








This is not just an oddity – it could happen to you

Example:

I You are designing a clinical trial comparing two groups.

I You will take measurements at times 0 and 12 months.

I Design decision: Should you take a measurement at 6 months?

I Fact: If the within-person correlation is high enough, the SE of the
group main e↵ect increases if you use the 6 month measurement.



This is not just an oddity (continued)

Each group has n subjects; error variance of one measurement is �2.

Person i in group 1:

Corr(X1i,0,X1i,12) = ⇢, Corr(X1i,0,X1i,6) = Corr(X1i,6,X1i,12) =
p
⇢

Person i in group 2: same model.

Including the 6-mo measurement: var(X̄1. � X̄2.) =
2�2

9n (3 + 4
p
⇢+ 2⇢)

Excluding the 6-mo measurement: var(X̄1. � X̄2.) =
2�2

4n (2 + 2⇢)

The variance of the group main e↵ect is

lower using the 6-mo measurement for ⇢ < 0.36

higher using the 6-mo measurement for ⇢ � 0.36.

The ratio var(with)/var(without) peaks at ⇢ ⇡ 0.61.



The rest of this lecture is taken from Lavine ML, Hodges JS

“An Old Curiosity, Some Intuition for It, and a Modestly Interesting
Implication”

which is under review at The American Statistician.



More examples, from LH

Variance of µ̄ with �2 = 1 and Cov[Yt ,Yt0 ] = ⇢|t�t0|, with equally-spaced
measurement locations.

⇢ 2 3 4 5 10 20 30 40 1
.001 .501 .348 .290 .265 .241 .241 .242 .243 .248
.010 .505 .380 .344 .331 .325 .331 .334 .335 .341
.100 .550 .496 .490 .492 .506 .516 .520 .522 .529
.400 .700 .703 .712 .719 .735 .744 .747 .749 .753

Why does this happen? What’s the intuition?



Intuition (Michael Lavine)

Due to autocorrelation, an observation Yt at time t provides some
information about the process at times surrounding t.

When enough observations have been taken in the fixed interval [0, 1],
adding observations in [0, 1] provides little more information about the
process in that interval.

But the observations at t = 0 and t = 1 also provide information about
the process outside of [0, 1].

As more observations are added inside [0, 1], and all observations are
given equal weight, the information about the process outside [0, 1]
becomes diluted to an extent that outweighs the additional information
from inside [0, 1], which in turn causes Var(µ̄) to increase.



Support for the intuition, part 1: Optimal weights

For fixed n and equally spaced measurements, consider estimators

µ̂ =
nX

i=1

wiYi

where
Pn

i=1 wi = 1 but the wi ’s are not necessarily equal.

This is the model y = 1nµ+ ✏, where Cov(✏) = �2
C , 1n is the n-vector

of 1’s, and C is the correlation matrix of (Y1, . . . ,Yn).

What vector of weights w = (w1, . . . ,wn) minimizes Var(µ̂)?

w = k1TC�1

where k = (10nC
�11n)�1 is a scalar constant.



Support for the intuition, part 1: Optimal weights

For equally-spaced observations from an AR(1) process,

Corr[Yt ,Yt0 ] = ⇢|t�t0|

and the correlation matrix C has a simple closed-form inverse.

Given n, the correlation between adjacent observations is � = ⇢
1

n�1 .

The optimal weights are

w1 = wn = k(1� �) and

w2 = w3 = · · · = wn�1 = k(1� 2� + �2) = k(1� �)2.

The ratio of an endpoint weight to an interior weight is 1/(1� �), so

I an endpoint carries more information than an interior point, and

I the e↵ect is stronger as � increases.



Intuition, part 2: Unequally-spaced observations

How does unequal spacing of observations a↵ect Var(Ȳ )?

To study this, locate internal points at quantiles of a Beta(↵,↵).

For a given n,

I ↵ < 1 gives locations that are more closely spaced near the unit
interval’s endpoints and more distantly spaced at the center,

I ↵ = 1 gives equally spaced locations, and

I ↵ > 1 gives locations more closely spaced near the interval’s center.



Intuition, part 2: Unequally-spaced observations

Variance of Ȳ for �2 = 1, Cov[Yt ,Yt0 ] = ⇢|t�t0|, ⇢ = exp(�1) ⇡ 0.37.

Measurement locations are quantiles of Beta(↵,↵), as indicated.
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“Near the ends” diminishes the info loss near the ends of the intervals.



“A modestly interesting implication” (produced by M. Lavine):

MCMC draws are autocorrelated, so iterations after burn-in are like
Morris & Ebey’s interval [0, 1].

Is it possible to get smaller MCMC variance for estimating E(h(X )|data)
by dropping every second observation?

Yes: ML produced an example with an extremely high one-lag
autocorrelation.

But the size of the e↵ect is quite small ) no practical implication.


