Oddity # 5 Increase Sample size; StalErr(X) increases! Actual problem: Alex B was measuring the effect on gum tissue of a particular method of doing a crown preparation. This was a pilot dataset · Upper right first molar of volunteers: - make a cast of tooth and gum before crownprop - do crownprop; wait a little while -make a second cast of tooth and gum - makedigital 3-D imager of "before" and "after" casts, -align digital images using fixed surface of - compute change in gum height, (after) - (before) • This measurement is, for practical purposes, withouterray · Alex B considered a 46.5 mm length of gum between two land marks. · Design Question: At how many locations in this 46.5 mm length should Alex measure? IE/17 4/19/08, ~ 3/6/12

Design Question: At how many locations in this  
46.5 mm length should Atex measure?  
Other facts: - comparing crown prop us no prop  
=> comparison is between parsons  
- Although measurements are, in effect, without  
error, they are costly in time.  
- Alex provided a data set with a faw teeth (? 10?)  
reasoned before and after of (?) 11 locations  
- I fit a bunch of spatial models to this  
dataset and ended up with this model:  
Change at locations 
$$y_{si} = h_i + \varepsilon_s$$
  $s = (\frac{1}{n-1}) 46.25$   
in person i  
 $(ov(\varepsilon)) = O^2((rep(-clij/22.5))) \sigma^2 = 95^2 \mu m$   
 $dij = distance (mm) between two
measurements = [46.25(i-j)/(n-1)] mm.
Very important: As you take more measurements
(as n increases), adjacent
neasurements are closer togethers$ 

IF/18 4/19/08



- This result does not depend on the choice of constants (22.5, 46.25)
  It is not specific to this correlation function e<sup>-d/0</sup>
  I got the same qualitative result using:
  · Corr(i,j) = e<sup>-dij/θ<sup>2</sup></sup>
  · corr(i,j) = 1-dij/46.25
- · Unable to find any errors in my work, I asked several colleagues and was directed to Morris MD, Ebey SF (1984) The Amer. Stat. 38: 127-129 which proves this result for the covariance function  $\omega(y_s, y_s) = \sigma^2 e^{|s'-s|}$ · They also show that if you leave out yo, this heruet no longer holds, i.e. Var (Xn) decreases monotonically in n, though as n becames large Var(Xn) becomes effectively flat (Hoel PG (1961), Ann. Math. Stat. 32:1042-1047). · Jargen (e-g.N. Cressie's spotial book): "Infill Asymptotics" TE/20 4/19/08

This is not just an oddity - it could happen to you

Example:

- > You are designing a clinical trial comparing two groups.
- > You will take measurements at times 0 and 12 months.
- Design decision: Should you take a measurement at 6 months?
- Fact: If the within-person correlation is high enough, the SE of the group main effect <u>increases</u> if you use the 6 month measurement.

## This is not just an oddity (continued)

Each group has *n* subjects; error variance of one measurement is  $\sigma^2$ . Person *i* in group 1:

 $Corr(X_{1i,0}, X_{1i,12}) = \rho$ ,  $Corr(X_{1i,0}, X_{1i,6}) = Corr(X_{1i,6}, X_{1i,12}) = \sqrt{\rho}$ Person *i* in group 2: same model.

Including the 6-mo measurement:  $\operatorname{var}(\bar{X}_{1.} - \bar{X}_{2.}) = \frac{2\sigma^2}{9n}(3 + 4\sqrt{\rho} + 2\rho)$ Excluding the 6-mo measurement:  $\operatorname{var}(\bar{X}_{1.} - \bar{X}_{2.}) = \frac{2\sigma^2}{4n}(2 + 2\rho)$ 

The variance of the group main effect is lower using the 6-mo measurement for  $\rho < 0.36$  higher using the 6-mo measurement for  $\rho \ge 0.36$ .

The ratio var(with)/var(without) peaks at  $\rho \approx 0.61$ .

The rest of this lecture is taken from Lavine ML, Hodges JS

"An Old Curiosity, Some Intuition for It, and a Modestly Interesting Implication"

which is under review at The American Statistician.

### More examples, from LH

Variance of  $\bar{\mu}$  with  $\sigma^2 = 1$  and  $Cov[Y_t, Y_{t'}] = \rho^{|t-t'|}$ , with equally-spaced measurement locations.

| $\rho$ | 2    | 3    | 4    | 5    | 10   | 20   | 30   | 40   | $\infty$ |
|--------|------|------|------|------|------|------|------|------|----------|
| .001   | .501 | .348 | .290 | .265 | .241 | .241 | .242 | .243 | .248     |
| .010   | .505 | .380 | .344 | .331 | .325 | .331 | .334 | .335 | .341     |
| .100   | .550 | .496 | .490 | .492 | .506 | .516 | .520 | .522 | .529     |
| .400   | .700 | .703 | .712 | .719 | .735 | .744 | .747 | .749 | .753     |

Why does this happen? What's the intuition?

# Intuition (Michael Lavine)

Due to autocorrelation, an observation  $Y_t$  at time t provides some information about the process at times *surrounding* t.

When enough observations have been taken in the fixed interval [0, 1], adding observations in [0, 1] provides little more information about the process in that interval.

But the observations at t = 0 and t = 1 also provide information about the process *outside* of [0, 1].

As more observations are added inside [0, 1], and all observations are given equal weight, the information about the process *outside* [0, 1] becomes diluted to an extent that outweighs the additional information from *inside* [0, 1], which in turn causes Var $(\bar{\mu})$  to increase.

### Support for the intuition, part 1: Optimal weights

For fixed n and equally spaced measurements, consider estimators

$$\hat{\mu} = \sum_{i=1}^{n} w_i Y_i$$

where  $\sum_{i=1}^{n} w_i = 1$  but the  $w_i$ 's are not necessarily equal.

This is the model  $\mathbf{y} = \mathbf{1}_n \mu + \epsilon$ , where  $Cov(\epsilon) = \sigma^2 C$ ,  $\mathbf{1}_n$  is the *n*-vector of 1's, and C is the correlation matrix of  $(Y_1, \ldots, Y_n)$ .

What vector of weights  $w = (w_1, \ldots, w_n)$  minimizes  $Var(\hat{\mu})$ ?

$$w = k \mathbf{1}^T C^{-1}$$

where  $k = (\mathbf{1}'_n C^{-1} \mathbf{1}_n)^{-1}$  is a scalar constant.

#### Support for the intuition, part 1: Optimal weights

For equally-spaced observations from an AR(1) process,

$$\mathsf{Corr}[Y_t, Y_{t'}] = \rho^{|t-t'|}$$

and the correlation matrix C has a simple closed-form inverse.

Given n, the correlation between adjacent observations is  $\gamma = \rho^{\frac{1}{n-1}}$ .

The optimal weights are

$$w_1 = w_n = k(1 - \gamma)$$
 and  
 $w_2 = w_3 = \cdots = w_{n-1} = k(1 - 2\gamma + \gamma^2) = k(1 - \gamma)^2.$ 

The ratio of an endpoint weight to an interior weight is  $1/(1-\gamma)$ , so

- > an endpoint carries more information than an interior point, and
- the effect is stronger as  $\gamma$  increases.

### Intuition, part 2: Unequally-spaced observations

How does unequal spacing of observations affect  $Var(\bar{Y})$ ?

To study this, locate internal points at quantiles of a  $Beta(\alpha, \alpha)$ .

For a given *n*,

- $\alpha < 1$  gives locations that are more closely spaced near the unit interval's endpoints and more distantly spaced at the center,
- $\alpha = 1$  gives equally spaced locations, and
- $\blacktriangleright~\alpha>1$  gives locations more closely spaced near the interval's center.

#### Intuition, part 2: Unequally-spaced observations

Variance of  $\overline{Y}$  for  $\sigma^2 = 1$ ,  $Cov[Y_t, Y_{t'}] = \rho^{|t-t'|}$ ,  $\rho = exp(-1) \approx 0.37$ .

Measurement locations are quantiles of  $Beta(\alpha, \alpha)$ , as indicated.



"Near the ends" diminishes the info loss near the ends of the intervals.

"A modestly interesting implication" (produced by M. Lavine):

MCMC draws are autocorrelated, so iterations after burn-in are like Morris & Ebey's interval [0, 1].

Is it possible to get <u>smaller</u> MCMC variance for estimating E(h(X)|data) by dropping every second observation?

Yes: ML produced an example with an extremely high one-lag autocorrelation.

But the size of the effect is quite small  $\Rightarrow$  no practical implication.