Exploring the RL: Which V; tell us about which variance?

Broadly, the argument to follow shows:
> mixed terms with large a; mostly provide information about o2
> mixed terms with small a; mostly provide information about o2

» free terms mostly provide information about o2.

= The few mixed terms with large a; mostly determine &2 and the
extent of smoothing.

This generalization is oversimplified but useful.
| begin with heuristics and then use case deletion and the modified RL.

We end up explaining two of our puzzles.



Heuristics 1: Arm-waving about the log RL
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- Iog(ae)——zagy rroy —- E log(o2a; + 02) + o +U2 ,
for U = (01,...,0s,) = P'Thy.

The free terms are a function of o2 only.
> They're like n — sx — sz mixed terms with a; = 0

» = They can affect 62 and its approximate SE only indirectly.

The mixed terms are functions of both variances.
» The j mixed term depends on the variances through a_faj +02.
> If a; is small, it's effectively a function of a2 only.

> If a; is large, it's dominated by o2.



Heuristics 2: 1% derivatives of log RL

Call the jth mixed term m;.

om; _ N -
ﬁ = —05(c2a+02) 1 + 0.5\/1-2(0'53]- +02)72
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If aj is small,
» dm;/do? is much closer to zero than dm;/do?2.
2

> Both derivatives are insensitive to changes in o7.
» = The j mixed term m; has little effect on 52.

If a; is large,
» Om;/do? is much larger than Om; /002
2

> Both derivatives are sensitive to changes in o%.



Heuristics 3: 2" derivatives of log RL
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Evaluate these at the max-RL estimates, multiply by -1, sum over j
= approx precision(52, 52).

If a; is small,

» m; makes a negligible contribution to 9°m;/d(c?)>.

If a; is large,

» m; makes a much larger contribution to prec(62) than to prec(52).



Examining the RL using case-deletion diagnostics for GLMs

The RL is the likelihood from a gamma-errors GLM, with
» sy “observations” for the sy mixed terms

» 1 “observations” for the free terms

We'll use GLM machinery to see the effect of deleting each “observation”

» Deleting the j* mixed term = making (' zP); a fixed effect instead
of a random effect, which we might actually do.

> Deleting the free terms = reducing the dataset to the mixed-term ¥;.

The usual case-deletion diagnostic uses a linear approximation to the
GLM to approximate the effect of deleting a case.

We'll consider the effects of case deletion on 62 and 62 separately, rather
than on the 2-vector of parameters jointly.



Let W be the diagonal weight matrix evaluated at the full-data estimates
(62,52), with entries var(\“/J?)*l_

1 .
W, = 5(&?—1—&3%)*2, j=1,...,sz
nN—Sx —Sz7 ,.o\_
W$z+1 2 (Ug) 2.

The GLM'’s design matrix B has rows B; = [1  aj]; a5, 41 = O for free
terms.

Apply the usual case-deletion formula to the approximate linear model
1/242 1/2 o2
w232 — wl/2g [ 3 ] +e, e~ N(OI, 1)
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The one-step approx change in (62, 57) from deleting 97 is the 2-vector

W2 (07 - 523 — 52)

X (~W;/*(B'WB)'B})/(1 - WB;(B'WB)'B);
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) from deleting U7 is the 2-vector

W07 - 5%a; - 52) (1)

< (-W*(B'WB)7'B))/(1 - W;B;(B'WB)"'B));  (2)

The one-step approx change in (&

» (1) is the standardized (Pearson) residual for case j.

> (2) is a 2-vector multiplier of the standardized residual, with one row
each for 62 and 62.

H2013 Sec 16.1.2 examines (2) in painful detail, which I'll spare you.

Key facts re (2): As j increases from 1 to s, +1
> (2)'s entry for 62 decreases from positive to negative.
> (2)’s entry for 52 increases from negative to positive.

» They have opposite signs for most j, both negative for some j.



Example: Penalized spline fit to the GMST data

n = 125, truncated quadratic basis, 30 knots at years 1880+ {4, ...,120}

T T T T T
1880 1900 1020 1040 1960 1980 2000

Year

This penalized spline can be understood as
> a quadratic regression with unshrunk coefficients
> + regression on higher-order polynomials with shrunken coefficients

» and the extent of shrinkage increases with the polynomial order.

Following are the case-deletion diagnostics and their components.



scaled Multiplier for
J aj \7J-2 resid o? o2
1 3.6(1) 2856 | -0.65 0.81 =727
2 32(0) 5248 0.48 0.63 -666
3 56(-1) 815 0.14 0.05 -475
4 15(-1) 409 031 -0.69 -252
5 4.9(-2) 8| -068 -1.23 -116
6 20(-2) 335 0.74 -151 -51.0
7 8.8(-3) 6| -068 -1.64 -22.5
8 4.3(-3) 497 165 -1.71 -9.67
9 2.3(-3) 15| -0.63 -1.73 -3.58
10 1.3(-3) 248 049 -1.75 -0.51
11 7.7(-4) 461 153 -1.76 1.13
12 48(-4) 119| -013 -1.76 2.04
16 9.5(-5) 429 138  -1.77 3.23
19 3.6(-5) 8| -0.67 -1.77 3.41
26 7.0(-6) 588 215 -1.77 3.51
29 5.1(-6) 78| -0.33 -1.77 3.51
30 3.7(-6) 365 1.07  -1.77 3.52
31 0 137 | -0.37 -78.31 156.15




Estimate's change from

scaled 52 =145.3 52 = 947.7
J aj \7J-2 resid | 1-step exact 1l-step  exact
1 3.6(1) 285 | -0.65| -0.53 -045 471.1 448.2
2 32(0) 5248 0.48 0.30 0.92 -318.1 -453.38
3 56(-1) 815 0.14 0.01 003 -68.2 -74.7
4 15(-1) 409 031| -021 -021 -77.5 -79.0
5 4.9(-2) 8| -0.68 0.83 0.76 78.4 94.7
6 20(-2) 335 074 | -112 -111 -37.7 -38.2
7 8.8(-3) 6| -0.68 112 1.12 15.3 16.3
8 4.3(-3) 497 165| -281 -281 -159 -1538
9 2.3(-3) 15 | -0.63 1.10 1.10 2.3 1.8
10 1.3(-3) 248 0.49 | -0.86 -0.86 -0.2 0.2
11 7.7(-4) 461 153 | -2.68 -2.69 1.7 3.3
12 48(-4) 119 | -0.13 023 0.23 -0.3 -0.4
16 9.5(-5) 429 138 | -2.44 -244 4.4 6.3
19 3.6(-5) 8| -0.67 1.18 1.19 -2.3 -3.1
26 7.0(-6) 588 215 | -3.81 -3.82 7.5 10.6
29 5.1(-6) 78 | -0.33 0.58 0.58 -1.1 -1.6
30 3.7(-6) 365 1.07 | -1.90 -1.90 3.8 5.2
31 0 137 | -037 | 28.86 29.06 -57.5 -66.0




Points about the previous two pages of tables

The one-step approximation is pretty good.

This supports the heuristics on earlier slides.
» The multiplier for o2 starts + and | to —.
» The multiplier for o2 starts — and 1 to +.

» Both multipliers are negative for j = 4,...,10.

= The influence on

2 is in the “right” direction and largest for small j.

S
2 is in the “right” direction and largest for large j.

Note: Pearson residuals are necessarily > = -0.7.



Example: Simple ICAR model for periodontal data

ICAR with these neighbor pairs for n = 168 sites.
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Priors: Flat on the two island (arch) means; 02 and o2 ~ 1G(0.01,0.01).

Posterior medians: 2 1.25, 02 0.25, 02/02 4.0 — very smooth fit.

11
Tooth Number

7 Maxilaryilingual A Maxilary/Buccal - MandibulariLingual O Mandibular/Buccal
O+ Observed Data —— Posterior Mean



scaled Multiplier for

J aj 0? | resid o2 o2
1 1490 29 -0.7 0.028 -0.057
2 149.0 49 -0.6  0.028 -0.057
3 373 343 1.6 0.023 -0.050
4 373 282 12 0.023 -0.050
5 16.6 0.2 -0.7 0.017 -0.041
6 166 1.0 -0.6  0.017 -0.041
7 94 24 -0.2  0.012 -0.033
8 94 32 -0.1  0.012 -0.033
9 6.1 36 0.2 0.007 -0.027
10 6.1 07 -0.5 0.007 -0.027
16 24 6.2 16 -0.003 -0.013
17 19 43 1.0 -0.005 -0.011
30 08 4.1 1.3 -0.010 -0.003
31 08 79 3.1 -0.010 -0.003
83 0.3 353 17.8 -0.014 0.002
84 0.3 451 229 -0.014 0.002
94 02 44 1.7 -0.015 0.003
115 02 42 15 -0.015 0.003




scaled  Multiplier for

Jj a 97| resid o? o2
128 02 138 0.3 -0.015 0.003
129 02 65 2.8 -0.015 0.003
147 02 05 -0.5 -0.015 0.003
148 0.2 0.0 -0.7 -0.015 0.003
149 02 1.0 -0.1 -0.015 0.003
150 02 0.1 -0.7 -0.015 0.003
151 02 09 -0.2 -0.015 0.003
152 02 0.1 -0.7 -0.015 0.003
153 0.2 0.0 -0.7 -0.015 0.003
154 02 0.0 -0.7 -0.015 0.003
155 02 0.2 -0.6 -0.015 0.003
156 0.2 0.6 -0.4 -0.015 0.003
157 0.2 0.9 -0.2 -0.015 0.003
158 02 0.1 -0.7 -0.015 0.003
159 02 54 2.2 -0.015 0.003
164 02 27 0.7 -0.015 0.003
165 02 0.2 -0.6 -0.015 0.003
166 02 1.0 -0.2 -0.015 0.003




Estimate’s change from

scaled 52 =1.26 52 =025

J aj Aj2 resid | 1-step exact 1-step  exact
1 149.0 29 -0.7 | -0.018 -0.018 0.037 0.037
2 1490 49 -0.6 | -0.017 -0.017 0.035 0.035
3 373 343 1.6 | 0.036 0.048 -0.078 -0.094
4 373 282 1.2 | 0.027 0.033 -0.058 -0.067
5 166 0.2 -0.7 | -0.012 -0.013 0.028 0.030
6 166 1.0 -0.6 | -0.010 -0.011 0.024 0.026
7 94 24 -0.2 | -0.003 -0.003 0.008 0.009
8 9.4 32 -0.1 | -0.001 -0.001 0.003 0.003
9 6.1 3.6 0.2 | 0.001 0.002 -0.006 -0.006
10 6.1 0.7 -0.5 | -0.004 -0.005 0.014 0.016
16 24 6.2 1.6 | -0.004 -0.005 -0.022 -0.021
17 19 43 1.0 | -0.005 -0.005 -0.011 -0.011
30 0.8 41 1.3 |-0.013 -0.013 -0.004 -0.004
31 08 7.9 3.1 ]-0.031 -0.031 -0.009 -0.009
83 0.3 353 17.8 | -0.242 -0.253 0.028 0.043
84 0.3 451 229 | -0.312 -0.329 0.036 0.060
94 02 44 1.7 | -0.024 -0.025 0.005 0.006
115 02 42 15 |-0.022 -0.023 0.005 0.005




Estimate’s change from

scaled 52 =1.26 52 =0.25

Ja \7J-2 resid | 1-step  exact 1l-step exact
128 0.2 1.8 0.3 | -0.004 -0.004 0.001 0.001
129 0.2 6.5 2.8 | -0.041 -0.042 0.009 0.010
147 0.2 05 -0.5 | 0.007 0.007 -0.001 -0.002
148 0.2 0.0 -0.7 | 0.010 0.011 -0.002 -0.002
149 0.2 1.0 -0.1 | 0.002 0.002 0.000 0.000
150 0.2 01 -0.7 | 0.010 0.010 -0.002 -0.002
151 0.2 0.9 -0.2 | 0.003 0.003 -0.001 -0.001
152 0.2 01 -0.7 | 0.010 0.010 -0.002 -0.002
153 0.2 0.0 -0.7 | 0.010 0.011 -0.002 -0.002
154 0.2 0.0 -0.7 | 0.010 0.010 -0.002 -0.002
155 0.2 0.2 -0.6 | 0.009 0.009 -0.002 -0.002
156 0.2 0.6 -0.4 | 0.006 0.006 -0.001 -0.001
157 0.2 0.9 -0.2 | 0.004 0.004 -0.001 -0.001
158 0.2 01 -0.7 | 0.010 0.010 -0.002 -0.002
159 0.2 5.4 2.2 | -0.033 -0.034 0.007 0.008
164 02 27 0.7 | -0.011 -0.011 0.002 0.003
165 0.2 0.2 -0.6 | 0.009 0.009 -0.002 -0.002
166 0.2 1.0 -0.2 | 0.003 0.003 -0.001 -0.001




Points about the previous four pages of tables

No free terms in this example, only mixed terms.

Broadly supports the heuristics; the a; decline more slowly than for the
spline, = \7J-2 not as strongly differentiated in their effects.

Again, the influence on
» o2 isin the “right” direction and largest for small j.
» o2 is in the “right” direction and largest for large ;.

Jj = 3,4 are influential for o2:
» Canonical predictors are quadratic (bigger PD in back).
> Largest multiplier; large-ish scaled residuals = largest influence.

Jj = 83,84 are influential for o2:
» Canonical predictor is the contrast of direct vs. interproximal sites.

» Huge + scaled residuals; near-maximal multiplier = big influence.

» These also have the second-largest influence on o2.



Puzzle #1 explained: Those contrasts tell us about o2
When j = 83,84 were made fixed effects, the posterior medians did this:
> 02 | 1.25 to 0.63; 02 1 0.25 to 0.41
> ratio 02/02: | 4.0to 1.6
» DF in the fit: 1 23.5 to 45.6 (2 are for the new FEs).

These contrasts, for direct vs. interprox sites,
» have small a; (0.33) = mostly inform about o2.

» have huge positive scaled residuals = when changed to FEs, 52 |.

2

It seems the increase in 62 is mostly secondary to the reduction in &2

e-

Estimate’s change from
vj changed 52 =1.26 52 =0.25
to fixed effects | 1-step  exact | 1-step exact
only j =83 | -0.242 -0.253 | 0.028 0.043
only j =84 | -0.312 -0.329 | 0.036 0.060
j=83and 84 | -0.558 -0.609 | 0.065 0.147




Examining the RL using the modified RL

1 > 2 2 \712 n—Ssx — Sz 2
_EZ IOg(Usaj +Ue) + O_gaj _|_0,§ - 2 |Og(0 ) 2% 2y T rcy
for v = (01,...,0s,) = P'Thy.
| considered modified RLs that include only j = 1,..., m for various m.

(j = sz + 1 is the free terms for 52)

This is like case deletion but
> the calculations are exact
» they include the approximate SEs for 62 and 62.
(Approx SE: —1x the hessian, invert it, sqrt of the diagonal.)



The main point | want you to take from this

The approximate SEs (posterior SDs) for o2, o2 in these modified RLs
support the heuristics:

» o2: The approx SE declines quickly for small m (as small j are
added), but not at all for later m.

» o2: The approx SE declines for all m (as all j are added), with a big
drop when the free terms are added (if there are any).



Puzzle #3 explained (different smooths of GSMT data)
Left: Max RL for penalized spline (dash, 6.7 DF), ICAR (solid, 26.5 DF)
Right: Penalized spline (dash, 6.7 DF); ICAR with 6.7 DF (solid)
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If you force the ICAR fit to have 6.7 DF, it allocates them stupidly.



Let's apply our tools to this model & dataset.
Canonical predictors are = linear, quadratic, and then like the p-spline's.

For a; = 1583 (solid), a, = 396 (dashed), a; = 176 (dotted)

canonical predictor
0

T T T T T T T
1880 1900 1920 1940 1960 1980 2000

For a; = 99 (solid), as = 63 (dashed), ag = 44 (dotted)

canonical predictor

b
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Note: a;1/as ~ 36, cf the spline (1,841) and the perio ICAR (35).



The case-delection diagnostics have a few tantalizing hints.

scaled  Multiplier Exact change from
J aj 0?7 | resid o2 o0l |52=1199 52=218
1 1583.2 52872 04 24 -30 1.2 -1.4
2 3959 2657 -05 23 -29 -1.4 1.7
3 176.0 7388 06 22 -29 1.9 -2.2
4 99.0 7732 1.7 21 -238 5.4 -6.0
5 63.4 1 -0.7 20 -27 -1.8 2.2
6 44.1 15 -07 18 -26 -1.7 2.1
7 32.4 57 07 16 -24 -15 1.9
8 248 146 -06 14 -23 -1.1 15
9 19.6 4 -0.7 13 -22 -1.3 1.8
10 15.9 494 00 11 -20 0.1 -0.1
11 13.2 240 -03 09 -19 -0.4 0.6
12 11.1 1078 1.4 07 -138 13 -2.7
28 2.1 926 32 -11 -05 -3.4 -1.6
30 1.8 906 33 -12 -04 -3.8 -1.3
47 0.8 1214 55 -1.7 0.0 -9.9 0.2
59 0.5 964 45 -19 0.1 -9.0 0.9
69 0.4 1690 85 -20 0.2 -18.8 2.9




If we change j = 1,2 (= linear and quadratic) into fixed effects,
this model still wildly overfits:

» 62 =119.5, 62 =222, DF = 26.8 DF (3 FE, 23.8 RE)

BUT NOW, the only real difference between this model and the p-spline
is the a;, which decline much faster in j for the p-spline than the ICAR.

Recall: the DF in the fitted coefficient v; of canonical predictor j:
aj/(aj + 02 /0?)
= DF in v; declines more quickly in j for the spline, which explains
> our mystery

» the specific sense in which the ICAR allocates its DF stupidly.

(Next slide)



DF allocated to each FE and canonical predictor under these models

Polynomial | Spline ICAR
order DF =6.7 | DF =265 DF=6.7 J
Intercept 1 1 1 FE
Linear 1 0.997 0.94 1
Quadratic | 1 0.99 0.80 2
Cubic 0.996 0.97 0.63 3
Quartic 0.95 0.95 0.49 4
Quintic 0.79 0.92 0.38 5
(etc.) 0.49 0.89 0.30 6
0.24 0.85 0.24 7
0.11 0.82 0.20 8
0.05 0.78 0.16 9
0.03 0.74 0.14 10
0.0002 0.42 0.04 20
0.00002 0.25 0.018 30
0.12 0.007 50
0.05 0.003 100
0.04 0.002 124




