathbf{R}$

$$\blacktriangleright \mathbf{R} = \sigma_e^2 \Sigma_e, \ \mathbf{G} = \sigma_s^2 \Sigma_s$$

- σ_e^2 and σ_s^2 are unknown
- Σ_e and Σ_s are known and positive definite

• WLOG set
$$\Sigma_e = \mathbf{I}_n$$
 and $\Sigma_s = \mathbf{I}_q$.

We proceed by

- re-parameterizing (β, \mathbf{u}) to a canonical parameterization, which
- immediately gives the desired simple form for the RL.

Complication: (X|Z) is often not of full rank \Rightarrow some messiness.

Overview of the following math-choked slides

Here's what the math does:

(1) Derive orthonormal bases for $R(\mathbf{X})$, $R(\mathbf{X}|\mathbf{Z})/R(\mathbf{X})$, and $R(\mathbf{X}|\mathbf{Z})^c$.

These three spaces partition real *n*-space.

Projecting y onto these spaces partitions it into info about, respectively,

- the fixed effects;
- the random effects and error mixed together; and

error.

(2) Pick the basis for $R(\mathbf{X}|\mathbf{Z})/R(\mathbf{X})$ so that the re-parameterized RE has diagonal covariance.

(3) That makes the RL have a simple form, which opens a lot of doors.

Define

▶
$$s_X = \operatorname{rank}(\mathbf{X}) \in \{1, 2, ..., p\}; s_Z = \operatorname{rank}(\mathbf{X}|\mathbf{Z}) - s_X \in \{1, 2, ..., q\}$$

▶ $s_X + s_Z \le p + q$; assume $s_X, s_Z > 0$.

Define

- ▶ Γ_X $n \times s_X$ with columns an orthonomal basis for the col(X).
- ► $\Gamma_Z \ n \times s_Z \ni \Gamma'_Z \Gamma_X = \mathbf{0}$ and the columns of $(\Gamma_X | \Gamma_Z)$ are an orthonormal basis for col $(\mathbf{X} | \mathbf{Z})$.
- ► $\Gamma_c \ n \times (n s_X s_Z) \ni \Gamma'_c \Gamma_X = 0$, $\Gamma'_c \Gamma_Z = 0$, and $(\Gamma_X | \Gamma_Z | \Gamma_c)$ is an orthonormal basis for real *n*-space.

Define $M(s_X + s_Z) \times (p + q) \ni (X|Z) = (\Gamma_X|\Gamma_Z)M$, partitioned as

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}_{XX} & \mathbf{M}_{XZ} \\ \mathbf{0} & \mathbf{M}_{ZZ} \end{bmatrix} \qquad \begin{array}{ccc} \mathbf{M}_{XX} & s_X \times p & \mathbf{M}_{XZ} & s_X \times q \\ \mathbf{0} & s_Z \times p & \mathbf{M}_{ZZ} & s_Z \times q \end{array}$$

so $\mathbf{X} = \mathbf{\Gamma}_X \mathbf{M}_{XX}$ and $\mathbf{Z} = \mathbf{\Gamma}_X \mathbf{M}_{XZ} + \mathbf{\Gamma}_Z \mathbf{M}_{ZZ}$.

Let $M_{\textit{ZZ}}$ have SVD $M_{\textit{ZZ}} = PA^{0.5}L',$ so $M_{\textit{ZZ}}M'_{\textit{ZZ}} = PAP'$

- ▶ **P** $s_Z \times s_Z$ and \bot
- A $s_Z \times s_Z$ and diagonal
- \mathbf{L}' is $s_Z \times q$ with orthonormal rows.

Now re-parameterize the mixed linear model as

$$\mathbf{y} = (\mathbf{X}|\mathbf{Z}) \begin{bmatrix} \beta \\ \mathbf{u} \end{bmatrix} + \boldsymbol{\epsilon} = (\mathbf{\Gamma}_X|\mathbf{\Gamma}_Z)\mathbf{M} \begin{bmatrix} \beta \\ \mathbf{u} \end{bmatrix} + \boldsymbol{\epsilon}$$
$$= (\mathbf{\Gamma}_X|\mathbf{\Gamma}_Z\mathbf{P}) \begin{bmatrix} \beta^* \\ \mathbf{v} \end{bmatrix} + \boldsymbol{\epsilon}$$

▶ $\beta^* = \mathbf{M}_{XX}\beta + \mathbf{M}_{XZ}\mathbf{u}$ is a fixed effect: Precision $(\beta^*) = \mathbf{0}$ ▶ $\mathbf{v} = \mathbf{A}^{0.5}\mathbf{L}'\mathbf{u}$ is $s_Z \times 1$ with $cov(\mathbf{v}) = \sigma_s^2\mathbf{A}$, diagonal

Deriving the RL from the re-parameterized model

Having re-parameterized the mixed linear model as

$$\mathbf{y} = (\mathbf{\Gamma}_X | \mathbf{\Gamma}_Z \mathbf{P}) \begin{bmatrix} \beta^* \\ \mathbf{v} \end{bmatrix} + \epsilon, \qquad \mathbf{v} \sim N_{s_Z}(\mathbf{0}, \sigma_s^2 \mathbf{A}), \quad \mathbf{A} \text{ diagonal}, \quad (1)$$

define $\mathbf{K} = (\mathbf{\Gamma}_Z \mathbf{P} | \mathbf{\Gamma}_c), n \times (n - s_X)$; pre-multiply (1) by \mathbf{K}' to give

$$\mathbf{K}'\mathbf{y} = \begin{bmatrix} \mathbf{v} \\ \mathbf{0}_{(n-s_X-s_Z)\times 1} \end{bmatrix} + \boldsymbol{\xi}, \qquad \boldsymbol{\xi} \sim N(\mathbf{0}, \sigma_e^2 \mathbf{I}_{n-s_X})$$

So

•
$$\mathbf{P}'\mathbf{\Gamma}'_{Z}y = \mathbf{v} + \xi_1 \sim N(\mathbf{0}, \sigma_s^2\mathbf{A} + \sigma_e^2\mathbf{I}_{s_Z})$$
, independent of
• $\mathbf{\Gamma}'_{c}y = \xi_2 \sim N(\mathbf{0}, \sigma_e^2\mathbf{I}_{n-s_X-s_Z})$

The RL is the likelihood for (σ_s^2,σ_e^2) arising from the transformed data

$$\mathbf{P}' \mathbf{\Gamma}'_{Z} y = \mathbf{v} + \xi_{1} \sim N_{sz} (\mathbf{0}, \sigma_{s}^{2} \mathbf{A} + \sigma_{e}^{2} \mathbf{I}_{sz}), \text{ independent of}$$

$$\mathbf{\Gamma}'_{c} y = \xi_{2} \sim N(\mathbf{0}, \sigma_{e}^{2} \mathbf{I}_{n-s_{\chi}-s_{z}})$$

Specifically,

$$\log RL(\sigma_s^2, \sigma_e^2 | \mathbf{y}) = B - \frac{n - s_X - s_Z}{2} \log(\sigma_e^2) - \frac{1}{2\sigma_e^2} \mathbf{y}' \mathbf{\Gamma}_c \mathbf{\Gamma}'_c \mathbf{y}$$
$$- \frac{1}{2} \sum_{j=1}^{s_Z} \left[\log(\sigma_s^2 \mathbf{a}_j + \sigma_e^2) + \frac{\hat{v}_j^2}{\sigma_s^2 \mathbf{a}_j + \sigma_e^2} \right],$$

for $\hat{\mathbf{v}} = (\hat{v}_1, \dots, \hat{v}_{s_Z})' = \mathbf{P}' \mathbf{\Gamma}'_Z \mathbf{y}$, a known function of \mathbf{y} .

Examining the restricted likelihood

$$\log RL(\sigma_s^2, \sigma_e^2 | \mathbf{y}) = B - \frac{n - s_X - s_Z}{2} \log(\sigma_e^2) - \frac{1}{2\sigma_e^2} \mathbf{y}' \mathbf{\Gamma}_c \mathbf{\Gamma}'_c \mathbf{y} \quad (2)$$
$$- \frac{1}{2} \sum_{j=1}^{s_Z} \left[\log(\sigma_s^2 \mathbf{a}_j + \sigma_e^2) + \frac{\hat{v}_j^2}{\sigma_s^2 \mathbf{a}_j + \sigma_e^2} \right], \quad (3)$$

for $\hat{\mathbf{v}} = (\hat{v}_1, \dots, \hat{v}_{s_Z})' = \mathbf{P}' \mathbf{\Gamma}_Z' \mathbf{y}$, a known function of \mathbf{y} .

Eq'n (2) are the *free terms* for σ_e^2 ; they

- ▶ are a function of σ_e^2 but not σ_s^2
- use y only through y'Γ_cΓ'_cy, the residual sum of squares from an unshrunk fit of y on (X|Z)

Eq'n (3) are the *mixed terms* for σ_s^2 ; they

- are a function of both σ_e^2 and σ_s^2
- use **y** through $\hat{\mathbf{v}}$, the estimate of **v** from the unshrunk fit.

The RL is the likelihood from a particular GLM

Specifically, a GLM with gamma errors, identity link, and:

	j th mixed term	Free terms
GLM notation	$j=1,\ldots,s_Z$	$j = s_Z + 1$
Data y _i	\hat{v}_j^2	$\hat{v}_{s_Z+1}^2 = \mathbf{y}' \mathbf{\Gamma}_c \mathbf{\Gamma}_c' \mathbf{y}/(n-s_X-s_Z)$
Canonical parameter θ_i	$-1/(\sigma_s^2 a_j + \sigma_e^2)$	$-1/\sigma_e^2$
Shape parameter $ u_i$	1/2	$(n-s_X-s_Z)/2$
$E(y_i) = -1/ heta_i$	$\sigma_s^2 a_j + \sigma_e^2$	σ_e^2
$Var(y_i) = [E(y_i)]^2 / \nu_i$	$2(\sigma_s^2 a_j + \sigma_e^2)^2$	$2(\sigma_e^2)^2/(n-s_X-s_Z)$

GLMs provide a lot of tools (residuals, case influence, etc.).

Alternative derivation: The RL as a marginal posterior

Begin with the re-parameterized mixed linear model

$$\mathbf{y} = (\mathbf{\Gamma}_X | \mathbf{\Gamma}_Z \mathbf{P}) \begin{bmatrix} \beta^* \\ \mathbf{v} \end{bmatrix} + \epsilon, \quad \mathbf{v} \sim N_{s_Z}(\mathbf{0}, \sigma_s^2 \mathbf{A}), \quad \mathbf{A} \text{ diagonal.}$$

Pre-multiply both sides by the \perp matrix $(\mathbf{\Gamma}_X | \mathbf{\Gamma}_Z \mathbf{P} | \mathbf{\Gamma}_c)'$ to give

$$\begin{bmatrix} \mathbf{\Gamma}'_{X} \\ \mathbf{P}'\mathbf{\Gamma}'_{Z} \\ \mathbf{\Gamma}'_{c} \end{bmatrix} \mathbf{y} = \begin{bmatrix} \boldsymbol{\beta}^{*} \\ \mathbf{v} \\ \mathbf{0}_{(n-s_{X}-s_{Z})\times 1} \end{bmatrix} + \boldsymbol{\epsilon}, \qquad (4)$$

The distribution of ϵ is unchanged

Let $\pi(\sigma_e^2, \sigma_s^2)$ be the prior distribution for (σ_e^2, σ_s^2)

The joint posterior distribution of $(\beta^*, \mathbf{v}, \sigma_e^2, \sigma_s^2)$ is easily shown to be ...

$$\pi(\boldsymbol{\beta}^*, \mathbf{v}, \sigma_e^2, \sigma_s^2 | \mathbf{y}) \propto \pi(\sigma_e^2, \sigma_s^2) (\sigma_e^2)^{-s_X/2} \exp\left(-(\boldsymbol{\beta}^* - \boldsymbol{\Gamma}'_X \mathbf{y})'(\boldsymbol{\beta}^* - \boldsymbol{\Gamma}'_X \mathbf{y})/2\sigma_e^2\right)$$
(5)

$$\prod_{j=1}^{s_{Z}} \left(\sigma_{e}^{2} \frac{a_{j}}{a_{j}+r} \right)^{-0.5} \exp \left(-\sum_{j=1}^{s_{Z}} \left(2\sigma_{e}^{2} \frac{a_{j}}{a_{j}+r} \right)^{-1} (v_{j}-\tilde{v}_{j})^{2} \right)$$
(6)

$$(\sigma_e^2)^{-(n-s_X-s_Z)/2} \exp\left(-\mathbf{y}' \mathbf{\Gamma}_c \mathbf{\Gamma}_c' \mathbf{y}/2\sigma_e^2\right)$$
(7)

$$\prod_{j=1}^{s_{Z}} \left(\sigma_{s}^{2} a_{j} + \sigma_{e}^{2} \right)^{-0.5} \exp\left(-\sum_{j=1}^{s_{Z}} \hat{v}_{j}^{2} / 2(\sigma_{s}^{2} a_{j} + \sigma_{e}^{2}) \right),$$
(8)

where $\tilde{v}_j = \frac{a_j}{a_j + r} \hat{v}_j$ and $r = \sigma_e^2 / \sigma_s^2$.

Eq'n (5) is $\pi(\beta^*|\mathbf{y}, \sigma_e^2, \sigma_s^2)$; Eq'n (6) is $\pi(\mathbf{v}|\mathbf{y}, \sigma_e^2, \sigma_s^2)$; (7) + (8) is the RL. (6): $v_j|\sigma_e^2, \sigma_s^2 \sim \text{indep't } N(\tilde{v}_j, \sigma_e^2 a_j/(a_j + r))$, with DF $a_j/(a_j + r)$.

Thus given $r = \sigma_e^2 / \sigma_s^2$, v_j is shrunk more for j with smaller a_j .

Why this re-expression is cool

The \hat{v}_j are known linear functions of **y**; if β includes an intercept, they are data contrasts.

 $\hat{v}_j | \sigma_e^2, \sigma_s^2 \sim \text{indep't } N(0, \sigma_s^2 a_j + \sigma_e^2); \text{ that's why the RL decomposes.}$

The a_j determine how \hat{v}_j and $\mathbf{y'}\Gamma_c\Gamma'_c\mathbf{y}$ inform about σ_e^2 and σ_s^2 . The a_i are (obscure) functions of **X** and **Z**, explored below.

 $v_j | \mathbf{y}, \sigma_e^2, \sigma_s^2 \sim \text{indep't normal with mean 0, simple variance and DF.}$

By assumption $s_Z > 0$; thus σ_e^2 and σ_s^2 are identified \Leftrightarrow either (a) \exists free terms (i.e., $n - s_X - s_Z > 0$) or (b) $\exists \ge 2$ distinct a_j .

Recall: Penalized spline fit to the GMST data

n = 125, truncated quadratic basis, 30 knots at years $1880 + \{4, \ldots, 120\}$

 $s_X = 3$, $s_Z = 30$, though just barely

Recall: We re-parameterized the mixed linear model as

$$\mathbf{y} = (\mathbf{\Gamma}_X | \mathbf{\Gamma}_Z \mathbf{P}) \begin{bmatrix} \beta^* \\ \mathbf{v} \end{bmatrix} + \epsilon, \quad \mathbf{v} \sim N_{s_Z}(\mathbf{0}, \sigma_s^2 \mathbf{A}), \quad \mathbf{A} = \text{diag}\{\mathbf{a}_j\},$$

Here are the a_i , in decreasing order:

36.0	3.15	0.562	0.147	0.0493	0.0195
8.76e-3	4.32e-3	2.30e-3	1.30e-3	7.68e-4	4.75e-4
3.05e-4	2.01e-4	1.37e-4	9.51e-5	6.76e-5	4.89e-5
3.61e-5	2.71e-5	2.06e-5	1.60e-5	1.26e-5	1.01e-5
8.32e-6	7.00e-6	6.06e-6	5.42e-6	5.06e-6	3.75e-6

The a_j decline quickly: $a_1/a_6 = 1841$, the last $18 \ a_1/a_j < 10^5$

Later we'll see this implies

- the first few \hat{v}_i are almost all of the data's info about σ_s^2 .
- the remaining \hat{v}_i are almost exclusively about σ_e^2 .

Here are the columns of $\Gamma_Z \mathbf{P}$ that go with selected a_i :

For $a_1 = 36.0$ (solid), $a_2 = 3.15$ (dashed), $a_3 = 0.562$ (dotted)

This penalized spline can be understood as

- ► a quadratic regression with unshrunk coefficients PLUS
- > a regression on higher-order polynomials with shrunken coefficients
- WHERE the extent of shrinkage increases with the polynomial order.

What controls shrinkage:

- σ_s^2 controls shrinkage of all coefficients
- ▶ the *a_j* control the *relative* degrees of shrinkage of different *v_j*
- v_j with smaller a_j are shrunk more; broadly, variation in those directions is mostly treated as error.

This appears to generalize for splines with truncated polynomial bases.

The RL is a gamma regression of \hat{v}_j^2 on a_j with slope σ_s^2 and intercept σ_e^2 . Here are plots vs. j of \hat{v}_i^2 (top) and a_j (bottom).

For large j, the \hat{v}_i^2 are telling you about the intercept σ_e^2 .

Contributions to the log RL of free and mixed terms (1 log contours)

Example: Simple ICAR model for periodontal data

ICAR with these neighbor pairs for n = 168 sites.

Priors: Flat on the two island (arch) means; σ_e^2 and $\sigma_s^2 \sim IG(0.01, 0.01)$.

Posterior medians: σ_e^2 1.25, σ_s^2 0.25, σ_e^2/σ_s^2 4.0 – very smooth fit.

Z Maxillary/Lingual △ Maxillary/Buccal + Mandibular/Lingual ○ Mandibular/Buccal
 O+△
 Observed Data - Posterior Mean

Re-expressing this ICAR model

Recall that the ICAR's precision matrix is \mathbf{Q}/σ_s^2 , where

- Q_{ii} = number of region *i*'s neighbors
- $Q_{ij} = -1$ if $i \sim j$ and 0 otherwise.

Spectral decomposition: $\mathbf{Q} = \mathbf{V} \operatorname{diag}(d_1, \ldots, d_{166}, 0, 0) \mathbf{V}'$

- $d_1 \geq \cdots \geq d_{166} > 0$, $\mathbf{V} = (\mathbf{V}_1 | \mathbf{V}_2)$ where
- V_2 has $s_X = 2$ columns, one for each arch (island)

In the re-expression,

• $\Gamma_X = \mathbf{V}_2$, the two arch (island) means are the fixed effects;

•
$$\mathbf{P} = \mathbf{I}_{166}, \ \mathbf{\Gamma}_Z = \mathbf{V}_1[, 166:1];$$

•
$$a_j = 1/d_{167-j}$$
 so $a_1 \ge \cdots \ge a_{166} > 0$.

a _j	multiplicity	# distinct a_j
149.0	2	1
37.33	2	1
16.64	2	1
9.40 to 1	2	11
0.843	4	1
0.695	24	1
0.672 to 0.288	2 or 4	15
0.200	24	1
0.1996 to 0.1800	2 or 4	14
0.1798	24	1

Here are the a_i (multiplicities are even because the 2 arches are identical):

 a_1/a_6 : p-spline 1,841; ICAR 9 ($a_1/a_{12} = 35$).

 a_1/a_{15} : p-spline 263,083; ICAR, 61 ($a_1/a_{30} = 177$).

*a*₁/*a_{smallest}*: p-spline 9, 593, 165; ICAR 829.

 \Rightarrow shrinkage of the v_j is much less differentiated for the ICAR.

Columns of canonical predictors $\Gamma_Z \mathbf{P} = \Gamma_Z$ (for one side of one arch)

These are similar to the p-spline's canonical regressors.

The RL is a gamma regression of \hat{v}_j^2 on a_j with slope σ_s^2 and intercept σ_e^2 . Here are plots vs. j of \hat{v}_i^2 (top) and a_j (bottom).

If this model fits, the \hat{v}_j^2 should generally decline as j increases. The outliers \hat{v}_{83} , \hat{v}_{84} contrast direct vs interprox sites (one per arch).

Contour plot of log RL (1 log contours) - mixed terms only, but not bad.

 σ_s^2 on vertical, σ_e^2 on horizontal.

Other examples in the book

Spatial confounding with the ICAR model

- This machinery gives some insight into
 - how the data determine σ_s^2 , σ_e^2 , and thus
 - which true underlying models can produce spatial confounding.

Dynamic linear model with one quasi-cyclic component

- ► The *a_j* decline like the ICAR's, not like the p-spline's.
- Canonical predictors look like superpositions of pairs of sine curves.
- Broadly, the canonical predictors' frequency increases as a_j decreases.
- ▶ I use fake data to illustrate how the \hat{v}_i^2 can show lack of fit.

A tentative collection of tools

Tools from generalized linear models.

- ► I use residuals, measures of leverage, case influence.
- I haven't used deviance, though it might be useful.

The canonical observations \hat{v}_j : mean 0, variance $\sigma_s^2 a_j + \sigma_e^2$.

A modified restricted likelihood that omits j > m;

> This helps show which mixed terms inform about which variance.

DF in the fit for v_j : $a_j/(a_j + r)$ for $r = \sigma_e^2/\sigma_s^2$.

- This is the contribution $(\Gamma_Z \mathbf{P})_j$ makes to the fit.
- Larger DF indicate a greater contribution.