
Exploring the RL: Which v̂j tell us about which variance?

Broadly, the argument to follow shows:

I mixed terms with large aj mostly provide information about σ2
s

I mixed terms with small aj mostly provide information about σ2
e

I free terms mostly provide information about σ2
e .

⇒ The few mixed terms with large aj mostly determine σ̂2
s and the

extent of smoothing.

This generalization is oversimplified but useful.

I begin with heuristics and then use case deletion and the modified RL.

We end up explaining two of our puzzles.



Heuristics 1: Arm-waving about the log RL

−n − sX − sZ
2

log(σ2
e )− 1

2σ2
e

y′ΓcΓ′cy −1

2

sZ∑
j=1

[
log(σ2

s aj + σ2
e ) +

v̂2
j

σ2
s aj + σ2

e

]
,

for v̂ = (v̂1, . . . , v̂sZ )′ = P′Γ′Zy.

The free terms are a function of σ2
e only.

I They’re like n − sX − sZ mixed terms with aj = 0

I ⇒ They can affect σ̂2
s and its approximate SE only indirectly.

The mixed terms are functions of both variances.

I The j th mixed term depends on the variances through σ2
s aj + σ2

e .

I If aj is small, it’s effectively a function of σ2
e only.

I If aj is large, it’s dominated by σ2
s .



Heuristics 2: 1st derivatives of log RL

Call the j th mixed term mj .

∂mj

∂σ2
e

= −0.5(σ2
s aj + σ2

e )−1 + 0.5v̂2
j (σ2

s aj + σ2
e )−2

∂mj

∂σ2
s

= aj
∂mj

∂σ2
e

.

If aj is small,

I ∂mj/∂σ
2
s is much closer to zero than ∂mj/∂σ

2
e .

I Both derivatives are insensitive to changes in σ2
s .

I ⇒ The j th mixed term mj has little effect on σ̂2
s .

If aj is large,

I ∂mj/∂σ
2
s is much larger than ∂mj/∂σ

2
e .

I Both derivatives are sensitive to changes in σ2
s .



Heuristics 3: 2nd derivatives of log RL
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Evaluate these at the max-RL estimates, multiply by -1, sum over j
⇒ approx precision(σ̂2

e , σ̂
2
s ).

If aj is small,

I mj makes a negligible contribution to ∂2mj/∂(σ2
s )2.

If aj is large,

I mj makes a much larger contribution to prec(σ̂2
s ) than to prec(σ̂2

e ).



Examining the RL using case-deletion diagnostics for GLMs

The RL is the likelihood from a gamma-errors GLM, with

I sZ “observations” for the sZ mixed terms

I 1 “observations” for the free terms

We’ll use GLM machinery to see the effect of deleting each “observation”
I Deleting the j th mixed term ≡ making (ΓZP)j a fixed effect instead

of a random effect, which we might actually do.

I Deleting the free terms ≡ reducing the dataset to the mixed-term v̂j .

The usual case-deletion diagnostic uses a linear approximation to the
GLM to approximate the effect of deleting a case.

We’ll consider the effects of case deletion on σ̂2
s and σ̂2

e separately, rather
than on the 2-vector of parameters jointly.



Let W be the diagonal weight matrix evaluated at the full-data estimates
(σ̃2

s , σ̃
2
e ), with entries var(v̂2

j )−1.

Wj =
1

2
(σ̃2

e + σ̃2
s aj)

−2, j = 1, . . . , sZ

WsZ+1 =
n − sX − sZ

2
(σ̃2

e )−2.

The GLM’s design matrix B has rows Bj = [1 aj ]; asZ+1 = 0 for free
terms.

Apply the usual case-deletion formula to the approximate linear model

W1/2v̂2 = W1/2B

[
σ2
e

σ2
s

]
+ ε, ε ∼ N(0, IsZ+1)

The one-step approx change in (σ̂2
e , σ̂

2
s ) from deleting v̂2

j is the 2-vector

W
1/2
j (v̂2

j − σ̃2
s aj − σ̃2

e )

× (−W 1/2
j (B′WB)−1B′j)/(1−WjBj(B′WB)−1B′j);



The one-step approx change in (σ̂2
e , σ̂

2
s ) from deleting v̂2

j is the 2-vector

W
1/2
j (v̂2

j − σ̃2
s aj − σ̃2

e ) (1)

× (−W 1/2
j (B′WB)−1B′j)/(1−WjBj(B′WB)−1B′j); (2)

I (1) is the standardized (Pearson) residual for case j .

I (2) is a 2-vector multiplier of the standardized residual, with one row
each for σ̂2

e and σ̂2
s .

H2013 Sec 16.1.2 examines (2) in painful detail, which I’ll spare you.

Key facts re (2): As j increases from 1 to sz + 1

I (2)’s entry for σ̂2
e decreases from positive to negative.

I (2)’s entry for σ̂2
s increases from negative to positive.

I They have opposite signs for most j , both negative for some j .



Example: Penalized spline fit to the GMST data

n = 125, truncated quadratic basis, 30 knots at years 1880 + {4, . . . , 120}
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This penalized spline can be understood as

I a quadratic regression with unshrunk coefficients

I + regression on higher-order polynomials with shrunken coefficients

I and the extent of shrinkage increases with the polynomial order.

Following are the case-deletion diagnostics and their components.



scaled Multiplier for
j aj v̂2

j resid σ2
e σ2

s

1 3.6(1) 2856 -0.65 0.81 -727
2 3.2(0) 5248 0.48 0.63 -666
3 5.6(-1) 815 0.14 0.05 -475
4 1.5(-1) 409 0.31 -0.69 -252
5 4.9(-2) 8 -0.68 -1.23 -116
6 2.0(-2) 335 0.74 -1.51 -51.0
7 8.8(-3) 6 -0.68 -1.64 -22.5
8 4.3(-3) 497 1.65 -1.71 -9.67
9 2.3(-3) 15 -0.63 -1.73 -3.58

10 1.3(-3) 248 0.49 -1.75 -0.51
11 7.7(-4) 461 1.53 -1.76 1.13
12 4.8(-4) 119 -0.13 -1.76 2.04
16 9.5(-5) 429 1.38 -1.77 3.23
19 3.6(-5) 8 -0.67 -1.77 3.41
26 7.0(-6) 588 2.15 -1.77 3.51
29 5.1(-6) 78 -0.33 -1.77 3.51
30 3.7(-6) 365 1.07 -1.77 3.52
31 0 137 -0.37 -78.31 156.15



Estimate’s change from
scaled σ̃2

e = 145.3 σ̃2
s = 947.7

j aj v̂2
j resid 1-step exact 1-step exact

1 3.6(1) 2856 -0.65 -0.53 -0.45 471.1 448.2
2 3.2(0) 5248 0.48 0.30 0.92 -318.1 -453.8
3 5.6(-1) 815 0.14 0.01 0.03 -68.2 -74.7
4 1.5(-1) 409 0.31 -0.21 -0.21 -77.5 -79.0
5 4.9(-2) 8 -0.68 0.83 0.76 78.4 94.7
6 2.0(-2) 335 0.74 -1.12 -1.11 -37.7 -38.2
7 8.8(-3) 6 -0.68 1.12 1.12 15.3 16.3
8 4.3(-3) 497 1.65 -2.81 -2.81 -15.9 -15.8
9 2.3(-3) 15 -0.63 1.10 1.10 2.3 1.8

10 1.3(-3) 248 0.49 -0.86 -0.86 -0.2 0.2
11 7.7(-4) 461 1.53 -2.68 -2.69 1.7 3.3
12 4.8(-4) 119 -0.13 0.23 0.23 -0.3 -0.4
16 9.5(-5) 429 1.38 -2.44 -2.44 4.4 6.3
19 3.6(-5) 8 -0.67 1.18 1.19 -2.3 -3.1
26 7.0(-6) 588 2.15 -3.81 -3.82 7.5 10.6
29 5.1(-6) 78 -0.33 0.58 0.58 -1.1 -1.6
30 3.7(-6) 365 1.07 -1.90 -1.90 3.8 5.2
31 0 137 -0.37 28.86 29.06 -57.5 -66.0



Points about the previous two pages of tables

The one-step approximation is pretty good.

This supports the heuristics on earlier slides.

I The multiplier for σ2
e starts + and ↓ to −.

I The multiplier for σ2
s starts − and ↑ to +.

I Both multipliers are negative for j = 4, . . . , 10.

⇒ The influence on

I σ2
s is in the “right” direction and largest for small j .

I σ2
e is in the “right” direction and largest for large j .

Note: Pearson residuals are necessarily > ≈ -0.7.



Example: Simple ICAR model for periodontal data

ICAR with these neighbor pairs for n = 168 sites.

Priors: Flat on the two island (arch) means; σ2
e and σ2

s ∼ IG(0.01,0.01).

Posterior medians: σ2
e 1.25, σ2

s 0.25, σ2
e/σ

2
s 4.0 – very smooth fit.
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scaled Multiplier for
j aj v̂2

j resid σ2
e σ2

s

1 149.0 2.9 -0.7 0.028 -0.057
2 149.0 4.9 -0.6 0.028 -0.057
3 37.3 34.3 1.6 0.023 -0.050
4 37.3 28.2 1.2 0.023 -0.050
5 16.6 0.2 -0.7 0.017 -0.041
6 16.6 1.0 -0.6 0.017 -0.041
7 9.4 2.4 -0.2 0.012 -0.033
8 9.4 3.2 -0.1 0.012 -0.033
9 6.1 3.6 0.2 0.007 -0.027

10 6.1 0.7 -0.5 0.007 -0.027
16 2.4 6.2 1.6 -0.003 -0.013
17 1.9 4.3 1.0 -0.005 -0.011
30 0.8 4.1 1.3 -0.010 -0.003
31 0.8 7.9 3.1 -0.010 -0.003
83 0.3 35.3 17.8 -0.014 0.002
84 0.3 45.1 22.9 -0.014 0.002
94 0.2 4.4 1.7 -0.015 0.003

115 0.2 4.2 1.5 -0.015 0.003



scaled Multiplier for
j aj v̂2

j resid σ2
e σ2

s

128 0.2 1.8 0.3 -0.015 0.003
129 0.2 6.5 2.8 -0.015 0.003
147 0.2 0.5 -0.5 -0.015 0.003
148 0.2 0.0 -0.7 -0.015 0.003
149 0.2 1.0 -0.1 -0.015 0.003
150 0.2 0.1 -0.7 -0.015 0.003
151 0.2 0.9 -0.2 -0.015 0.003
152 0.2 0.1 -0.7 -0.015 0.003
153 0.2 0.0 -0.7 -0.015 0.003
154 0.2 0.0 -0.7 -0.015 0.003
155 0.2 0.2 -0.6 -0.015 0.003
156 0.2 0.6 -0.4 -0.015 0.003
157 0.2 0.9 -0.2 -0.015 0.003
158 0.2 0.1 -0.7 -0.015 0.003
159 0.2 5.4 2.2 -0.015 0.003
164 0.2 2.7 0.7 -0.015 0.003
165 0.2 0.2 -0.6 -0.015 0.003
166 0.2 1.0 -0.2 -0.015 0.003



Estimate’s change from
scaled σ̃2

e = 1.26 σ̃2
s = 0.25

j aj v̂2
j resid 1-step exact 1-step exact

1 149.0 2.9 -0.7 -0.018 -0.018 0.037 0.037
2 149.0 4.9 -0.6 -0.017 -0.017 0.035 0.035
3 37.3 34.3 1.6 0.036 0.048 -0.078 -0.094
4 37.3 28.2 1.2 0.027 0.033 -0.058 -0.067
5 16.6 0.2 -0.7 -0.012 -0.013 0.028 0.030
6 16.6 1.0 -0.6 -0.010 -0.011 0.024 0.026
7 9.4 2.4 -0.2 -0.003 -0.003 0.008 0.009
8 9.4 3.2 -0.1 -0.001 -0.001 0.003 0.003
9 6.1 3.6 0.2 0.001 0.002 -0.006 -0.006

10 6.1 0.7 -0.5 -0.004 -0.005 0.014 0.016
16 2.4 6.2 1.6 -0.004 -0.005 -0.022 -0.021
17 1.9 4.3 1.0 -0.005 -0.005 -0.011 -0.011
30 0.8 4.1 1.3 -0.013 -0.013 -0.004 -0.004
31 0.8 7.9 3.1 -0.031 -0.031 -0.009 -0.009
83 0.3 35.3 17.8 -0.242 -0.253 0.028 0.043
84 0.3 45.1 22.9 -0.312 -0.329 0.036 0.060
94 0.2 4.4 1.7 -0.024 -0.025 0.005 0.006

115 0.2 4.2 1.5 -0.022 -0.023 0.005 0.005



Estimate’s change from
scaled σ̃2

e = 1.26 σ̃2
s = 0.25

j aj v̂2
j resid 1-step exact 1-step exact

128 0.2 1.8 0.3 -0.004 -0.004 0.001 0.001
129 0.2 6.5 2.8 -0.041 -0.042 0.009 0.010
147 0.2 0.5 -0.5 0.007 0.007 -0.001 -0.002
148 0.2 0.0 -0.7 0.010 0.011 -0.002 -0.002
149 0.2 1.0 -0.1 0.002 0.002 0.000 0.000
150 0.2 0.1 -0.7 0.010 0.010 -0.002 -0.002
151 0.2 0.9 -0.2 0.003 0.003 -0.001 -0.001
152 0.2 0.1 -0.7 0.010 0.010 -0.002 -0.002
153 0.2 0.0 -0.7 0.010 0.011 -0.002 -0.002
154 0.2 0.0 -0.7 0.010 0.010 -0.002 -0.002
155 0.2 0.2 -0.6 0.009 0.009 -0.002 -0.002
156 0.2 0.6 -0.4 0.006 0.006 -0.001 -0.001
157 0.2 0.9 -0.2 0.004 0.004 -0.001 -0.001
158 0.2 0.1 -0.7 0.010 0.010 -0.002 -0.002
159 0.2 5.4 2.2 -0.033 -0.034 0.007 0.008
164 0.2 2.7 0.7 -0.011 -0.011 0.002 0.003
165 0.2 0.2 -0.6 0.009 0.009 -0.002 -0.002
166 0.2 1.0 -0.2 0.003 0.003 -0.001 -0.001



Points about the previous four pages of tables
No free terms in this example, only mixed terms.

Broadly supports the heuristics; the aj decline more slowly than for the
spline, ⇒ v̂2

j not as strongly differentiated in their effects.

Again, the influence on

I σ2
s is in the “right” direction and largest for small j .

I σ2
e is in the “right” direction and largest for large j .

j = 3, 4 are influential for σ2
s :

I Canonical predictors are quadratic (bigger PD in back).

I Largest multiplier; large-ish scaled residuals ⇒ largest influence.

j = 83, 84 are influential for σ2
e :

I Canonical predictor is the contrast of direct vs. interproximal sites.

I Huge + scaled residuals; near-maximal multiplier ⇒ big influence.

I These also have the second-largest influence on σ2
s .



Puzzle #1 explained: Those contrasts tell us about σ2
e

When j = 83, 84 were made fixed effects, the posterior medians did this:

I σ2
e ↓ 1.25 to 0.63; σ2

s ↑ 0.25 to 0.41

I ratio σ2
e/σ

2
s : ↓ 4.0 to 1.6

I DF in the fit: ↑ 23.5 to 45.6 (2 are for the new FEs).

These contrasts, for direct vs. interprox sites,

I have small aj (0.33) ⇒ mostly inform about σ2
e .

I have huge positive scaled residuals ⇒ when changed to FEs, σ̂2
e ↓.

It seems the increase in σ̂2
s is mostly secondary to the reduction in σ̂2

e .

Estimate’s change from
vj changed σ̃2

e = 1.26 σ̃2
s = 0.25

to fixed effects 1-step exact 1-step exact
only j = 83 -0.242 -0.253 0.028 0.043
only j = 84 -0.312 -0.329 0.036 0.060

j = 83 and 84 -0.558 -0.609 0.065 0.147



Examining the RL using the modified RL

−1

2

sZ∑
j=1

[
log(σ2

s aj + σ2
e ) +

v̂2
j

σ2
s aj + σ2

e

]
−n − sX − sZ

2
log(σ2

e )− 1

2σ2
e

y′ΓcΓ′cy

for v̂ = (v̂1, . . . , v̂sZ )′ = P′Γ′Zy.

I considered modified RLs that include only j = 1, . . . ,m for various m.
(j = sZ + 1 is the free terms for σ̂2

e )

This is like case deletion but

I the calculations are exact

I they include the approximate SEs for σ̂2
e and σ̂2

s .

(Approx SE: −1× the hessian, invert it, sqrt of the diagonal.)



The main point I want you to take from this

The approximate SEs (posterior SDs) for σ2
s , σ2

e in these modified RLs
support the heuristics:

I σ2
s : The approx SE declines quickly for small m (as small j are

added), but not at all for later m.

I σ2
e : The approx SE declines for all m (as all j are added), with a big

drop when the free terms are added (if there are any).



Puzzle #3 explained (different smooths of GSMT data)

Left: Max RL for penalized spline (dash, 6.7 DF), ICAR (solid, 26.5 DF)

Right: Penalized spline (dash, 6.7 DF); ICAR with 6.7 DF (solid)
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If you force the ICAR fit to have 6.7 DF, it allocates them stupidly.



Let’s apply our tools to this model & dataset.

Canonical predictors are ≈ linear, quadratic, and then like the p-spline’s.

For a1 = 1583 (solid), a2 = 396 (dashed), a3 = 176 (dotted)

For a4 = 99 (solid), a5 = 63 (dashed), a6 = 44 (dotted)

Note: a1/a6 ∼ 36, cf the spline (1,841) and the perio ICAR (35).



The case-delection diagnostics have a few tantalizing hints.

scaled Multiplier Exact change from
j aj v̂2

j resid σ2
e σ2

s σ̃2
e = 119.9 σ̃2

s = 21.8

1 1583.2 52872 0.4 2.4 -3.0 1.2 -1.4
2 395.9 2657 -0.5 2.3 -2.9 -1.4 1.7
3 176.0 7388 0.6 2.2 -2.9 1.9 -2.2
4 99.0 7732 1.7 2.1 -2.8 5.4 -6.0
5 63.4 1 -0.7 2.0 -2.7 -1.8 2.2
6 44.1 15 -0.7 1.8 -2.6 -1.7 2.1
7 32.4 57 -0.7 1.6 -2.4 -1.5 1.9
8 24.8 146 -0.6 1.4 -2.3 -1.1 1.5
9 19.6 4 -0.7 1.3 -2.2 -1.3 1.8

10 15.9 494 0.0 1.1 -2.0 0.1 -0.1
11 13.2 240 -0.3 0.9 -1.9 -0.4 0.6
12 11.1 1078 1.4 0.7 -1.8 1.3 -2.7
28 2.1 926 3.2 -1.1 -0.5 -3.4 -1.6
30 1.8 906 3.3 -1.2 -0.4 -3.8 -1.3
47 0.8 1214 5.5 -1.7 0.0 -9.9 0.2
59 0.5 964 4.5 -1.9 0.1 -9.0 0.9
69 0.4 1690 8.5 -2.0 0.2 -18.8 2.9



If we change j = 1, 2 (≈ linear and quadratic) into fixed effects,
this model still wildly overfits:

I σ̂2
e = 119.5, σ̂2

s = 22.2, DF = 26.8 DF (3 FE, 23.8 RE)

BUT NOW, the only real difference between this model and the p-spline
is the aj , which decline much faster in j for the p-spline than the ICAR.

Recall: the DF in the fitted coefficient vj of canonical predictor j :
aj/(aj + σ2

e/σ
2
s )

⇒ DF in vj declines more quickly in j for the spline, which explains

I our mystery

I the specific sense in which the ICAR allocates its DF stupidly.

(Next slide)



DF allocated to each FE and canonical predictor under these models

Polynomial Spline ICAR
order DF = 6.7 DF = 26.5 DF = 6.7 j
Intercept 1 1 1 FE
Linear 1 0.997 0.94 1
Quadratic 1 0.99 0.80 2
Cubic 0.996 0.97 0.63 3
Quartic 0.95 0.95 0.49 4
Quintic 0.79 0.92 0.38 5
(etc.) 0.49 0.89 0.30 6

0.24 0.85 0.24 7
0.11 0.82 0.20 8
0.05 0.78 0.16 9
0.03 0.74 0.14 10
0.0002 0.42 0.04 20
0.00002 0.25 0.018 30

0.12 0.007 50
0.05 0.003 100
0.04 0.002 124


