Here's a data analysis problem:
For the 2002 forest inventory data (Finley et al 2008; BEF.dat, spBayes).

Problem: Replace a laborious outcome measurement with a function of
predictors measured by satellites.

» Outcome: red maple total basal area (metric tons biomass).

» Predictors: Elevation, slope, brightness (TC1), greenness (TC2),
wetness (TC3).

» 437 observations.

This problem could have been on the MS exam | wrote in 1982 ...



EXCEPT these observations are spatially referenced
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Here's a standard model for analyzing data like this

At spatial locations indexed by s, model outcome y(s) as
y(s) = x(s)5 + w(s) +¢(s)

> x(s) are covariates, including an intercept

» w(s) is a stationary GP, mean 0, covariance function 2 K(p)

2

> ¢(s) is iid N with mean 0, variance oZ

v

. 2 2
Unknown parameters: 3, o2, p, and 0.



.giving this mixed linear model and restricted likelihood
For observations at {si, ..., s,}, the mixed linear model is

y=Xpg+Il,w+e

> X's rows are the x(s;)
» w=(w(s),..., w(s,)) ~N(,G) for G=02K({si};p)
» e~ N(O,R) for R=o021
o2, p, o2 can be estimated by maximizing the log restricted likelihood
—log|V| —log | X'V7IX| —y' [V = VIX(X'VIX) 1 X'V 1y

where V = G + R, a dense matrix.



For models like this, we don't have LM-quality tools

The RL doesn't have a closed form: effects of data features are obscure.

Variograms are useful but
» don't give specific info about how the data determine 52, p, 52

» aren’'t much help in assessing non-stationarity.

The usual residuals are problematic:
» This model can fit any dataset arbitrarily well.
» If the model smooths much, residuals are biased.

» Residuals don't tell us how the data determine 62, p, 5.



Bose, Hodges, Banerjee Biometrics 2018

BHB Biometrics (2018) is Step 1 (maybe) in filling this gap.

This talk emphasizes ideas using a simplified problem:

data collected on a 1-D regular grid with no fixed effects.

I'll mention how we've addressed these simplifications.



The three ideas that make this tractable

1. Approximate the GP; transform the data.

2. The resulting (approximate) restricted likelihood has a simple form;
use that form to understand how the data determine the fit.

3. Extend tools from linear models.



|dea #1: Spectral approximation for a stationary GP

Data taken at locations s; € {0,1,..., M — 1}, M a multiple of 2.
. 1 11, 1 1 _
Frequencies wm € {0, 37,5, =5 + 77+ — 70>, m=0,1,.., M — 1.

Approximate the GP w(s;) by

M
M_y

g(sj)=ao+2 Z (am cos(2mwms;) — b sin(2mwms;)) + a2 cos(27rw%sj)

m=1
am, bm have independent mean zero Gaussian priors with variances

proportional to o2 ¢(wm; p), the spectral density of the GP covariance.

Based on Paciorek (2007), Wikle (2002).



With the approximation g(s;), the model becomes

y=Xpg+Zu+e

v

Assuming no fixed effects: X is a vector of 1's.

v

Omit ag to avoid an identification problem.

» Z's columns are sin/cos functions and do not depend on unknowns.

v

Z'Z = Diag(1/2M,1/2M,..,1/M); Z'1=0.

v

u~N(@,G), G = o2 Diag( 51;0(Wm(j): £): mP(wmy2ip) )

e~ N(O,R), R = o2l

v



Columns 1 to 4 of the random effects design matrix Z
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Idea #1: Transform the data so the log RL is simple

Using the spectral approximation to the GP, the model is

y=Xpg+Zu+e¢

Pre-multiply this equation by (Z’Z)_O'SZ’ to give:

v

(22)"°2'y = (2'2)"°u + (2'2)*°Z'
Then

E(v) =0

Cov(v)

o2Diag(aj(p)) + o2l
aj(p) = d(wm:p)



|dea #2: The (approximate) RL has a simple form.

v~ N( 0, o7Diag(a;(p)) + o2l )
v o= (22)%°Zy

The (approximate) log RL for (02, p,02) is the likelihood arising from v:

M—-1

3 Yl loglolao) + o) + v/ (o3ayl) + 02) |

The keys to understanding this (approximate) RL as a function of
the data are the transformed data v; and the a;(p).



Given p, the v foIIow a gamma-errors GLM

The log RL has the form of the likelihood from a gamma-errors GLM
with the identity link:

Z log(3a;(p) +02) + v/ (o2ai(p) + %) ]

» The v? are the gamma-distributed “data”.

v

1/2 is the gamma's shape parameter.
> E(v) = 0zai(p) + o2

2
> Var(1?) = 2 (o2a(p) + 02)



How does aj(p) change with p?

Exponential covariance function K: aj(p) for p = 5 and 16.

The horizontal axis is j.
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For larger p, the aj(p) start higher and decline to zero more sharply.



|dea #2: Use this (approximate) RL to understand the fit

The approximate RL uses the data only through the v,
projections of y onto sin/cos functions of different frequencies.

The projections v; don't depend on any unknowns.
The projections v; are the same for all GP covariance functions.

Using different GP models for the random effect
& fitting different gamma regressions to the same transformed data.

The model for the vj2 is a GLM with 3 parameters = no overfitting.



How do the data determine parameter estimates?

The “observations” are the vJ-2; parameters are fit such that:
2 2 2 2 2
E( Vi |057p70e ) = 0Os aj(p) + oe.

The aj(p) are non-increasing in j and for large j,

B | Ppio?) ~ o,

Loosely,

» 52 is “in the middle” of the vj2 for large j.
> p fits the rate at which the vj2 decline for “small” j.

> &2 makes 62a;(p) + 62 go through the middle of the v? for “small” j.



Examples of v; 2 vs. j, with fits

Simulated: 02 =2,p=502=5 Red maple basal area
o2 smaller than o2 Whopping non-stationarity
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Some conjectures about how the data determine estimates

An outlier inflates the vj2 for large j's (high frequencies) = inflated &2.

Little effect on VJ-2 for “small” j (low frequencies) and thus on 42 and p.

o}
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Data

contaminated with shift
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(a) data simulated from GP with
02=2, 02=5 and p=Db5 with mean
shift from 0 to 5 midway
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(b) first four columns of Z, the
spectral basis matrix, on the
domain [1,2,...,199,200]



Hypothesize: how does this shift in mean affect the
estimates of the GP parameters ?

Q v22 will be inflated, this will lead to an inflated value of the estimate
of (752.

Q So to capture the sharp decline in vj2’s the estimate of p will be
inflated too.

@ v?'s for larger j's broadly unaffected, hence the estimate of o2 will

J
remain almost the same.

23 / 44



Parameter estimates (SE): data with mean shift

exact RL
2 2
loge os p

actual values 2 5 5
uncontaminated  2.29 (0.11) 4.75 (0.11)  6.89 (0.82)
contaminated  11.50 (0.36) 5.61 (0.06) 106.48 (6.06)
actual values 10 0.1 16.67
uncontaminated  9.99 (0.34) 0.11 (0.01) 17.29 (0.67)
contaminated  17.96 (0.77) 0.16 (0.01) 29.99 (1.32)

25 / 44



The data contain little information about v
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Figure: a;'s for Matérn (¥=0.5) and Matérn (v=00) for the spectral
approximation on the domain [0,1,...,62,63] on the horizontal axis.
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|dea #3: Extend tools from linear models and GLMs

Plot the v? and fitted values 62a;(p) + 62 vs. j.
This shows the data and model fit corresponding to the RL.

It's a direct look at the “signal” for non-stationarity.

Added variable plots show how the data produce a fixed effect's estimate.
An AVP can be done in both the

Observation domain (y) and

Spectral domain (the vj)



Added variable plot in observation domain

Adding predictor C to the model y = X3+ Ca+ u+e,
X contains predictor already in the model.

Multiply both sides of the model equation by V=05 ~ denotes
estimates from fitting a model with X.

Then multiply both sides by
Investigating ﬁ) =/ - \770'5X(X/ \A/71X)_1X/ \770'5

missing
predictors

e Plot PV05y vs PV-05C,

18/42



Added variable plot in the spectral domain

Adding predictor C to the model y = X+ Ca+ u+e,
X contains predictors already in the model.

Multiply both sides by (/ — Px),
then multiply by (2/Z2)"°°Z’, to get

vt =(Z2'Z)"%°Z'(1 — Px)y: the v; from the residual y and
v = (Z2'2)"%°Z'(1 — Px)C: the v; from the residual C.

Investigating
missing
predictors ~ A
e Plot Dv* vs Dvg,

where D = Diag(1/+/62a(p) + 62), " denotes estimates

obtained from fitting a model with only X, no C.

16/42



Added variable plots (AVPs) in the two domains

m The AVPs in the spectral domain and in the observation
domain estimate the same coefficient for a particular
predictor.

m The spectral domain AVP highlights particular large scale
trends in the data. The observation domain AVP
highlights particular localized details.

Investigating

missing m The spectral domain AVP involves the spectral

redictors . . . . .

e approximation which the observation domain AVP does
not.

22/42



Back to the forest inventory data

Outcome: Red maple basal area

Predictor: Elevation
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Undoing the simplifying assumptions

The paper and supplements discuss these at length.

e Spectral approximation in 2-D: Each design-matrix column corresponds
to a pair of frequencies, one in each dimension (Paciorek 2007).

e Data not on a grid: Pre-smooth to a grid. (3 a better way?)

o Fixed effects: Regress them out and apply the spectral approximation
to the residuals.



Plots of \/j2 vs. J for outcome and predictor

Outcome: Red maple basal area Predictor: Elevation
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The horizonal axis is j = low frequencies at left, high frequencies at right



AVPs for elevation

Spectral domain Observation domain




Info from the AVPs vs. the actual fits

Elevation From the RL

Estimate SE  P-value | 62 p 52

Intercept-only - - - 296 6.0 16.2
AVP, Spectral -3.17 051 10710 - - -
AVP, Observation -2.02 1.09 0.07 - - -

Real fit -2.52 0.29 tiny 220 29 138




Focus on the ideas, not on our specific choices

The important thing is the 3 ideas:

1. Approximate the GP; transform the data.

2. = simpler forms, which makes the fit understandable.

3. Extend tools from linear models and GLMs.

All the specific choices we've made could be replaced (I think).



