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Summary. Attachment loss (AL), the distance down a tooth’s root that is no longer attached to surround-
ing bone by periodontal ligament, is a common measure of periodontal disease. In this article, we develop
a spatiotemporal model to monitor the progression of AL. Our model is an extension of the conditionally
autoregressive (CAR) prior, which spatially smooths estimates toward their neighbors. However, because
AL often exhibits a burst of large values in space and time, we develop a nonstationary spatiotemporal CAR
model that allows the degree of spatial and temporal smoothing to vary in different regions of the mouth.
To do this, we assign each AL measurement site its own set of variance parameters and spatially smooth the
variances with spatial priors. We propose a heuristic to measure the complexity of the site-specific variances,
and use it to select priors that ensure parameters in the model are well identified. In data from a clinical
trial, this model improves the fit compared to the usual dynamic CAR model for 90 of 99 patients’ AL
measurements.

Key words: Conditional autoregressive prior; Disease monitoring; Nonstationarity; Periodontal data;
Spatiotemporal data.

1. Introduction
Periodontal disease is the primary cause of adult tooth loss. It
has been estimated that over half of adults over age 35 years
are already in the early stages of periodontal disease (Oliver,
Brown, and Loe, 1998). A common measure of periodontal
disease is attachment loss (AL), the distance down a tooth’s
root that is no longer attached to surrounding bone by the
periodontal ligament. During a full periodontal exam, AL is
measured at six locations on each tooth as shown in Figure 1.
For a patient with no missing teeth, there are ns = 168 ob-
servations. The patient whose data are plotted in Figure 1 is
missing the second tooth on the left side of the upper jaw, so
there are 162 observations.

Calibration studies commonly show that a single AL mea-
surement has an error with a standard deviation of roughly
0.4 to 1 mm (Osborn et al., 1990, 1992). Figure 1 shows a
moderate to severe case of periodontal disease, so measure-
ment error with a 1-mm standard deviation is substantial. In
clinical practice, clinicians in effect do a t-test at each site to
determine if an apparent change from one office visit to the
next is real, and commonly a site’s measured AL must change
by at least 2 mm to be deemed a true change.

The aim of this article is to develop a statistical model to
improve periodontal disease monitoring. Several treatments
for periodontal disease are available and early detection is im-
portant. The methods developed here could be implemented
in some form in the increasingly popular software used to

record measurements in periodontal offices. This would allow
periodontists to identify changes in a patient’s condition more
quickly and reliably so corrective measures could be taken.

Reich, Hodges, and Carlin (2007) analyzed AL data from a
single visit using a conditionally autoregressive (CAR) distri-
bution, popularized for Bayesian disease mapping by Besag,
York, and Mollié (1991). This spatial model borrows strength
across neighboring sites to smooth away measurement error
and improve estimates of true AL at each site. Reich et al.
(2007) show that it can be advantageous to have more than
one class of neighbor relation in the spatial structure, so the
different classes of neighbor relations can induce different de-
grees of smoothing. For example, they allow smoothing of
neighbor pairs bridging the gap between teeth to be different
from smoothing of pairs that do not bridge such gaps. In this
article, we propose a more flexible spatial model by allow-
ing each spatial location, rather than each neighbor type, to
have a different amount of spatial smoothing. Also, we extend
this model to analyze repeated periodontal measurements us-
ing a spatiotemporal model that smooths values both toward
neighbors in space and toward consecutive measurements at
the same location.

The nature of periodontal disease progression has been de-
bated for some years. The “linear theory” posits that AL
changes gradually at a steady rate (Loe et al., 1978). A com-
peting theory, the “burst theory” (Socransky et al., 1984),
contends that a given location alternates between bursts of
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Figure 1. Observed AL for a typical clinical trial subject.
The shaded boxes represent teeth, the circles represent mea-
surement sites, and the gray lines represent neighbor pairs
connecting adjacent sites on the same tooth and sites that
share a gap between teeth. “Maxillary” and “Mandibular”
refer to upper and lower jaws, respectively. The small num-
bers beside each tooth are the “tooth numbers.” The maxilla’s
second tooth on the left is missing; third molars (“wisdom
teeth”) are excluded.

progression and periods of remission or repair. Gilthorpe et al.
(2003) proposed a nonspatial hierarchical model that unified
these theories by allowing the time trajectories at individual
sites to have a polynomial form, and found evidence that lin-
ear trajectories were insufficient for modeling longitudinal AL
data.

To accommodate both the linear and the burst theories
of disease progression, a spatiotemporal model should allow
the amount of spatial and temporal smoothing to vary in dif-
ferent regions of the mouth. Models that allow the amount
of variation to change over time are common in time series
analysis (Engle, 1982; Kitagawa and Gersh, 1985; Bollerslev,
1986). Several spatial models have been proposed that allow
the amount of spatial smoothing to vary spatially. For ex-
ample, Lawson and Clark (2002) used a mixture of L1 and

L2 spatial processes to handle discontinuities. More recently,
Brewer and Nolan (2007) allowed the amount of smoothing
to vary across the spatial domain by assigning each site its
own spatial smoothing parameter. They used an empirical
Bayes approach, using results from the usual CAR model to
provide prior information about the region-specific smoothing
parameters.

Our method follows Brewer and Nolan in assigning each
site its own smoothing parameter for the change in AL at
each visit. Also, because measurement error for AL data is
often not constant throughout the mouth, we assign each site
its own error variance as well. Both types of site-specific vari-
ances display spatial pattern, so we smooth the area-specific
variances using CAR priors. This fully Bayesian model al-
lows parts of the mouth to have different amounts of spatial
smoothing.

A highly parameterized model with different variances for
each measurement location is susceptible to poor identifica-
tion and slow Markov chain Monte Carlo (MCMC) conver-
gence. Also, due to the complicated nature of longitudinal
periodontal data, it is difficult to visually inspect model out-
put to determine if the model fits well. Therefore, we propose
two new methods to accompany this model. First, to guide
prior specification and avoid identification problems, we de-
rive a measure of complexity for the site-specific smoothing
parameters and use that to choose an intuitive informative
CAR prior for the smoothing parameters. Second, we develop
a diagnostic to search for features of the data that a given
model fits poorly and to suggest elaboration, e.g., additional
fixed effects or spatially varying smoothing parameters.

The article proceeds as follows. Section 2 proposes a spa-
tially adaptive CAR model to analyze AL data from a single
visit, which allows both the error variance and the smooth-
ing variance to vary spatially. Section 2.4 develops a mea-
sure of complexity for the site-specific variances, which is used
to choose priors that ensure identification. This model is ex-
tended to the spatiotemporal setting in Section 3. The spa-
tiotemporal model has three types of variances: error variance,
variances controlling spatial smoothing of the baseline mean,
and variances controlling spatial smoothing of the changes
between visits. Each type of variance is allowed to vary spa-
tially and is smoothed with a CAR model. These models are
illustrated in Sections 4 and 5 using periodontal data from a
recent clinical trial. Section 6 concludes.

2. A Spatially Adaptive CAR Model
for Cross-Sectional AL Data

This section extends the usual CAR model of Besag et al.
(1991) to allow both the error and smoothing variances to
vary spatially.

2.1 The Usual CAR Model
Let ys be the observed AL at site s. Assume ys = µs + x

′
sβ +

εs, where µs is the spatially varying intercept, xs is the vec-
tor of covariates for site s, β is the corresponding vector of
regression coefficients, and measurement error εs ∼ N(0, σ2)
independently across s. The covariates used throughout the
article are six tooth-number indicators (referring to the tooth
numbers in Figure 1) and an indicator that a site is adja-
cent to the gap between teeth. Based on previous work (Hao,
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1998; Roberts, 1999; Zhao, 1999), we do not include inter-
actions (e.g., between tooth and quadrant) and no intercept
term is included in xs because the intercept is implicit in the
CAR model for µ.

Spatial dependence is introduced through the prior (or
model) on µ = (µ1, . . . , µns)

′, which smooths µs toward its
neighbors defined in Figure 1. The CAR model with L2 norm
(also called a Gaussian Markov random field) can be defined
by priors for each µs conditional on the value of µ at all other
sites, µ(s). Under the CAR(τ 2) model, µs | µ(s) is normal with
mean µ̄s and variance τ 2/ms, where µ̄s is the mean of µ at
site s’s ms neighbors and τ 2 is the variance parameter that
controls prior smoothing. The resulting joint prior for µ can
be written

p(µ | τ 2) ∝ (τ 2)−(ns−G)/2 exp
(
−1

2
µ′Qµ

)

∝ (τ 2)−(ns−G)/2 exp

(
−1

2

∑
s∼j

(µs − µj)
2

τ 2

)
, (1)

where G is the number of islands (disconnected groups of
regions) in the spatial grid (Hodges, Carlin, and Fan, 2003),
Qss = ms/τ

2, Qsj = −I(s ∼ j)/τ 2, and I(s ∼ j) is the binary
indicator of whether sites s and j are neighbors. In (1), τ 2

can be loosely interpreted as the variance of the difference
between the values of µ for a pair of neighboring sites.

2.2 Spatially Varying Error Variances
One difficulty in modeling AL data is that measurement er-
ror is often not constant throughout the mouth (Hao, 1998;
Roberts, 1999; Zhao, 1999). For example, measurement error
is often higher in the gap between teeth because it is more
difficult to make measurements there. Yan (2007) proposed
a heteroskedastic CAR model that allows the error variance
to vary spatially. To allow for heteroskedasticity in the error
variances, we assign each site its own error variance, σ2

s. The
model then becomes

ys = µs + x′
sβ + εs,where εs ∼ N

(
0, σ2

s

)
. (2)

We use a prior on the σ2
s that spatially smooths them

using a CAR prior that allows regions to have high or low
measurement-error variances. Let σ2

s = exp(u0 + us + x
′
sα1),

where u0 represents the typical log error variance across the
entire spatial domain, us is the change of log measurement
variance for region s compared to the average measurement
variance, xs is a vector of explanatory variables that predict
the magnitude of measurement error, and α1 contains the cor-
responding parameters. The average error variance u0 is given
a N(0,10) prior and u = (u1, . . . , un)

′
is given a CAR(γu)

prior, subject to the constraint
∑ns

s=1 us = 0. For notational
convenience, we have written the model for σ2

s in terms of the
same covariates xs as in (2), although this is not necessary and
the model is trivially extended to have different covariates for
the error variances.

2.3 Spatially Varying Smoothing Variances
To allow spatial smoothing to vary in space, we follow the
lead of Brewer and Nolan (2007) and extend µ’s joint prior

(1) to have a different variance for each neighbor pair,

p
(
µ | τ 2

sj

)
∝ |Q|1/2 exp

(
−1

2
µ′Qµ

)

∝ |Q|1/2 exp

(
−1

2

∑
s∼j

(µs − µj)
2

τ 2
sj

)
, (3)

where |Q| is the product of Q’s positive eigenvalues, Qss =∑
s∼j

1/τ 2
sj and Qsj = −I(s ∼ j)/τ 2

sj . Rather than treating

the τ 2
sj as separate unknown parameters, each location is as-

signed its own smoothing variance, τ 2
s. We assume that τ 2

sj =
τsτ j . (We part ways with Brewer and Nolan at this point; see
further comments.) Using multiplicative variances, the condi-
tional prior for µs is normal with

E
(
µs | µ(s)

)
=
∑
s∼j


 τ−1

j∑
s∼k

τ−1
k


µj ,

Var
(
µs | µ(s)

)
= τs

(∑
s∼j

τ−1
j

)−1

. (4)

We denote this spatially adaptive CAR (SACAR) model for
µ as µ ∼ SACAR(τ 2

1 , . . . , τ
2
ns

). Under this model, the condi-
tional prior mean of µs is a weighted average of the neigh-
boring µj , with neighboring sites having small τ 2

j receiving
more weight than those having large τ 2

j . As τ 2
s increases, site

s is effectively removed from the spatial grid: its conditional
prior variance increases, reducing the influence of the spatial
prior, i.e., of its neighbors, and it is given little weight in the
conditional priors of its neighbors.

Brewer and Nolan (2007) used the additive model τ 2
sj =

(τ 2
s + τ 2

j)/2. The additive and multiplicative models for the
smoothing variances give similar results for the analyses in
Sections 4 and 5. Because our multiplicative model gives
somewhat more intuitive expressions for the conditional mean
and variance of µs in (4) and enables the prior distribution
heuristic in Section 2.4, we present the results for the multi-
plicative model.

Brewer and Nolan took an empirical Bayes approach to
build priors for the τ 2

s. First, they fit the usual CAR model
with constant spatial smoothing described in Section 2.1. The
differences between the fitted value at site s and its neighbors
were then used to specify a prior for τ 2

s.
We take a fully Bayesian approach to this model and use a

spatial prior for the smoothing variances, similar to the spa-
tial prior for the error variances in Section 2.2. Define τ 2

s =
exp(v0 + vs + x

′
sα2), where v0 represents the typical log

smoothing variance across the entire spatial domain, vs is the
change of log smoothing variance for region s compared to
the average smoothing variance, xs is a vector of explanatory
variables, and α2 are the corresponding parameters. The av-
erage log smoothing variance v0 is given a N(0,10) prior and
v = (v1, . . . , vn)

′
is given a CAR(γv) prior, subject to the

constraint
∑ns

s=1 vs = 0.
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2.4 Measuring the Complexity of the Smoothing Variances to
Specify Their Prior

Proper priors at each stage of the hierarchy ensure a proper
posterior for the spatially adaptive CAR model described
above. However, given that the model has far more param-
eters than observations, identification may be poor without
substantial spatial smoothing of the τ 2

s, the smoothing vari-
ances. We now develop a heuristic for specifying a prior for
γv, which controls the smoothness of the smoothing variances
τ 2
s. Specifically, we define a rough measure of the complexity

of v based on Hodges and Sargent’s (2001) degrees of free-
dom for hierarchical linear models, and use that to facilitate
prior specification of γv, the parameter that controls spatial
smoothing of v.

From (3), under the multiplicative model for the smoothing
variances τ 2

sj = τsτ j , each term in (3) has the form of a stan-
dard normal density with variate (µj − µs)/

√
τsτj . To roughly

measure the complexity of v, we set aside the covariates xs

and approximate the distribution of log[(µj − µs)
2/(τsτ j)] by

a normal distribution, i.e.,

log(µj − µs)
2 = log(τs) + log(τj) + ejs

= (ṽj + ṽs)/2 + ejs, (5)

where ṽj = v0 + vj . Because (µj − µs)/
√
τsτj is approxi-

mately standard normal, the error ejs = log[(µj − µs)
2/(τsτ j)]

is roughly the log of a χ2
1 random variable, which has variance

ξ2
1 = 4.98. To account for the correlation between the terms of

(3) and preserve the appropriate total variance
∑

Var(ejs) =
(ns − G)ξ2

1, we inflate the approximate variance of ejs to
ω2 = mξ2

1/(ns − G), where m is the total number of neighbor
pairs in the spatial grid.

With these simplifying assumptions, the model for L, the
m-vector of log-squared differences log(µj − µs)

2, can be
written

L ∼ N
(
Zṽ, ω2Im

)
(6)

ṽ ∼ CAR(γv), (7)

where Z is the m × n design matrix implied by (5) and Im is
the m × m identity matrix. Applying the definition of degrees
of freedom in Hodges and Sargent (2001), the degrees of free-
dom describing the complexity of the smoothing variances for
a given γ2

v is

ρ
(
γ2
v

)
= trace

[(
Z ′Z +

ω2

γ2
v

D

)−1

Z ′Z

]
, (8)

where D is the ns × ns adjacency matrix with Dss = ms

and Dsj = −I(s ∼ j). The degrees of freedom for v, ρ(γ2
v),

is strictly increasing in γ2
v and 0 ≤ ρ(γ2

v) ≤ ns for any γ2
v >

0 and any spatial grid. To ensure that v is well identified, we
give γ2

v the prior InvGamma(5.0, 1.0), parameterized to have
mode 1/6, so the prior 95% percentile for ρ(γ2

v) is 20.6 out of
a possible 168, i.e., v is forced to be fairly smooth.

3. A Spatially Adaptive Dynamic CAR Model
for Longitudinal Periodontal Data

3.1 Statistical Model
Section 2 proposed a model for AL data from a single pe-
riodontal exam, which smooths AL estimates toward their
spatial neighbors. This section extends the model to the spa-
tiotemporal setting. Let yts = µts + x

′
tsβ + εts be the ob-

served AL at site s and visit t, where µts is the random in-
tercept at site s and visit t, xts is a vector of covariates, β is
the corresponding vector of regression parameters, and εts ∼
N(0, σ2

s) is the measurement error. Following Section 2.2, we
allow the error variance to vary spatially, i.e., σ2

s = exp(u0 +
us + x

′
sα1), where u0 is given a N(0,10) prior and u =

(u1, . . . , un)
′

is given a CAR(γu) prior, subject to the con-
straint

∑ns

s=1 us = 0. However, we hold the error variance con-
stant across visits because in practice the measurements are
usually taken by the same periodontist and because measure-
ment error depends on site-specific factors, e.g., ease of access.

The intercepts for the baseline visit, µ0 = (µ01, . . . , µ0ns)
′,

are given Section 2.3’s spatially adaptive CAR prior. That is,
µ0 ∼ SACAR(τ 2

1 , . . . , τ
2
ns

), τ 2
s = exp (v0 + vs + x′

0sα2), where
v0 is given a N(0,10) prior and v = (v1, . . . , vns)

′ is given a
CAR(γv) prior, subject to the constraint

∑ns

s=1 vs = 0.
The subsequent nt visits are modeled as a dynamic spa-

tiotemporal process (Gelfand, Banerjee, and Gammerman,
2005),

µt = µt−1 + ∆t, (9)

where ∆t = (∆t1, . . . ,∆tns) is the vector of changes in mean
AL between visit t − 1 and visit t. As with the baseline mean
µ0, each vector of changes ∆t is given a spatially adaptive
CAR prior to borrow strength from neighboring sites. How-
ever, because the spatial patterns in AL changes are likely
to be different from the spatial pattern in baseline AL, the
changes are smoothed with a different set of variances parame-
ters, i.e., ∆t ∼ SACAR(δ2

1 , . . . , δ
2
ns

). The smoothing variances
for the changes in AL δ2

1 , . . . , δ
2
ns

are modeled as constant
across time and smoothed in the same fashion as the baseline
smoothing variances, i.e., δ2

s = exp(w0 + ws + x
′
tsα3), where

w0 is given a N(0,10) prior and w = (w1, . . . , wns)
′ is given a

CAR(γw) prior, subject to the constraint
∑ns

s=1 ws = 0. Al-
though this is the same prior as for the baseline smoothing
variances, because we have three vectors of observations on
∆t, it is less restrictive, with prior the 95% percentile for
ρ(γ2

w) being 45.5 out of a possible 168.
For a visit other than the first or last visit, the prior for

µts conditional on every component of µ except µts is normal
with

E
(
µts | µ(ts)

)
=
∑
s∼j




 δ−1

j∑
s∼k

δ−1
k


µtj +


 δ−1

j∑
s∼k

δ−1
k




× [(µt−1,s − µt−1,j) + (µt+1,s − µt+1,j)]

)
,

Var
(
µts | µ(ts)

)
=

1

2

(∑
s∼j

δ−1
j

)−1

.
(10)
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The conditional prior mean is the sum of two components.
The first component is a weighted average of the µts ’s spatial
neighbors at the same visit, similar to the conditional prior
mean for baseline AL in (4). The first component, based only
on µt, is adjusted by the second component using the differ-
ences between the true AL at site s and its spatial neighbors
at the previous and subsequent visits. For example, if the true
AL at site s is larger than its neighbors at times t − 1 and
t + 1, the second component of E(µts | µ(ts)) will be positive
and the prior mean of µts will be larger than the weighted
average of the true AL of sites s’s neighbors at time t.

All told, the fit is controlled by three types of variance
parameters: error variance (σ2

s), baseline spatial smoothing
variance (τ 2

s), and the smoothing variance for the change in
mean AL (δ2

s). Each type of variance is smoothed spatially
using a CAR prior with neighborhood structure defined as in
Figure 1, allowing the nature of the time series to be different
in different regions of the mouth. The full model is

yts = x′
tsβ + µ0s +

t∑
j=1

∆js + εts,

where

t∑
j=1

∆js is null for t = 0;

εts ∼ N
(
0, σ2

s

)
, where σ2

s = exp(u0 + us + x0sα1) and

u ∼ CAR
(
γ2
u

)
, subject to

∑
s

us = 0;

µ0 ∼ SACAR
(
τ 2

1 , . . . , τ
2
ns

)
,

where τ 2
s = exp(v0 + vs + x0sα2)

v ∼ CAR
(
γ2
v

)
, subject to

∑
s

vs = 0;

∆t ∼ SACAR
(
δ2

1 , . . . , δ
2
ns

)
,

where δ2
s = exp(w0 + ws + xtsα3)

w ∼ CAR
(
γ2
w

)
, subject to

∑
s

ws = 0.
(11)

We evaluate the posterior using MCMC sampling using R

(http://www.R-project.org). As far as we know the model
cannot be fit in WinBUGS. The “car.normal” distribution does
not allow for random weights and the “dmnorm” distribution
requires a proper covariance matrix. Gibbs sampling is used
to update µ0, ∆t, and β. The elements of α1, α2, and α3

are updated using Metropolis–Hastings sampling, tuned so
the acceptance ratio is near 40%. The variances u, v, and w
are sampled using blocked-Metropolis updates, with teeth as
blocking units. We make 50,000 draws using MCMC sampling
and discard the first 10,000 as burn-in. Based on trace plots of
the deviance and several individual parameters, the algorithm
seems to converge fairly quickly.

When fitting this model and simplifications of it, we com-
pare models using the deviance information criterion (DIC) of
Spiegelhalter et al. (2002), defined as DIC = D̄ + pD where D̄
is the posterior mean of the deviance, pD = D̄ − D̂ is the ef-
fective number of parameters, and D̂ is the deviance evaluated
at the posterior mean of the parameters in the likelihood. The
model’s fit is measured by D̄, while the model’s complexity is
captured by pD. Models with smaller DIC are preferred.

3.2 A Goodness-of-Fit Diagnostic
Visually inspecting a fit to determine whether the model cap-
tures the data’s key features is an important step in model
building for time series and spatial data. However, it can be
difficult to visually inspect complicated spatiotemporal data
such as longitudinal AL data, because of its dimensionality.
Therefore, this section proposes a new diagnostic to search
for inadequacies in a proposed model.

The spatiotemporal model in (11) can be written

y | µ,β,Σ1 ∼ N (µ + Xβ,Σ1) and µ
∣∣Σ−1

2 ∼ N (0,Σ2) ,

where y = (y′0, . . . , y
′
nt

)′ is the vector of observed AL for all
sites and visits, µ = (µ′

0, . . . ,µ
′
nt

)′, and Σ−1
1 and Σ−1

2 are pre-
cision (inverse covariance) matrices. The conditional precision
matrix of y, Σ−1

1 , is diagonal with diagonal elements 1/σ2
s. The

prior precision matrix of µ is Σ−1
2 = Z−1′Q̃Z−1, where Z is de-

fined by µ = Z(µ′
0,∆

′
1, . . . ,∆

′
nt

)′ and Q̃ is the block diagonal
prior precision matrix of (µ′

0,∆
′
1, . . . ,∆

′
nt

)′ which depends on
τs and δs.

To judge whether the spatiotemporal covariance implied
by this model fits the data well, we compute the marginal
distribution of y after integrating out the random effects µ.
The marginal distribution of y is normal with mean Xβ and
variance

Σy =
(
Σ−1

1 − Σ−1
1

[
Σ−1

1 + Σ−1
2

]
Σ−1

1

)−1
, (12)

where Σy depends on (σs, τs, δs). We can evaluate the model’s
fit by comparing Σy evaluated at the posterior medians of (σs,

τs, δs), denoted Σ̂y, with the residuals r̂ = y −Xβ̂, where β̂
is the posterior median of β.

It is common in multivariate analysis to analyze a covari-
ance matrix by transforming to orthogonal coordinates. Let
z = (z1, . . . , znsnt)

′ = Σ̂
−1/2
y r̂. If the model is correct, the z2

j

approximately follow independent χ2
1 distributions. A qq-plot

of the z2
j against the quantiles of the χ2

1 distribution can be
used to check for deviations from the spatiotemporal model.
Large z2

j result from linear combinations of the data with more
variation than can be explained by the spatiotemporal covari-
ance structure. Outlying z2

j may be caused by any of several
deficiencies, including missing fixed effects, nonstationarity, or
misspecification of the spatial or temporal association struc-
ture. The sources of the deficiencies can be examined by plot-
ting the weights of the linear combinations of r̂ correspond-
ing to the outlying z2

j (i.e., the rows of Σ̂
−1/2
y ). Although this

method of searching for outlying linear combinations of the
data is not exhaustive, we find it a useful tool.

4. Analysis of Cross-Sectional Periodontal Data
Using the model of Section 2, we first analyze one subject’s
baseline AL data, displayed in Figure 2 (the baseline obser-
vations are plotted using a “1”). Six tooth number indicators
and an indicator of a site adjacent to the gap between teeth
are used as xs, i.e., as predictors of the AL and as predic-
tors for any spatially varying variance parameters. The usual
CAR model has DIC = 463 and pD = 31.6. Its fitted values
are smooth throughout the mouth, resulting in a poor fit in
areas with large AL such as the left side of the lower jaw
(mandible).
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Figure 2. Observed AL and posterior mean AL for one patient over four visits. The numerals are observed AL with the
character representing the visit number. The colored lines are the fitted values (posterior means) under the model with
spatially varying baseline smoothing parameters, and the rectangles along the horizontal axes represent teeth. “Maxillary”
and “mandibular” refer to upper and lower jaws, respectively, while “buccal” and “lingual” refer to the cheek and the tongue
sides of the teeth, respectively. This figure appears in color in the electronic version of the journal.

Allowing the error variances to vary in different areas of
the mouth reduces the DIC from 463 to 456. Allowing the
smoothing variances to vary in different areas of the mouth
gives a larger reduction in DIC from 463 to 436. Figure 2
shows that there is more volatility in the back of the mouth
than the front of the mouth. The models with spatially vary-
ing smoothing parameters are preferred because they allow
for differential smoothing in the back and front of the mouth.
Among models with spatially varying smoothing parameters,
the model for the error variances has little effect on DIC.

5. Analysis of Longitudinal Periodontal Data
This section uses Section 3’s model to analyze AL for the
patient in Section 4 over the course of four visits 3 months
apart. The whole-mouth average AL increases over time: the
average AL is 1.55, 1.57, 1.66, and 1.92 for visits 1, 2, 3,
and 4, respectively. The data are plotted in Figure 2 along
with posterior means from the “best” model described further
below. In Figure 2, the first two rows represent the upper jaw.
The first row shows the results for the strip of sites along the
tongue (lingual) side of the upper jaw.

DIC is smaller for the full model with all three spatially
varying variances (DIC = 1415) described in Section 3 than

for the model with the three variances constant across space
(DIC = 1457). The effective number of parameters is also
smaller for the full model (pD = 148.0) than for the model
with the three variances constant across space (pD = 158.6).
This may be due to the differential smoothing of the spa-
tiotemporal random effects, shown in Figure 3. Figure 3b
shows more spatial variability in the mean baseline AL in
the back of the mouth, while the spatial random effects are
smoothed considerably in the front of the mouth. The error
variances (Figure 3a) and spatial smoothing of the change in
AL from one visit to the next (Figure 3c) are fairly constant
throughout the mouth, except that the error variances are
generally larger for sites in the gap between teeth.

The fixed effects for mean AL under the spatially adap-
tive CAR model are given in Table 1a. Mean AL is larger for
sites in the gap between teeth than for direct sites. This ob-
servation has been made previously (Shievitz, 1997; Roberts,
1999; Reich, Hodges, and Zadnik, 2006). Although the plot
of observed AL in Figure 2 suggests that AL is larger in
the back of the mouth (left and right extremes of Figure 2),
the 95% intervals for all the tooth number effects cover zero
(Table 1a). This is probably because the spatially varying in-
tercepts µ0s absorb some of the trend from the front to the
back of the mouth. That is, this spatial trend can be explained
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Figure 3. Boxplots with whiskers representing 95% intervals of the posteriors of the three variance components. “Maxillary”
and “mandibular” refer to upper and lower jaws, respectively, while “buccal” and “lingual” refer to the cheek and the tongue
sides of the teeth, respectively.

either by the tooth number effects or by the spatial random
effects, and this uncertainty reduces the tooth number effects
and increases their posterior standard deviations (for further
discussion, see Reich et al., 2006).

The posteriors of the variances suggest some simplifica-
tions. First, based on Table 1 and Figure 3c, we assume
that spatial smoothing of the change in AL from one visit
to the next is constant throughout the mouth (i.e., δ2

s ≡ δ2).
Also, for the error variances, we remove the CAR random
effects and tooth number fixed effects, so the error variance
depends only on whether a site is in a gap between teeth.
This reduced model has a smaller DIC and pD (DIC = 1375,
pD = 82.9) than the full model described above (DIC = 1415,
pD = 148.0).

For the model with all three types of variance parameters
held constant throughout the mouth, several of the z2

j lie sub-
stantially above the 45-degree line in the qq-plot. The row of
Σ̂

−1/2
y for the largest z2

j is constant across the four visits and
only nonzero for the back left tooth of the lower jaw. This
provides further evidence that the model with constant base-
line smoothing is not appropriate because it provides an es-
pecially poor fit around the back left tooth of the lower jaw.

For the model with spatially varying baseline smoothing
variances, the weights for the largest single z2

j are a function of
the changes in AL between the third and fourth visits around
the second tooth from the right on the upper jaw. Some of the
measured increases between visits 3 and 4 around this tooth
are quite large (Figure 2). However, the qq-plot of the z2

j is
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Table 1
Summary of the fixed effects for the full model in Section 5.
Table (a) gives the posterior medians and 95% intervals for
the mean AL regression parameters (β). Table (b) gives the
posterior medians and 95% intervals for the exponentials of
parameters for the error variances (exp(α1)), the baseline

smoothing variances (exp(α2)), and the change in AL
smoothing variances (exp(α3)).

(a)

Mean AL

Gap 0.59 (0.43, 0.73)
Tooth 2 0.05 (−0.24, 0.36)
Tooth 3 −0.18 (−0.58, 0.21)
Tooth 4 −0.12 (−0.57, 0.31)
Tooth 5 −0.11 (−0.60, 0.40)
Tooth 6 0.23 (−0.40, 0.83)
Tooth 7 −0.01 (−0.94, 0.85)

(b)

Baseline Change
Error variance smoothing smoothing

Gap 1.42 (1.10, 1.81) 1.14 (0.25, 4.09) 0.89 (0.20, 3.91)
Tooth 2 1.10 (0.74, 1.78) 1.40 (0.41, 4.17) 1.25 (0.09, 7.47)
Tooth 3 0.65 (0.43, 1.02) 0.45 (0.13, 1.63) 0.95 (0.21, 4.53)
Tooth 4 0.74 (0.48, 1.11) 0.56 (0.10, 2.94) 1.02 (0.25, 3.56)
Tooth 5 0.68 (0.41, 1.05) 0.56 (0.12, 2.34) 1.20 (0.21, 4.82)
Tooth 6 0.71 (0.42, 1.14) 5.45 (1.82, 16.51) 0.99 (0.14, 4.02)
Tooth 7 0.70 (0.40, 1.10) 8.18 (1.87, 28.72) 0.92 (0.19, 3.98)
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(a) Probability of an increase from baseline. (b) Probability of an increase from baseline
     of more than 0.5 mm.

Figure 4. Posterior probability of an increase from baseline (panel (a)) and the probability of an increase of at least 0.5 mm
(panel (b)). “Maxillary” and “mandibular” refer to upper and lower jaws, respectively, while “buccal” and “lingual” refer to
the cheek and the tongue sides of the teeth, respectively.

nearly linear, suggesting further modifications of the model
may not be necessary.

Figure 2 shows the fitted values—posterior means for true
AL—for the model with spatially varying baseline smooth-
ing variances. For nearly all sites, the first visit (black) has
the smallest fitted value and the final visit (blue) has the
largest fitted value. However, the increase does not appear to
be linear in time or consistent across space. In the lower right
quadrant the mean AL increases between the first and second
visits, but is then fairly constant. Between the second and
third visits, the mean AL increases in the upper left quad-
rant, and between the third and fourth visits the mean AL
increases in the upper right and lower left quadrants.

Figure 4a shows the posterior probability under the reduced
model of an increase from baseline in true AL for each visit,
that is, the posterior probability of µts > µ0s. To simulate how
disease monitoring would go in practice, Figure 4 uses only
data from the first t visits to compute the probability of an
increase from baseline at visit t. The probability of an increase
from baseline is less than 0.90 throughout the mouth for the
second visit. The probabilities do not change substantially
between the second and third visits except for an increase in
the upper left quadrant. In this region, the probability of an
increase is greater than 0.99 for sites in the back of the mouth.
For the final visit, the probability of an increase from baseline
is greater than 0.50 throughout the mouth and greater than
0.90 in most sites in the back of the mouth.

A periodontist may also be interested in the probability
of an increase of more than a certain amount, which is also
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immediately available from the MCMC output. For example,
Figure 4b maps the posterior probability of an increase from
baseline of more than 0.5 mm. Although there is large proba-
bility of an increase throughout the mouth, only around teeth
6 and 7 in the upper right quadrant for visit 4 is there sub-
stantial probability of an increase of at least 0.5 mm.

In addition to analyzing this particular subject, we applied
the spatially adaptive CAR model to all 99 patients in this
clinical trial with fewer than 20% missing teeth. Only the
first and fourth visits were used in this analysis and only the
baseline smoothing parameters in the SACAR model were
allowed to vary spatially. We fit the usual CAR model and
spatially adaptive CAR model separately for each patient and
recorded DIC for each model. DIC is smaller for the spatially
adaptive CAR model for 90 of the 99 patients; for 71 of the
90, DIC was smaller by at least 10 for the spatially adaptive
CAR.

These 99 subjects may also be used to specify informative
priors for future analyses. For example, we analyzed the base-
line AL of each patient using the model of Section 2 with con-
stant error variance, spatially varying smoothing variances,
and informative InvGamma(5,1) priors for γ2

v. For each pa-
tient we compute the posterior median of γ2

v. The median of
the 99 posterior medians for γ2

v was 2.58 (IQR = 0.30). A
prior that captures this spread could be an alternative to the
informative inverse gamma prior based on degrees of freedom
in future analyses.

6. Discussion
This article presented a nonstationary spatiotemporal model
for longitudinal periodontal data that allows the variance
components to be different in different regions of the mouth.
For the patient analyzed in detail in Section 5, it did not
help to allow spatial variation in the error or smoothing vari-
ances for the change in AL between visits. However, the model
with spatially varying baseline smoothing produced a smaller
DIC than the usual dynamic CAR model with constant vari-
ances. This model also improved the fit for the vast majority
of patients from a recent study. The final model using four
visits’ data can be run in an hour or so on an ordinary PC.
Therefore, given the computing power needed to run the imag-
ing software currently used in some dental offices, it should
be possible to implement a real-time version of the present
analysis.

Given the many variance parameters in the model, Section
2.4 proposed a measure of complexity for spatially smoothed
variance parameters and proposed a way to use this mea-
sure to place informative priors on the site-specific vari-
ances. This led to a well-identified model that was still flex-
ible enough to allow considerably less spatial smoothing in
volatile areas of the mouth. Also, Section 3.2’s z2

j diagnostic
revealed inadequacies in the usual CAR model and suggested
improvements.

Modeling AL as Gaussian is the norm in periodontal re-
search. This may seem inappropriate for integer-valued out-
comes. In the late 1980s, new periodontal probes (“Florida
probes”) were introduced, which recorded measurements elec-
tronically to one decimal place. However, reproducibility stud-
ies (e.g., Osborn et al., 1990, 1992) showed that the extra dec-

imal place did not reduce the standard error of individual AL.
Therefore, we assume normality, although models for ordered
categorical data are also possible.

More sophisticated spatiotemporal models are also possi-
ble. For example, the change variances δ2

s could vary with
space and time and be given a second spatiotemporal prior.
This model is intuitively appealing because it may avoid over-
smoothing bursts in time, just as the spatially adaptive CAR
model is designed to prevent oversmoothing bursts in space.
Future work might examine prior specifications that impose
enough constraint to allow identification, without going so
far as to fix the variances across time as we have. Also, pe-
riodontal disease monitoring may be improved by simultane-
ously analyzing other measures of periodontal disease, such
as pocket depth and bleeding on probing. This suggests a
multivariate version of our spatially adaptive dynamic CAR
model, perhaps using a multivariate conditionally autoregres-
sive model (Gelfand and Vounatsou, 2003; Jin, Carlin, and
Banerjee, 2005).
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