
Two-variance models, re-expressed to give a simple RL

For the next bit we consider two-variance models, defined as:

I mixed linear models y = Xβ + Zu + ε, cov(u) = G, cov(ε) = R

I R = σ2
eΣe , G = σ2

s Σs

I σ2
e and σ2

s are unknown

I Σe and Σs are known and positive definite
I WLOG set Σe = In and Σs = Iq.

We proceed by

I re-parameterizing (β,u) to a canonical parameterization, which

I immediately gives the desired simple form for the RL.

Complication: (X|Z) is often not of full rank ⇒ some messiness.



Overview of the following math-choked slides

Here’s what the math does:

(1) Derive orthonormal bases for R(X), R(X|Z)/R(X), and R(X|Z)c .

These three spaces partition real n-space.

Projecting y onto these spaces partitions it into info about, respectively,

I the fixed effects;

I the random effects and error mixed together; and

I error.

(2) Pick the basis for R(X|Z)/R(X) so that the re-parameterized RE has
diagonal covariance.

(3) That makes the RL have a simple form, which opens a lot of doors.



Define

I sX = rank(X) ∈ {1, 2, . . . , p}; sZ = rank(X|Z)− sX ∈ {1, 2, . . . , q}
I sX + sZ ≤ p + q; assume sX , sZ > 0.

Define

I ΓX n × sX with columns an orthonomal basis for the col(X).

I ΓZ n × sZ 3 Γ′ZΓX = 0 and the columns of (ΓX |ΓZ ) are an
orthonormal basis for col(X|Z).

I Γc n × (n − sX − sZ ) 3 Γ′cΓX = 0, Γ′cΓZ = 0, and (ΓX |ΓZ |Γc) is an
orthonormal basis for real n-space.

Define M (sX + sZ )× (p + q) 3 (X|Z) = (ΓX |ΓZ )M, partitioned as

M =

[
MXX MXZ

0 MZZ

]
MXX sX × p MXZ sX × q

0 sZ × p MZZ sZ × q

so X = ΓXMXX and Z = ΓXMXZ + ΓZMZZ .



(X|Z) = (ΓX |ΓZ )M for

M =

[
MXX MXZ

0 MZZ

]
MXX sX × p MXZ sX × q

0 sZ × p MZZ sZ × q

Let MZZ have SVD MZZ = PA0.5L′, so MZZM′ZZ = PAP′

I P sZ × sZ and ⊥
I A sZ × sZ and diagonal

I L′ is sZ × q with orthonormal rows.

Now re-parameterize the mixed linear model as

y = (X|Z)

[
β
u

]
+ ε = (ΓX |ΓZ )M

[
β
u

]
+ ε

= (ΓX |ΓZP)

[
β∗

v

]
+ ε

I β∗ = MXXβ + MXZu is a fixed effect: Precision(β∗) = 0

I v = A0.5L′u is sZ × 1 with cov(v) = σ2
s A, diagonal



Deriving the RL from the re-parameterized model

Having re-parameterized the mixed linear model as

y = (ΓX |ΓZP)

[
β∗

v

]
+ ε, v ∼ NsZ (0, σ2

s A), A diagonal, (1)

define K = (ΓZP|Γc), n × (n − sX ); pre-multiply (1) by K′ to give

K′y =

[
v

0(n−sX−sZ )×1

]
+ ξ, ξ ∼ N(0, σ2

e In−sX )

So

I P′Γ′Zy = v + ξ1 ∼ N(0, σ2
s A + σ2

e IsZ ), independent of

I Γ′cy = ξ2 ∼ N(0, σ2
e In−sX−sZ )



The RL is the likelihood for (σ2
s , σ

2
e ) arising from the transformed data

I P′Γ′Zy = v + ξ1 ∼ NsZ (0, σ2
s A + σ2

e IsZ ), independent of

I Γ′cy = ξ2 ∼ N(0, σ2
e In−sX−sZ )

Specifically,

logRL(σ2
s , σ

2
e |y) = B − n − sX − sZ

2
log(σ2

e )− 1

2σ2
e

y′ΓcΓ′cy

−1

2

sZ∑
j=1

[
log(σ2

s aj + σ2
e ) +

v̂2
j

σ2
s aj + σ2

e

]
,

for v̂ = (v̂1, . . . , v̂sZ )′ = P′Γ′Zy, a known function of y.



Examining the restricted likelihood

logRL(σ2
s , σ

2
e |y) = B − n − sX − sZ

2
log(σ2

e )− 1

2σ2
e

y′ΓcΓ′cy (2)

−1

2

sZ∑
j=1

[
log(σ2

s aj + σ2
e ) +

v̂2
j

σ2
s aj + σ2

e

]
, (3)

for v̂ = (v̂1, . . . , v̂sZ )′ = P′Γ′Zy, a known function of y.

Eq’n (2) are the free terms for σ2
e ; they

I are a function of σ2
e but not σ2

s

I use y only through y′ΓcΓ′cy, the residual sum of squares from an
unshrunk fit of y on (X|Z)

Eq’n (3) are the mixed terms for σ2
s ; they

I are a function of both σ2
e and σ2

s

I use y through v̂, the estimate of v from the unshrunk fit.



The RL is the likelihood from a particular GLM

Specifically, a GLM with gamma errors, identity link, and:

j th mixed term Free terms
GLM notation j = 1, . . . , sZ j = sZ + 1

Data yi v̂2
j v̂2

sZ+1 = y′ΓcΓ′cy/(n − sX − sZ )

Canonical parameter θi −1/(σ2
s aj + σ2

e ) −1/σ2
e

Shape parameter νi 1/2 (n − sX − sZ )/2

E (yi ) = −1/θi σ2
s aj + σ2

e σ2
e

Var(yi ) = [E (yi )]2/νi 2(σ2
s aj + σ2

e )2 2(σ2
e )2/(n − sX − sZ )

GLMs provide a lot of tools (residuals, case influence, etc.).



Alternative derivation: The RL as a marginal posterior

Begin with the re-parameterized mixed linear model

y = (ΓX |ΓZP)

[
β∗

v

]
+ ε, v ∼ NsZ (0, σ2

s A), A diagonal.

Pre-multiply both sides by the ⊥ matrix (ΓX |ΓZP|Γc)′ to give Γ′X
P′Γ′Z

Γ′c

 y =

 β∗

v
0(n−sX−sZ )×1

+ ε, (4)

The distribution of ε is unchanged

Let π(σ2
e , σ

2
s ) be the prior distribution for (σ2

e , σ
2
s )

The joint posterior distribution of (β∗, v, σ2
e , σ

2
s ) is easily shown to be . . .



π(β∗, v, σ2
e , σ

2
s |y) ∝ π(σ2

e , σ
2
s )

(σ2
e )−sX/2 exp

(
−(β∗ − Γ′Xy)′(β∗ − Γ′Xy)/2σ2

e

)
(5)

sZ∏
j=1

(
σ2
e

aj
aj + r

)−0.5
exp

− sZ∑
j=1

(
2σ2

e

aj
aj + r

)−1
(vj − ṽj)

2

 (6)

(σ2
e )−(n−sX−sZ )/2 exp

(
−y′ΓcΓ′cy/2σ2

e

)
(7)

sZ∏
j=1

(
σ2
s aj + σ2

e

)−0.5
exp

− sZ∑
j=1

v̂2
j /2(σ2

s aj + σ2
e )

 , (8)

where ṽj =
aj

aj+r v̂j and r = σ2
e/σ

2
s .

Eq’n (5) is π(β∗|y, σ2
e , σ

2
s ); Eq’n (6) is π(v|y, σ2

e , σ
2
s ); (7) + (8) is the RL.

(6): vj |σ2
e , σ

2
s ∼ indep’t N(ṽj , σ

2
eaj/(aj + r)), with DF aj/(aj + r).

Thus given r = σ2
e/σ

2
s , vj is shrunk more for j with smaller aj .



Why this re-expression is cool

The v̂j are known linear functions of y; if β includes an intercept, they
are data contrasts.

v̂j |σ2
e , σ

2
s ∼ indep’t N(0, σ2

s aj + σ2
e ); that’s why the RL decomposes.

The aj determine how v̂j and y′ΓcΓ′cy inform about σ2
e and σ2

s .

I The aj are (obscure) functions of X and Z, explored below.

vj |y, σ2
e , σ

2
s ∼ indep’t normal with mean 0, simple variance and DF.

By assumption sZ > 0; thus σ2
e and σ2

s are identified ⇔ either
(a) ∃ free terms (i.e., n − sX − sZ > 0) or (b) ∃ ≥ 2 distinct aj .



Recall: Penalized spline fit to the GMST data

n = 125, truncated quadratic basis, 30 knots at years 1880 + {4, . . . , 120}
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X =


1 x1 x21
1 x2 xp2

...
1 xn x2n

 Z =

 (x1 − κ1)2+ . . . (x1 − κK )2+
...

(xn − κ1)2+ . . . (xn − κK )2+


sX = 3, sZ = 30, though just barely



Recall: We re-parameterized the mixed linear model as

y = (ΓX |ΓZP)

[
β∗

v

]
+ ε, v ∼ NsZ (0, σ2

s A), A = diag{aj},

Here are the aj , in decreasing order:

36.0 3.15 0.562 0.147 0.0493 0.0195
8.76e-3 4.32e-3 2.30e-3 1.30e-3 7.68e-4 4.75e-4
3.05e-4 2.01e-4 1.37e-4 9.51e-5 6.76e-5 4.89e-5
3.61e-5 2.71e-5 2.06e-5 1.60e-5 1.26e-5 1.01e-5
8.32e-6 7.00e-6 6.06e-6 5.42e-6 5.06e-6 3.75e-6

The aj decline quickly: a1/a6 = 1841, the last 18 a1/aj < 105

Later we’ll see this implies

I the first few v̂j are almost all of the data’s info about σ2
s .

I the remaining v̂j are almost exclusively about σ2
e .



Here are the columns of ΓZP that go with selected aj :

For a1 = 36.0 (solid), a2 = 3.15 (dashed), a3 = 0.562 (dotted)

For a4 = 0.147 (solid), a5 = 0.049 (dashed), a6 = 0.0195 (dotted)

For a28 = 5.42e-6 (solid), a29 = 5.06e-6 (dashed), a30 = 3.75e-6 (dotted)



This penalized spline can be understood as

I a quadratic regression with unshrunk coefficients PLUS

I a regression on higher-order polynomials with shrunken coefficients

I WHERE the extent of shrinkage increases with the polynomial order.

What controls shrinkage:

I σ2
s controls shrinkage of all coefficients

I the aj control the relative degrees of shrinkage of different vj
I vj with smaller aj are shrunk more; broadly, variation in those

directions is mostly treated as error.

This appears to generalize for splines with truncated polynomial bases.



The RL is a gamma regression of v̂2
j on aj with slope σ2

s and intercept σ2
e .

Here are plots vs. j of v̂2
j (top) and aj (bottom).

For large j , the v̂2
j are telling you about the intercept σ2

e .



Contributions to the log RL of free and mixed terms (1 log contours)
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Example: Simple ICAR model for periodontal data

ICAR with these neighbor pairs for n = 168 sites.

Priors: Flat on the two island (arch) means; σ2
e and σ2

s ∼ IG(0.01,0.01).

Posterior medians: σ2
e 1.25, σ2

s 0.25, σ2
e/σ

2
s 4.0 – very smooth fit.
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Re-expressing this ICAR model

Recall that the ICAR’s precision matrix is Q/σ2
s , where

I Qii = number of region i ’s neighbors

I Qij = -1 if i ∼ j and 0 otherwise.

Spectral decomposition: Q = V diag(d1, . . . , d166, 0, 0) V′

I d1 ≥ · · · ≥ d166 > 0, V = (V1|V2) where

I V2 has sX = 2 columns, one for each arch (island)

I V1 has sZ = 166 columns.

In the re-expression,

I ΓX = V2, the two arch (island) means are the fixed effects;

I P = I166, ΓZ = V1[, 166 : 1];

I aj = 1/d167−j so a1 ≥ · · · ≥ a166 > 0.



Here are the aj (multiplicities are even because the 2 arches are identical):

aj multiplicity # distinct aj
149.0 2 1
37.33 2 1
16.64 2 1

9.40 to 1 2 11
0.843 4 1
0.695 24 1

0.672 to 0.288 2 or 4 15
0.200 24 1

0.1996 to 0.1800 2 or 4 14
0.1798 24 1

a1/a6: p-spline 1, 841; ICAR 9 (a1/a12 = 35).

a1/a15: p-spline 263, 083; ICAR, 61 (a1/a30 = 177).

a1/asmallest : p-spline 9, 593, 165; ICAR 829.

⇒ shrinkage of the vj is much less differentiated for the ICAR.



Columns of canonical predictors ΓZP = ΓZ (for one side of one arch)
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(e) Canonical predictors 7, 8

These are similar to the p-spline’s canonical regressors.



The RL is a gamma regression of v̂2
j on aj with slope σ2

s and intercept σ2
e .

Here are plots vs. j of v̂2
j (top) and aj (bottom).

If this model fits, the v̂2
j should generally decline as j increases.

The outliers v̂83, v̂84 contrast direct vs interprox sites (one per arch).



Contour plot of log RL (1 log contours) – mixed terms only, but not bad.

0.2 0.5 1.0 2.0 5.0

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

σ2
s on vertical, σ2

e on horizontal.



Other examples in the book

Spatial confounding with the ICAR model

I This machinery gives some insight into
I how the data determine σ2

s , σ2
e , and thus

I which true underlying models can produce spatial confounding.

Dynamic linear model with one quasi-cyclic component

I The aj decline like the ICAR’s, not like the p-spline’s.

I Canonical predictors look like superpositions of pairs of sine curves.

I Broadly, the canonical predictors’ frequency increases as aj
decreases.

I I use fake data to illustrate how the v̂2
j can show lack of fit.



A tentative collection of tools

Tools from generalized linear models.

I I use residuals, measures of leverage, case influence.

I I haven’t used deviance, though it might be useful.

The canonical observations v̂j : mean 0, variance σ2
s aj + σ2

e .

A modified restricted likelihood that omits j > m;

I This helps show which mixed terms inform about which variance.

DF in the fit for vj : aj/(aj + r) for r = σ2
e/σ

2
s .

I This is the contribution (ΓZP)j makes to the fit.

I Larger DF indicate a greater contribution.


