
Models more general than two-variance models

It would be great if this analysis could be done for all mixed linear models.

Alas, it can’t.

I’ll show this for 2NRCAR models.

H2013 shows it can be done for some big classes of models.

I I’ll list these and spare you the details, except for one.

Two expedients may help for models with RLs that can’t be simplified.

I Each involves ignoring some part of the RL.

I This makes them approximate or sloppy, as you prefer.

I They appear to provide useful information and might suggest ways
to extend or supersede the approach used for two-variance models.



You can’t always diagonalize the RL for 2NRCAR models

Suppose y = δ + ε, ε ∼ Nn(0, σ2
e In), and δ has a 2NRCAR density:
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I Qk = (qij,k), k = 1, 2 encodes class-k neighbor pairs

I σ2
sk controls similarity induced by class-k neighbor pairs.

From Newcomb (1961) & Graybill (1983, Theorem 12.2.12):

I ∃ non-singular B 3 Qk = B′DkB, where

I Dk is diagonal with non-negative diagonal elements.

I AND B is orthogonal ⇔ Q1Q2 is symmetric.
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∃ non-singular B 3 Qk = B′DkB

I Dk has Ik zero diagonal elements; Ik = #Qk ’s zero eigenvalues.

I Ik ≥ I = #(Q1 + Q2)’s zero eigenvalues = # zero diagonal entries
in D1 + D2.

Define Dk+ = upper-left (n − I )× (n − I ) submatrix of Dk

Let dkj , j = 1, . . . , n − I , be the diagonal elements of Dk+.

Finally, define the precisions τe = 1/σ2
e , τ1 = 1/σ2

s1, and τ2 = 1/σ2
s2.



Then the joint posterior for (δ, τe , τ1, τ2) ∝

π(τe , τ1, τ2) |τeIn|0.5 exp (−0.5τe(y− δ)′(y− δ))
n−I∏
j=1

(d1jτ1 + d2jτ2)0.5 exp
(
−0.5δ′(τ1Q1 + τ2Q2)δ

)
.

∏n−I
j=1 (d1jτ1 + d2jτ2) is the determinant of τ1D1+ + τ2D2+

Integrate out δ to give the RL ∝:

|τeIn|0.5
n−I∏
j=1

(d1jτ1 + d2jτ2)0.5 |H|−0.5 exp
(
−0.5τe(y′y− τey′H−1y)

)
where H = τeIn + τ1Q1 + τ2Q2. We need to diagonalize H.



We need to diagonalize

H = τeIn + τ1Q1 + τ2Q2

= τeIn + B′(τ1D1 + τ2D2)B

= B′
[
τe(BB′)−1 + τ1D1 + τ2D2

]
B

It’s enough to diagonalize the part inside the square brackets.

This happens ⇔ B is ⊥ ⇔ Q1Q2 is symmetric; not true in general.

The RL for the 2NRCAR model diagonalizes ⇔ Q1Q2 is symmetric.

I Examples: Row-and-column grids; spatiotemporal 2NRCAR.

I Counterexamples: Periodontal 2NRCARs.



The RL does diagonalize for some big classes of models

Balanced designs:

I For any design that satisfies the conditions of general balance and is
also an orthogonal design, the RL diagonalizes.

I This includes everything you think of as a balanced ANOVA.

Separable models:

I Model y = δ + ε, ε ∼ Nn(0, σ2
e In)

I δ ∼ normal mean 0, precision
∑K

k=1 τkQk for Qk n × n, τk scalar.

I Qk = A1 ⊗ · · · ⊗ AM with Al = I for l 6= k , Ak is psd.

I This includes diagonalizable kNRCAR models, among others.

I This isn’t general balance; RLs are not gamma GLM likelihoods.

Miscellaneous others:

I Clustering + heterogeneity model.

I Certain extensions of separable models.



Approximating the GP gives a diagonalizable RL

Idea:

I Use a spectral (Fourier) approximation to a GP observed on a
rectangular grid.

I This gives a model to which our tools are easily extended.

I Applying them to the approximation is of interest because . . .

I We can develop hypotheses about GPs & test them with simulations.

I Some propose using the approximation instead of the GP.

My development is built on Paciorek (2007).

We’ll consider only the one-dimensional case.

Example: Global-mean surface temp series with n = 128 observations



Model the n-vector y, for n = 2k , as

yt = β0 + 2

n
2−1∑
m=1

[u1m cos(ωm2πt/n)− u2m sin(ωm2πt/n)]

+u1,n/2 cos(ωn/22πt/n) + ε,

where

I ωm = 1, 2, . . . , n/2, so the ωm are equally-spaced frequencies.

I The observations are equally spaced (t is an integer).

I ε ∼ iid N(0, σ2
e ).

We’ll represent this as a mixed linear model.

I The intercept is the only fixed effect.

I The u’s have dimension (n − 1) and diagonal covariance matrix G.

I With the right choice of G, this approximates the GP’s covariance.



yt = β0 + 2

n
2−1∑
m=1

[u1m cos(ωm2πt/n)− u2m sin(ωm2πt/n)]

+u1,n/2 cos(ωn/22πt/n) + ε,

The RE design matrix Z is n × (n − 1):

I The first n − 2 columns are cos/sin pairs with common frequency
ωm2π but different u1m and u2m.

I The last column is unpaired, with frequency ωn/22π.

I Z′Z = n diag(2, 2, . . . , 2, 1) and 1′nZ = 0.

G = cov(u) is diagonal:

I var(u1,n/2) = σ2
s φ(ωn/2;θ) while

I var(u1m) = var(u2m) = 0.5 σ2
s φ(ωm;θ).

where σ2
s φ(ω;θ) is the spectral density of the GP’s covariance function

for unknown parameters θ.



The approximate model is

y = 1nβ + Zu + ε for ε ∼ N(0, σ2
e In) and u ∼ N(0, σ2

sD(θ))

where

I D(θ) is diagonal with diag elements q σ2
s φ(ωm;θ), q = 0.5 or 1

I 1′nZ = 0 and Z’s columns are orthogonal.

Pre-multiply by (Z′Z)−0.5Z′ to give

v̂ ≡ (Z′Z)−0.5Z′y = (Z′Z)0.5u + (Z′Z)−0.5Z′ ε

≡ v + ξ

where ξ and v are (n − 1)× 1 with cov(ξ) = σ2
e In−1 and

cov(v) = σ2
s (Z′Z)0.5D(θ)(Z′Z)0.5

= σ2
s diag( n φ( ωm(j);θ) )

for m(j) =

{
j/2 for even j
(j + 1)/2 for odd j

}
j = 1, . . . , n − 1.



So we have

v̂ = (Z′Z)−0.5Z′y = v + ξ

cov(ξ) = σ2
e In−1

cov(v) = σ2
s diag( n φ(ωm(j);θ) )

The restricted likelihood for this approximate model is the likelihood for
(σ2

e , σ
2
s ,θ) from this model:

logRL(σ2
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[
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e ) + v̂2

j /(σ2
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e )
]

for aj(θ) = n φ(ωm(j);θ), j = 1, . . . , n − 1

for K an unimportant constant.

This has the desired simple form; aj(θ) is non-increasing in j and a
function of the unknown θ.



Why this is potentially cool

logRL(σ2
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for aj(θ) = n φ(ωm(j);θ), j = 1, . . . , n − 1

and v̂ = (Z′Z)−0.5Z′y.

For a given dataset, Z is the same for all GPs, so

I v̂ (the transformed data) is the same for all GPs

I alternative GPs differ only in their aj(θ).

Given θ, this is a gamma GLM with E (v̂2
j ) = σ2

s aj(θ) + σ2
e , so:

I σ̂2
e is “the middle” of the v̂2

j for large j ;

I σ̂2
s aj(θ) then fits the decline with j of the v̂2

j for small j .



Two expedients for problems that don’t diagonalize

Expedient #1: Ignore the error variance

I Example: 2NRCAR puzzle.

I Brian Reich did this work before developing the re-expressed RL; this
inspired the re-expression.

I I’ll show you this.

Expedient #2: Ignore the non-zero off-diagonals

I Example: Optical imaging (DLM) puzzle.

I I won’t show you this – it’s in H2013, Sec. 17.2.2.



Expedient #1: Ignore the error variance – 2NRCAR models

y = δ + ε, ε ∼ Nn(0, σ2
e In) and δ has a 2NRCAR density:
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∃ non-singular B 3 Qk = B′DkB

I Dk has Ik zero diagonal elements; Ik = #Qk ’s zero eigenvalues.

I Ik ≥ I = #(Q1 + Q2)’s zero eigenvalues = # zero diagonal entries
in D1 + D2.

Let dkj be Dk ’s diagonals, for j 3 d1j > 0 or d2j > 0, j = 1, . . . , n − I .

Finally, define the precisions τe = 1/σ2
e , τ1 = 1/σ2

s1, and τ2 = 1/σ2
s2.



y = δ + ε, ε ∼ Nn(0, σ2
e In) and δ has a 2NRCAR density

Then the joint posterior for (δ, τe , τ1, τ2) ∝

π(τe , τ1, τ2) |τeIn|0.5 exp (−0.5τe(y− δ)′(y− δ))
n−I∏
j=1

(d1jτ1 + d2jτ2)0.5 exp
(
−0.5δ′(τ1Q1 + τ2Q2)δ

)
.

Expedient #1: Condition on (τe , δ) and ignore π(τe , τ1, τ2), so

π(τ1, τ2|δ) ∝
n−I∏
j=1

(d1jτ1 + d2jτ2)0.5 exp
(
−0.5δ′B′(τ1D1 + τ2D2)Bδ

)

=
n−I∏
j=1

(d1jτ1 + d2jτ2)0.5 exp

−0.5
n−I∑
j=1

u2j (d1jτ1 + d2jτ2)

 ,

for u = Bδ.



π(τ1, τ2|δ) ∝
n−I∏
j=1

(d1jτ1 + d2jτ2)0.5 exp

−0.5
n−I∑
j=1

u2j (d1jτ1 + d2jτ2)


for u = Bδ; B is known, we’re conditioning on the unknown δ.

This looks like the re-expressed RL for a 2-variance model, but:

I In a 2-variance model, σ2
e can have free terms but σ2

s can’t.

I Here, however, τ1 and τ2 are symmetric.

I So consider free and mixed terms for both classes of neighbor pairs.

Definitions:

I u-free terms for τ1 have d2j = 0; ∃ I2 − I of them.

I u-free terms for τ2 have d1j = 0, ∃ I1 − I of them.

I u-mixed terms have d1j > 0 and d2j > 0; ∃ n − I1 − I2 + I of them.



Recall: Periodontal neighbor pairs are of four distinct types.

Consider three ways of defining 2 classes of neighbor pairs:

Type of nbr pair
Classification I II III IV Description

A 1 1 2 2 Sides vs. interproximal
B 1 2 2 2 Direct vs. interproximal
C 2 1 2 2 Type II vs. others



Contours of one person’s marginal posterior of (z1, z2), zk = log(τk/τ1).

Classification A Classification B Classification C

The “legs” arise from u-free terms (intuition on the next slide).

THIS IS WRONG Counts of
# of islands u-free terms u-mixed

Classification n I I1 I2 for z1 for z2 terms
A 162 3 6 84 81 3 75
B 162 3 54 84 81 51 27
C 162 3 114 3 0 111 48



Contours of one person’s marginal posterior of (z1, z2), zk = log(τk/τ1).

Classification A Classification B Classification C

The “legs” arise from u-free terms (intuition on the next slide).

CORRECTED Counts of
# of islands u-free terms u-mixed

Classif’n n I I1 I2 for z1 for z2 terms
A 162 3 6 84 30 81 27 3 75 129
B 162 3 54 84 30 81 27 51 27 81
C 162 3 114 48 3 0 111 45 48 114



Reich et al (2007, Section 4) presents the argument.

Intuition:

I The u-free terms for z1 considered alone have contours parallel to
the z2 axis. This gives the vertical “leg”.

I The u-free terms for z2 considered alone have contours parallel to
the z1 axis. This gives the horizontal “leg”.

I Classification C’s contour plot has only one “leg” parallel to the z1
axis because it has no u-free terms for z1.

So why don’t the legs go down & to the left? Explained in H2013, p. 385.


