Models more general than two-variance models

It would be great if this analysis could be done for all mixed linear models.

Alas, it <u>can't</u>.

I'll show this for 2NRCAR models.

H2013 shows it can be done for some big classes of models.

► I'll list these and spare you the details, except for one.

Two expedients may help for models with RLs that can't be simplified.

- Each involves ignoring some part of the RL.
- This makes them approximate or sloppy, as you prefer.
- They appear to provide useful information and might suggest ways to extend or supersede the approach used for two-variance models.

You can't always diagonalize the RL for 2NRCAR models

Suppose $\mathbf{y} = \boldsymbol{\delta} + \boldsymbol{\epsilon}$, $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma_e^2 \mathbf{I}_n)$, and $\boldsymbol{\delta}$ has a 2NRCAR density:

$$f(\boldsymbol{\delta}|\sigma_{s1}^2,\sigma_{s2}^2)\propto \exp\left[-rac{1}{2}\boldsymbol{\delta}'\left(\mathbf{Q}_1/\sigma_{s1}^2+\mathbf{Q}_2/\sigma_{s2}^2\right)\boldsymbol{\delta}
ight];$$

Q_k = (q_{ij,k}), k = 1, 2 encodes class-k neighbor pairs
 σ²_{sk} controls similarity induced by class-k neighbor pairs.

From Newcomb (1961) & Graybill (1983, Theorem 12.2.12):

- ▶ \exists non-singular $\mathbf{B} \ni \mathbf{Q}_k = \mathbf{B}' \mathbf{D}_k \mathbf{B}$, where
- **D**_k is diagonal with non-negative diagonal elements.
- ▶ AND **B** is orthogonal \Leftrightarrow **Q**₁**Q**₂ is symmetric.

 $\mathbf{y} = \boldsymbol{\delta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma_e^2 \mathbf{I}_n) \text{ and } \boldsymbol{\delta} \text{ has a 2NRCAR density:}$

$$f(\boldsymbol{\delta}|\sigma_{s1}^2,\sigma_{s2}^2)\propto \exp\left[-rac{1}{2}\boldsymbol{\delta}'\left(\mathbf{Q}_1/\sigma_{s1}^2+\mathbf{Q}_2/\sigma_{s2}^2
ight)\boldsymbol{\delta}
ight];$$

 \exists non-singular $\mathbf{B} \ni \mathbf{Q}_k = \mathbf{B}' \mathbf{D}_k \mathbf{B}$

- ▶ \mathbf{D}_k has I_k zero diagonal elements; $I_k = \#\mathbf{Q}_k$'s zero eigenvalues.
- *I_k* ≥ *I* = #(**Q**₁ + **Q**₂)'s zero eigenvalues = # zero diagonal entries in **D**₁ + **D**₂.

Define $\mathbf{D}_{k+} =$ upper-left $(n - l) \times (n - l)$ submatrix of \mathbf{D}_k

Let d_{kj} , j = 1, ..., n - I, be the diagonal elements of \mathbf{D}_{k+} .

Finally, define the precisions $\tau_e=1/\sigma_e^2$, $\tau_1=1/\sigma_{s1}^2$, and $\tau_2=1/\sigma_{s2}^2$.

Then the joint posterior for $(\delta, au_e, au_1, au_2) \propto$

$$\pi(\tau_e, \tau_1, \tau_2) \qquad |\tau_e \mathbf{I}_n|^{0.5} \quad \exp\left(-0.5\tau_e(\mathbf{y} - \boldsymbol{\delta})'(\mathbf{y} - \boldsymbol{\delta})\right)$$
$$\prod_{j=1}^{n-l} \left(d_{1j}\tau_1 + d_{2j}\tau_2\right)^{0.5} \exp\left(-0.5\boldsymbol{\delta}'(\tau_1 \mathbf{Q}_1 + \tau_2 \mathbf{Q}_2)\boldsymbol{\delta}\right).$$

 $\prod_{j=1}^{n-l} (d_{1j}\tau_1 + d_{2j}\tau_2)$ is the determinant of $\tau_1 \mathbf{D}_{1+} + \tau_2 \mathbf{D}_{2+}$

Integrate out δ to give the RL \propto :

$$|\tau_e \mathbf{I}_n|^{0.5} \quad \prod_{j=1}^{n-1} \left(d_{1j} \tau_1 + d_{2j} \tau_2 \right)^{0.5} \quad |\mathbf{H}|^{-0.5} \exp\left(-0.5 \tau_e (\mathbf{y}' \mathbf{y} - \tau_e \mathbf{y}' \mathbf{H}^{-1} \mathbf{y}) \right)$$

where $\mathbf{H} = \tau_e \mathbf{I}_n + \tau_1 \mathbf{Q}_1 + \tau_2 \mathbf{Q}_2$. We need to diagonalize \mathbf{H} .

We need to diagonalize

$$\mathbf{H} = \tau_e \mathbf{I}_n + \tau_1 \mathbf{Q}_1 + \tau_2 \mathbf{Q}_2 = \tau_e \mathbf{I}_n + \mathbf{B}' (\tau_1 \mathbf{D}_1 + \tau_2 \mathbf{D}_2) \mathbf{B} = \mathbf{B}' [\tau_e (\mathbf{B}\mathbf{B}')^{-1} + \tau_1 \mathbf{D}_1 + \tau_2 \mathbf{D}_2] \mathbf{B}$$

It's enough to diagonalize the part inside the square brackets.

This happens $\Leftrightarrow \mathbf{B}$ is $\bot \Leftrightarrow \mathbf{Q}_1 \mathbf{Q}_2$ is symmetric; not true in general.

The RL for the 2NRCAR model diagonalizes $\Leftrightarrow \mathbf{Q}_1 \mathbf{Q}_2$ is symmetric.

- Examples: Row-and-column grids; spatiotemporal 2NRCAR.
- Counterexamples: Periodontal 2NRCARs.

The RL does diagonalize for some big classes of models

Balanced designs:

- For any design that satisfies the conditions of general balance and is also an orthogonal design, the RL diagonalizes.
- This includes everything you think of as a balanced ANOVA.

Separable models:

- Model $\mathbf{y} = \boldsymbol{\delta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma_e^2 \mathbf{I}_n)$
- ▶ δ ~ normal mean **0**, precision $\sum_{k=1}^{K} \tau_k \mathbf{Q}_k$ for \mathbf{Q}_k $n \times n$, τ_k scalar.
- $\mathbf{Q}_k = \mathbf{A}_1 \otimes \cdots \otimes \mathbf{A}_M$ with $\mathbf{A}_l = \mathbf{I}$ for $l \neq k$, \mathbf{A}_k is psd.
- > This includes diagonalizable kNRCAR models, among others.
- > This isn't general balance; RLs are not gamma GLM likelihoods.

Miscellaneous others:

- Clustering + heterogeneity model.
- Certain extensions of separable models.

Approximating the GP gives a diagonalizable RL

Idea:

- Use a spectral (Fourier) approximation to a GP observed on a rectangular grid.
- This gives a model to which our tools are easily extended.
- Applying them to the approximation is of interest because
- ▶ We can develop hypotheses about GPs & test them with simulations.
- Some propose using the approximation instead of the GP.

My development is built on Paciorek (2007).

We'll consider only the one-dimensional case.

Example: Global-mean surface temp series with n = 128 observations

Model the *n*-vector \mathbf{y} , for $n = 2^k$, as

$$y_t = \beta_0 + 2 \sum_{m=1}^{\frac{n}{2}-1} [u_{1m} \cos(\omega_m 2\pi t/n) - u_{2m} \sin(\omega_m 2\pi t/n)] + u_{1,n/2} \cos(\omega_{n/2} 2\pi t/n) + \epsilon,$$

where

- $\omega_m = 1, 2, \dots, n/2$, so the ω_m are equally-spaced frequencies.
- The observations are equally spaced (t is an integer).
- $\epsilon \sim \text{iid } N(0, \sigma_e^2).$

We'll represent this as a mixed linear model.

- The intercept is the only fixed effect.
- The *u*'s have dimension (n-1) and diagonal covariance matrix **G**.
- ▶ With the right choice of **G**, this approximates the GP's covariance.

$$y_t = \beta_0 + 2 \sum_{m=1}^{\frac{n}{2}-1} [u_{1m} \cos(\omega_m 2\pi t/n) - u_{2m} \sin(\omega_m 2\pi t/n)] + u_{1,n/2} \cos(\omega_{n/2} 2\pi t/n) + \epsilon,$$

The RE design matrix **Z** is $n \times (n-1)$:

- The first n 2 columns are cos/sin pairs with common frequency $\omega_m 2\pi$ but different u_{1m} and u_{2m} .
- The last column is unpaired, with frequency $\omega_{n/2}2\pi$.
- $\mathbf{Z}'\mathbf{Z} = n \operatorname{diag}(2, 2, ..., 2, 1) \operatorname{and} \mathbf{1}'_n \mathbf{Z} = \mathbf{0}.$
- $\mathbf{G} = \operatorname{cov}(\mathbf{u})$ is diagonal:
 - $\operatorname{var}(u_{1,n/2}) = \sigma_s^2 \phi(\omega_{n/2}; \theta)$ while
 - $\operatorname{var}(u_{1m}) = \operatorname{var}(u_{2m}) = 0.5 \ \sigma_s^2 \ \phi(\omega_m; \theta).$

where $\sigma_s^2 \phi(\omega; \theta)$ is the spectral density of the GP's covariance function for unknown parameters θ .

The approximate model is

$$\mathbf{y} = \mathbf{1}_n \beta + \mathbf{Z} \mathbf{u} + \boldsymbol{\epsilon}$$
 for $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma_e^2 \mathbf{I}_n)$ and $\mathbf{u} \sim N(\mathbf{0}, \sigma_s^2 \mathbf{D}(\boldsymbol{\theta}))$

where

D(θ) is diagonal with diag elements q σ_s² φ(ω_m; θ), q = 0.5 or 1
 1'_nZ = 0 and Z's columns are orthogonal.

Pre-multiply by $(\textbf{Z}'\textbf{Z})^{-0.5}\textbf{Z}'$ to give

$$\begin{split} \hat{\mathbf{v}} &\equiv (\mathbf{Z}'\mathbf{Z})^{-0.5}\mathbf{Z}'\mathbf{y} &= (\mathbf{Z}'\mathbf{Z})^{0.5}\mathbf{u} + (\mathbf{Z}'\mathbf{Z})^{-0.5}\mathbf{Z}' \ \epsilon \\ &\equiv \mathbf{v} + \boldsymbol{\xi} \end{split}$$

where $\pmb{\xi}$ and $\pmb{\mathsf{v}}$ are $(n-1)\times 1$ with $\mathsf{cov}(\pmb{\xi})=\sigma_e^2 \pmb{\mathsf{I}}_{n-1}$ and

$$\begin{aligned} \operatorname{cov}(\mathbf{v}) &= \sigma_s^2 \ (\mathbf{Z}'\mathbf{Z})^{0.5} \mathbf{D}(\theta) (\mathbf{Z}'\mathbf{Z})^{0.5} \\ &= \sigma_s^2 \ \operatorname{diag}(\ n \ \phi(\ \omega_{m(j)}; \theta) \) \\ \text{for } m(j) &= \left\{ \begin{array}{l} j/2 \ \text{for even } j \\ (j+1)/2 \ \text{for odd } j \end{array} \right\} j = 1, \dots, n-1. \end{aligned}$$

So we have

$$\begin{split} \hat{\mathbf{v}} &= (\mathbf{Z}'\mathbf{Z})^{-0.5}\mathbf{Z}'\mathbf{y} = \mathbf{v} + \boldsymbol{\xi} \\ \cos(\boldsymbol{\xi}) &= \sigma_e^2 \mathbf{I}_{n-1} \\ \cos(\mathbf{v}) &= \sigma_s^2 \operatorname{diag}(n \ \phi(\omega_{m(j)}; \boldsymbol{\theta})) \end{split}$$

The restricted likelihood for this approximate model is the likelihood for $(\sigma_e^2, \sigma_s^2, \theta)$ from this model:

$$\log RL(\sigma_e^2, \sigma_s^2, \theta) = K - \frac{1}{2} \sum_{j=1}^{n-1} \left[\log(\sigma_s^2 a_j(\theta) + \sigma_e^2) + \hat{v}_j^2 / (\sigma_s^2 a_j(\theta) + \sigma_e^2) \right]$$

for $a_j(\theta) = n \ \phi(\omega_{m(j)}; \theta), \quad j = 1, \dots, n-1$

for K an unimportant constant.

This has the desired simple form; $a_j(\theta)$ is non-increasing in j and a function of the unknown θ .

Why this is potentially cool

$$\log RL(\sigma_e^2, \sigma_s^2, \theta) = K - \frac{1}{2} \sum_{j=1}^{n-1} \left[\log(\sigma_s^2 a_j(\theta) + \sigma_e^2) + \hat{v}_j^2 / (\sigma_s^2 a_j(\theta) + \sigma_e^2) \right]$$

for $a_j(\theta) = n \phi(\omega_{m(j)}; \theta), \quad j = 1, \dots, n-1$
and $\hat{\mathbf{v}} = (\mathbf{Z}'\mathbf{Z})^{-0.5}\mathbf{Z}'\mathbf{y}.$

For a given dataset, ${\boldsymbol{\mathsf{Z}}}$ is the same for all GPs, so

- $\hat{\mathbf{v}}$ (the transformed data) is the same for all GPs
- alternative GPs differ only in their $a_j(\theta)$.

Given θ , this is a gamma GLM with $E(\hat{v}_i^2) = \sigma_s^2 a_j(\theta) + \sigma_e^2$, so:

- $\hat{\sigma}_e^2$ is "the middle" of the \hat{v}_i^2 for large *j*;
- $\hat{\sigma}_s^2 a_j(\theta)$ then fits the decline with j of the \hat{v}_i^2 for small j.

Two expedients for problems that don't diagonalize

Expedient #1: Ignore the error variance

- Example: 2NRCAR puzzle.
- Brian Reich did this work *before* developing the re-expressed RL; this inspired the re-expression.
- I'll show you this.

Expedient #2: Ignore the non-zero off-diagonals

- Example: Optical imaging (DLM) puzzle.
- ▶ I won't show you this it's in H2013, Sec. 17.2.2.

Expedient #1: Ignore the error variance – 2NRCAR models

$$\mathbf{y} = \boldsymbol{\delta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma_e^2 \mathbf{I}_n) \text{ and } \boldsymbol{\delta} \text{ has a 2NRCAR density:}$$

 $f(\boldsymbol{\delta} | \sigma_{s1}^2, \sigma_{s2}^2) \propto \exp \left[-\frac{1}{2} \boldsymbol{\delta}' \left(\mathbf{Q}_1 / \sigma_{s1}^2 + \mathbf{Q}_2 / \sigma_{s2}^2 \right) \boldsymbol{\delta} \right];$

 $\exists \text{ non-singular } \mathbf{B} \ni \mathbf{Q}_k = \mathbf{B}' \mathbf{D}_k \mathbf{B}$

- ▶ \mathbf{D}_k has I_k zero diagonal elements; $I_k = \#\mathbf{Q}_k$'s zero eigenvalues.
- *I_k* ≥ *I* = #(**Q**₁ + **Q**₂)'s zero eigenvalues = # zero diagonal entries in **D**₁ + **D**₂.

Let d_{kj} be \mathbf{D}_k 's diagonals, for $j \ni d_{1j} > 0$ or $d_{2j} > 0$, $j = 1, \dots, n-l$.

Finally, define the precisions $\tau_e=1/\sigma_e^2$, $\tau_1=1/\sigma_{s1}^2$, and $\tau_2=1/\sigma_{s2}^2$.

 $\mathbf{y} = \boldsymbol{\delta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma_e^2 \mathbf{I}_n) \text{ and } \boldsymbol{\delta} \text{ has a 2NRCAR density}$ Then the joint posterior for $(\boldsymbol{\delta}, \tau_e, \tau_1, \tau_2) \propto$

$$\pi(\tau_e, \tau_1, \tau_2) \qquad |\tau_e \mathbf{I}_n|^{0.5} \quad \exp\left(-0.5\tau_e(\mathbf{y} - \boldsymbol{\delta})'(\mathbf{y} - \boldsymbol{\delta})\right)$$
$$\prod_{j=1}^{n-l} \left(d_{1j}\tau_1 + d_{2j}\tau_2\right)^{0.5} \exp\left(-0.5\boldsymbol{\delta}'(\tau_1 \mathbf{Q}_1 + \tau_2 \mathbf{Q}_2)\boldsymbol{\delta}\right).$$

Expedient #1: Condition on (τ_e, δ) and ignore $\pi(\tau_e, \tau_1, \tau_2)$, so

$$\begin{aligned} \pi(\tau_1,\tau_2|\boldsymbol{\delta}) &\propto &\prod_{j=1}^{n-I} \left(d_{1j}\tau_1 + d_{2j}\tau_2 \right)^{0.5} \exp\left(-0.5\boldsymbol{\delta}' \mathbf{B}'(\tau_1 \mathbf{D}_1 + \tau_2 \mathbf{D}_2) \mathbf{B} \boldsymbol{\delta} \right) \\ &= &\prod_{j=1}^{n-I} \left(d_{1j}\tau_1 + d_{2j}\tau_2 \right)^{0.5} \exp\left(-0.5\sum_{j=1}^{n-I} u_j^2 \left(d_{1j}\tau_1 + d_{2j}\tau_2 \right) \right), \end{aligned}$$

for $\mathbf{u} = \mathbf{B} \boldsymbol{\delta}$.

$$\pi(au_1, au_2|m{\delta}) ~\propto~ \prod_{j=1}^{n-l} \left(d_{1j} au_1 + d_{2j} au_2
ight)^{0.5} \exp\left(-0.5 \sum_{j=1}^{n-l} u_j^2 \left(d_{1j} au_1 + d_{2j} au_2
ight)
ight)$$

for $\mathbf{u} = \mathbf{B}\boldsymbol{\delta}$; **B** is known, we're conditioning on the unknown $\boldsymbol{\delta}$.

This looks like the re-expressed RL for a 2-variance model, but:

- ▶ In a 2-variance model, σ_e^2 can have free terms but σ_s^2 can't.
- Here, however, τ_1 and τ_2 are symmetric.
- So consider free and mixed terms for both classes of neighbor pairs.

Definitions:

- **u**-free terms for τ_1 have $d_{2i} = 0$; $\exists I_2 I$ of them.
- **u**-free terms for τ_2 have $d_{1j} = 0$, $\exists I_1 I$ of them.
- u-mixed terms have $d_{1j} > 0$ and $d_{2j} > 0$; $\exists n l_1 l_2 + l$ of them.

Recall: Periodontal neighbor pairs are of four distinct types.

Consider three ways of defining 2 classes of neighbor pairs:

	Type of nbr pair				
Classification	Ι	Ш	Ш	IV	Description
A	1	1	2	2	Sides vs. interproximal
В	1	2	2	2	Direct vs. interproximal
C	2	1	2	2	Type II vs. others

Contours of one person's marginal posterior of (z_1, z_2) , $z_k = \log(\tau_k/\tau_1)$.

The "legs" arise from u-free terms (intuition on the next slide).

THIS IS WRO				Counts of			
		# of islands		u -free terms		u -mixed	
Classification	п		I_1	I_2	for z ₁	for z_2	terms
A	162	3	6	84	81	3	75
В	162	3	54	84	81	51	27
C	162	3	114	3	0	111	48

Contours of one person's marginal posterior of (z_1, z_2) , $z_k = \log(\tau_k/\tau_1)$.

The "legs" arise from u-free terms (intuition on the next slide).

CORRECTED					Counts of			
			# of isla	nds	u -free	u -mixed		
Classif'n	п	1	I_1	I_2	for z ₁	for z ₂	terms	
A	162	3	6	8 4 30	81 27	3	75 129	
В	162	3	54	8 4 30	81 27	51	27 81	
C	162	3	114 48	3	0	111 45	4 8 114	

Reich et al (2007, Section 4) presents the argument.

Intuition:

- ► The u-free terms for z₁ considered alone have contours parallel to the z₂ axis. This gives the vertical "leg".
- ► The u-free terms for z₂ considered alone have contours parallel to the z₁ axis. This gives the horizontal "leg".
- Classification C's contour plot has only one "leg" parallel to the z₁ axis because it has no u-free terms for z₁.

So why don't the legs go down & to the left? Explained in H2013, p. 385.