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Attachment loss, the extent of a tooth’s root (in millimeters) that is no longer attached to surrounding bone by periodontal ligament, is
often used to measure the current state of a patient’s periodontal disease and monitor disease progression. Attachment loss data can be
analyzed using a conditionally autoregressive (CAR) prior distribution that smooths fitted values toward neighboring values. However, it
may be desirable to have more than one class of neighbor relation in the spatial structure, so the different classes of neighbor relations can
induce different degrees of smoothing. For example, we may wish to allow smoothing of neighbor pairs bridging the gap between teeth
to differ from smoothing of pairs that do not bridge such gaps. Adequately modeling the spatial structure may improve the monitoring of
periodontal disease progression. This article develops a two-neighbor-relation CAR model to handle this situation and presents associated
theory to help explain the sometimes unusual posterior distributions of the parameters controlling the different types of smoothing. The
posterior of these smoothing parameters often has long upper tails, and its shape can change dramatically depending on the spatial structure.
Like previous authors, we show that the prior distribution on these parameters has little effect on the posterior of the fixed effects but has
a marked influence on the posterior of both the random effects and the smoothing parameters. Our analysis of attachment loss data also
suggests that the spatial structure itself varies between individuals.
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1. INTRODUCTION

In periodontics, attachment loss (AL), the extent of a tooth’s
root (in millimeters) that is no longer attached to surrounding
bone by periodontal ligament, is used to assess the cumulative
damage to a patient’s periodontium and to check whether treat-
ment stops disease progression. Many texts (e.g., Darby and
Walsh 1995) describe periodontal measurement. Figure 1 shows
AL for a particular patient (patient 1 in our study). One pa-
tient’s mouth has up to 168 measurements (6 per tooth) with at
least 1 “island” (disconnected group of regions) per jaw; miss-
ing teeth can create more islands. The patient shown in Figure 1
is missing tooth number 2 on the left side of the maxilla (upper
jaw), resulting in three islands.

This article presents the first analyses of periodontal data us-
ing spatial statistical methods. The data are from a clinical trial
conducted at the University of Minnesota’s Dental School com-
paring three active treatments with placebo and with no treat-
ment. The 50 patients presented here were at least 35 years old,
had moderate to severe periodontal disease, and were not under-
going endodontic or surgical periodontal therapy. Each patient
was examined once at baseline and four times after adminis-
tration of treatment, at 3-month intervals. The original analy-
sis used whole-mouth averages of clinical measures (including
AL) or averages of subsets of sites defined by baseline disease
status. These standard, nonspatial analyses found no treatment
effect (Shievitz 1997).

A natural spatial model for analyzing AL is the conditionally
autoregressive (CAR) model, popularized for Bayesian disease
mapping by Besag, York, and Mollie (1991). In an examination
with n measurement sites, assume that x′

ib + θi is the true AL
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at site i, i = 1, . . . ,n, where xi is a column vector containing
covariates with coefficients b and θi captures spatial variation
in true AL not explained by the covariates. We include seven
population-level covariates: six tooth number indicators (Fig. 1
defines the tooth numbers) and an indicator for direct sites (sites
not in a gap between two teeth). Let yi be site i’s observed AL,
and assume that the likelihood yi|θi,b, τ0 is normal with mean
xib + θi and precision τ0, conditionally independent across i.
The spatial structure governing the θi is described by a lattice
of neighbor relations among sites. A CAR model for θ with
L2 norm (also called a Gaussian Markov random field model)
has improper density

p(θ |τ) ∝ τ (n−G)/2 exp

(
−τ

2
θ ′Qθ

)
, (1)

where the parameter τ ≥ 0 controls smoothing induced by
this prior, with larger values smoothing more than smaller val-
ues; G is the number of islands in the spatial structure; θ =
(θ1, . . . , θn)

′; and Q is n × n with nondiagonal entries qij = −1
if i and j are neighbors and 0 otherwise and diagonal entries qii

equal to the number of region i’s neighbors. This is an n-variate
normal kernel specified by its precision matrix τQ instead of its
covariance.

AL measurements are spatially correlated, but their corre-
lation may not be simply a function of distance. Figure 2
identifies four types of neighbor pairs, labeled I–IV. The four
neighbor types may have different correlations, as suggested by
previous studies (e.g., Sterne, Johnson, Wilton, Joyston-Beckel,
and Smales 1988; Gunsolley, Williams, and Schenkein 1994;
Roberts 1999) and by the empirical correlations in Table 1 for
the 50 subjects analyzed here. Thus, modeling these data may
require two or more classes of neighbor relations in the spa-
tial structure, with the lth class having its own τl, so the dif-
ferent neighbor relation classes can induce different degrees of
smoothing. Besag and Higdon (1999) introduced CAR priors
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Figure 1. Patient 1’s Attachment Loss. The shaded boxes represent
teeth and the circles represent measurement sites. “Maxillary” refers to
the upper jaw; “mandibular,” to the lower jaw. The maxilla’s second tooth
on the left is missing.

with two classes of neighbor relations, modeling a rectangular
grid of plots with different smoothing parameters for row and
column neighbors. They also extended the model to adjust for
edge effects and to analyze data from multiple experiments.

As possible models for AL, we consider four neighborhood
structures (“grids”) with one or two classes of neighbor rela-
tions, defined in Table 2. The first grid (1NR) allows only one
class of neighbor relations and has just one smoothing parame-
ter, τ1. Grid A distinguishes neighbor pairs entirely on either
the buccal (cheek) or lingual (tongue) sides of the teeth (types
I and II) from other neighbor pairs. Grid B distinguishes neigh-
bors bridging the gap between teeth, the “interproximal region”

Table 1. Empirical Correlations of Each Type of Neighbor Pair

Type I Type II Type III Type IV

Number of pairs 5,233 2,341 2,345 2,618
Empirical correlation .47 .57 .52 .60

NOTE: Figure 2 defines the types. “Number of pairs” is the number of pairs of each type of
neighbor relation for the 50 patients combined. “Empirical correlation” is the correlation of each
type of neighbor pair using the residuals from the regression (nonspatial) of the 50 patients’ AL
onto population-level covariates.

(types II, III, and IV), from type I neighbor pairs. Finally, grid C
distinguishes type II neighbor pairs from the other types.

Spatial analysis of periodontal data can potentially serve
several purposes. In research, it can be desirable to take pe-
riodontal measurements at only a subset of sites. For exam-
ple, the National Health and Nutrition Examination Survey III
(NHANES III) measured only two sites per tooth on a randomly
selected half-mouth (Drury et al. 1996). Different spatial struc-
tures may imply different sampling schemes. In addition, differ-
ent spatial structures are consistent with different etiologies of
AL. Compared with the 1NR model, grids A and B imply a spe-
cial role for interproximal regions; compared with each other,
they imply different effects for different interproximal sites.
Clinically, measurement error is relatively large. Calibration
studies commonly show that a single AL measurement has an
error with a standard deviation of roughly 0.4–1 mm (Osborn,
Stoltenberg, Huso, Aeppli, and Pihlistrom 1990, 1992). Fig-
ure 1 shows a severe case of periodontal disease, so measure-
ment error with a 1-mm standard deviation is substantial. Prac-
titioners in effect do t-tests at each site to determine whether
an apparent change is real, and commonly a site’s measured
AL must change by at least 2 mm to be deemed a true change.
It should be possible to exploit the spatial correlation of AL
measurements to mitigate the effects of measurement error and
improve sensitivity.

Section 2 develops a spatial model for periodontal data us-
ing a CAR prior with two neighbor relations (2NRCAR). Our
analysis was initially hampered by technical problems, such
as Markov chain Monte Carlo (MCMC) autocorrelations near
1 for the precision parameters, requiring us to more carefully
consider identification in these models. Sections 3 and 4 derive
the marginal posterior density of (z1, z2) for zl = log(τl/τ0),
l = 1,2, and examine identification of the zl. Section 5 then ap-
plies the model of Section 2 to our 50-patient dataset. Although
the spatial structures of these AL data appear to vary consider-
ably among patients, 2NR grids are superior to the 1NR grid for

Figure 2. Neighbor Pairs in a Three-Tooth Periodontal Grid. Rectangles represent teeth, circles represent sites where AL is measured, and
different line types represent the types of neighbor pairs.



46 Journal of the American Statistical Association, March 2007

Table 2. Neighbor Pairs Controlled by Each Smoothing Parameter for Each Grid

Grid Type I Type II Type III Type IV

One class of neighbor pairs 1NR τ 1 τ 1 τ 1 τ 1
Sides versus interproximal A τ 1 τ 1 τ 2 τ 2
Interproximal versus direct only B τ 1 τ 2 τ 2 τ 2
Type II versus others C τ 2 τ 1 τ 2 τ 2

some patients. The choice of grid has notable effects on fitted
values and the posterior of the fixed effects. Section 6 considers
the effect of (z1, z2)’s prior, and Section 7 concludes. Technical
results are relegated to the Appendix.

2. A SPATIAL MODEL FOR PERIODONTAL DATA

Let yp, the np-vector of patient p’s observed AL, follow a
normal distribution with mean Xpbp + θp and precision τ0p Inp ,
where Xp is a np × kp matrix of known covariates, bp is a
kp-vector of fixed effects, and θp is patient p’s np-vector of
spatial random effects, p = 1, . . . ,N. Correlation between a pa-
tient’s AL at contiguous sites is modeled in the prior for the
spatial random effects θp. Although it may be possible to spec-
ify a model with spatial correlation in measurement error and
in the true mean AL, it would be difficult for the data to differ-
entiate between these competing sources of spatial correlation.
We have resolved this by assuming that all of the spatial corre-
lation is accounted for by θp’s prior. θp has a CAR prior with
two neighbor relations, written as, extending (1),

p
(
θp|τ1p, τ2p

)

∝ c
(
τ1p, τ2p

)1/2 exp

(
−1

2
θ ′

p

{
τ1pQ1p + τ2pQ2p

}
θp

)
, (2)

where Qlp and τlp describe and control the smoothing of class l
neighbor pairs for patient p and c(τ1p , τ2p) is the product of the
positive eigenvalues of τ1p Q1p + τ2pQ2p (see later). We assume
that a pair of regions comprises neighbors of at most one type.
Qlp has rank np − Glp , with Glp being the number of islands
in neighbor class l’s spatial structure for patient p. Assume that
Glp < np; that is, the lth neighborhood structure is not null. If Gp

is the number of islands in patient p’s combined spatial struc-
ture, then Glp ≥ Gp. We assume that all patients have the same
grid, for example, grid A (although patients may have different
adjacency matrices due to missing teeth), but it is possible to
consider models in which the grid can vary between subjects.

Appendix A derives the following results. For any Q1p and
Q2p , there is a nonsingular Bp such that Q1p = B′

pD1p Bp and
Q2p = B′

pD2pBp, where Dlp is diagonal with np − Glp positive
diagonal entries and Glp zero entries (Newcomb 1961). Call
Dlp ’s diagonal elements dlpj , and without loss of generality as-
sume that the last Gp diagonal elements of both Dlp are 0. Then
the product of τ1pQ1p + τ2pQ2p ’s positive eigenvalues is propor-
tional to

c
(
τ1p , τ2p

) =
np−Gp∏

j=1

(
τ1p d1pj + τ2p d2pj

)
.

We assume that the fixed effects are shared across patients
(i.e., bp ≡ b and kp ≡ k), to capture known patterns in AL.
There are k = 7 fixed effects: six tooth number indicators (with

tooth 1 serving as the reference) and an indicator for direct
sites (sites not in the gap between teeth). Previous studies (e.g.,
Sterne et al. 1988; Gunsolley et al. 1994; Shievitz 1997; Roberts
1999) have shown that these are the only substantial and con-
sistent fixed effects. Because the rows and columns of Q1p and
Q2p sum to 0, the two-neighbor relation CAR model necessar-
ily implies a flat prior on θp’s average on each island. To ensure
b’s identifiability, we do not include a column for the intercept
in Xp, so the intercept is implicit in θp.

The precision parameters {τ0p, τ1p, τ1p} are allowed to vary
between patients. The transformation from {τ0p , τ1p, τ1p} to
{z0p = log(τ0p), z1p = log(τ1p/τ0p), z2p = log(τ2p/τ0p)} allows
for Gaussian priors that more naturally capture vague prior in-
formation and allow correlation of the {zlp} a priori. Under this
parameterization, z0p sets the scale and zlp controls the amount
of smoothing of class l neighbors for patient p. Our analysis in
Section 5 considers two priors for the (z0p , z1p , z2p): (1) the pa-
tient’s zlp are independent a priori with zlp ∼ uniform(−10,10),
l ∈ {0,1,2}, s = 1, . . . ,50, and (2) the patient’s (z0p , z1p , z2p)

are drawn from (and thus smoothed by) the Gaussian prior
(z0p , z1p , z2p)

′ ∼ N(µ,�), where µ = (µ0,µ1,µ2)
′ and � is a

diagonal precision matrix with diagonal elements (η0, η1, η2).
Although it may be reasonable to expect a patient with large
z1p to also have large z2p , in the absence of any preexisting
data to this effect, we prefer to let z1p and z2p be indepen-
dent a priori and let the data induce any posterior correlation.
In many cases the data overcome this prior independence; the
posterior correlation of z1p and z2p is often very high. To com-
plete the hierarchical model, the µl and ηl are given indepen-
dent N(ml,pl) and gamma(al,bl) priors, l ∈ {0,1,2}. Assuming
that the Gaussian prior on the patients’ precisions, the full pos-
terior, p(θ ,b, z0, z1, z2|y), is

N∏
p=1

exp

(
npz0p

2

− ez0p

2
{(yp − Xpb − θp)

′(yp − Xpb − θp)}
)

×
N∏

p=1

[np−Gp∏
j=1

(
ez1p+z0p d1pj + ez2p+z0p d2pj

)1/2

× exp

(
−ez0p

2

{
θ ′

p

(
ez1p Q1p + ez2p Q2p

)
θp

})]

×
[

N∏
p=1

η
1/2
l exp

(
−ηl

2

(
zlp − µl

)2
)]

×
[ ∏

l∈{0,1,2}
η

al−1
l exp

(
−pl

2
(µl − ml)

2 − blηl

)]
, (3)
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where y = (y′
1, . . . ,y′

N)′, θ = (θ ′
1, . . . , θ

′
N)′, and zl = (zl1 , . . . ,

zlN ), l ∈ {0,1,2}. The analysis in Section 5 assumes that ml = 0,
pl = .001, and al = bl = .01, l ∈ {0,1,2}.

3. EXPLORING IDENTIFICATION OF (τ 1, τ 2) BY
INSPECTING p(τ 1, τ 2|θ )

Our analysis of AL data was initially hampered by poor
identification of the smoothing parameters {z1p, z2p}, the pos-
teriors of which often have long tails and MCMC draws with
autocorrelations near 1. Identification of the smoothing parame-
ters warrants further consideration because, as our data analy-
sis shows, they play a key role in estimating AL. This section
explores identification of the (τ1, τ2) through their conditional
posterior p(τ1, τ2|θ), provides sufficient conditions to ensure
that both τ1 and τ2 are identified, and gives characteristics of
spatial grids that lead to well-identified smoothing parameters.
Section 4 explores the full marginal posterior of (z1, z2) using
one patient’s data. To simplify notation, both sections drop the
subscripts that identify patients.

The conditional density of (τ1, τ2) can be reexpressed to
highlight identification issues. As in Section 2, assume a non-
singular B such that Q1 = B′D1B and Q2 = B′D2B, with
D1 and D2 being diagonal. For θ∗ = Bθ ,

p(τ1, τ2|θ∗) ∝
n−G∏
j=1

[
(d1jτ1 + d2jτ2)

1/2

× exp

(
−1

2
θ∗2

j {d1jτ1 + d2jτ2}
)]

p(τ1, τ2). (4)

Denoting γj = d1jτ1 + d2jτ2, (τ1, τ2) has conditional density

p(τ1, τ2|θ∗) ∝
[

n−G∏
j=1

γ
1/2
j exp

(
−θ∗2

j γj

2

)]
p(τ1, τ2). (5)

Thus τ1 and τ2 enter p(τ1, τ2|θ), and hence p(τ1, τ2|y), only
through the prior p(τ1, τ2) and the N − G linear combina-
tions {γj}. The conditional density p(z1, z2|θ∗) is also a function
of (z1, z2) only through the prior and n − G linear functions of
(ez1, ez2 ); we omit the details here.

The jth term of the product in (5) is constant for (τ1, τ2) sat-
isfying d1jτ1 + d2jτ2 = c for c > 0; therefore, individual terms
in (5)’s product do not identify τ1 and τ2. Rather, identification
arises from multiplying terms with different ratios d1j/d2j. If
there are two or more distinct ratios d1j/d2j, then τ1 and τ2 are
identified. This holds provided that each pair of regions com-
prises neighbors of at most one type and neither neighborhood
structure is null, as assumed; see Appendix B.

Each term γ
1/2
j exp(−γiθ

∗2
j /2) has the form of a gamma den-

sity with variate γj = d1jτ1 + d2jτ2, mode θ∗−2
j , and an in-

finite set of modal (τ1, τ2) satisfying d1jτ1 + d2jτ2 = θ∗−2
j .

Terms with d1j �= 0 and d2j �= 0 give nonidentified modal lines
τ2 = −τ1d1j/d2j + θ∗−2

k /d2j. Only the intercepts of these lines
depend on θ ; the slopes, −d1j/d2j, do not.

Each term in (5) can be deemed a free term or a mixed term
depending on (d1j,d2j). We define the jth term to be a free term
for τ1 if d2j = 0 and d1j �= 0, and vice versa for τ2. A free term
for τ1 is a function of τ1 only, taking the form of a gamma den-
sity with variate τ1. Mixed terms have both d1j �= 0 and d2j �= 0.

Figure 3. Nonperiodontal Grid With No Free Terms for Either
τ 1 or τ 2. The solid lines are class 1 neighbors and the dashed lines
are class 2 neighbors.

As Section 4 shows, grids with free terms give better identi-
fication than grids with no free terms. As noted, G1 d1j are 0,
G2 d2j are 0, and G pairs (d1j,d2j) are (0, 0); thus τ1 has G2 −G
free terms and τ2 has G1 −G free terms. The θ∗2

j corresponding
to, say, τ2’s free terms are functions of the differences between
averages of the θ ’s on the G1 islands defined by class 1 neigh-
bors. For example, under grid A, if there are no missing teeth,
then class 1 neighbors define two islands on each jaw: the long
strips on measurements on the jaw’s lingual (tongue) and buccal
(cheek) sides. For each jaw, the θ∗2

j for τ2’s free term is propor-
tional to the difference between the average of lingual θ and
buccal θ , which depends only on τ2, not on τ1. Similarly, the
difference between θ ’s average on the four sites in the gap be-
tween teeth 1 and 2 and θ ’s average on the four sites in the gap
between teeth 2 and 3 depends only on τ1, not on τ2, resulting
in a free term for τ1.

Grid C gives no free terms for τ1, because neighbor pairs
controlled by τ2 (types I, III, and IV) form a connected graph
(Fig. 2). Considering spatial maps outside of periodontal analy-
sis, certain grids give no free terms for either smoothing para-
meter. For example, both class 1 and class 2 neighbors in the
grid shown in Figure 3 form connected graphs, leaving no free
terms for either τ1 or τ2. Both τ1 and τ2 are still identified un-
der this grid because there are mixed terms with different ratios
d1j/d2j, but identification is likely to be poor.

If all terms are free terms, then τ1 and τ2 are conditionally
independent a posteriori if they are independent a priori. This
occurs if, for example, the data consist of two islands, each with
its own τl. Mixed terms induce negative correlation between
τ1 and τ2 conditional on θ . Specifically, a quadratic approxima-
tion to log p(τ1, τ2|θ) gives corr(τ1, τ2|θ) ≈ −�12/

√
�11�22,

where �ab = ∑n−G
j=1 dajdbj/(d1jτ1 + d2jτ2)

2. This approximate
conditional correlation is never positive, but the marginal pos-
terior correlation of τ1 and τ2 can be positive.

4. EXPLORING p(z1, z2|y)

This section derives and explores the marginal posterior of
the smoothing parameters using patient 1’s data (Fig. 1). No
tidy expression like (5) is available for p(z1, z2|y) except in
special cases. Of course, an MCMC algorithm draws from
p(z1, z2|τ0, θ ,y) = p(z1, z2|θ), so the free/mixed terms ideas
developed in Section 3 for p(τ1, τ2|θ) may still help explain
p(z1, z2|y).

To compute the marginal posterior of (z1, z2), we temporar-
ily ignore the fixed effects and give τ0 a gamma(a0,b0) prior,
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giving the full posterior

p(θ , τ0, τ1, τ2|y)

∝ p(τ1, τ2)τ
n/2+a0
0

n−G∏
j=1

(τ1d1j + τ2d2j)
1/2

∝ exp

(
−1

2

{
τ0

[
(y − θ)′(y − θ) + 2b0

]

+ θ(τ1Q1 + τ2Q2)θ
})

, (6)

where p(τ1, τ2) is (τ1, τ2)’s prior. Next, we reparameterize to
zl = log(τl/τ0) and integrate θ and τ0 out of (6), leaving the
marginal posterior of the smoothing parameters (z1, z2),

p(z1, z2|y) ∝ p(z1, z2)

n−G∏
j=1

(ez1d1j + ez2d2j)
1/2

× |In + ez1Q1 + ez2Q2|−1/2R−a∗ , (7)

where R∗ = b0 + 1
2 {y′(In − (In + ez1Q1 + ez2Q2)

−1)y} and a =
(n − G)/2 + a0.

Figure 4 contains contour plots of the log marginal poste-
rior of (z1, z2) under each grid using subject 1’s data (Fig. 1).
With each contour plot, we present a graph of the n − G = 159
unidentified lines evaluated at the marginal posterior median
of (z1, z2), for example, the set of (x1, x2) satisfying d1jex1 +
d2jex2 = d1jez̃1 + d2jez̃2, i = 1, . . . ,N − G, where z̃l is the poste-
rior median of zl. In these plots the straight lines represent the
unidentified modal lines arising from free terms for z1 (vertical)
or z2 (horizontal), and the curved lines represent the unidenti-
fied modal curves arising from mixed terms.

Table 3 gives counts of free and mixed terms for the three
grids with two neighbor relations. The shape of the posterior of
(z1, z2) is determined largely by the free terms. Grids A and B
[Figs. 4(b) and 4(d)] have long upper tails at specific z1’s and
z2’s arising from the free terms, for example, at z1 ≈ 1 and
z2 ≈ −2.5 for grid A. The long upper tails (as opposed to lower
tails) may reflect positive skewness in the distribution of the
free terms’ intercepts. Grid C has no free terms for z1, which
explains the absence of a long upper tail for z2 [Fig. 4(f )].

Grid A has many free terms for z1, few free terms for z2,
and many mixed terms. The disparity in free terms implies bet-
ter identification of z1 than of z2. The ridge along the vertical
line z1 ≈ 1 in Figure 4(b) is more narrow than the ridge along
the horizontal line z2 ≈ −2. The many mixed terms [Fig. 4(a)]
induce some curvature of the L-shaped contours near the inter-
section of the lines of mass along z1 ≈ 1 and z2 ≈ −2.

Grid B has many free terms for both z1 and z2 and far fewer
mixed terms than grid A. Again, z1 has more free terms than z2,
so the density is more peaked along z1 ≈ 1 than along z2 ≈ 1
[Fig. 4(d)]. The relative paucity of mixed terms [Fig. 4(c)]
means little curvature in the L-shape of (z1, z2)’s posterior.

The absence of free terms for z1 under grid C explains the
poor identification of z1 in Figure 4(f ). For large z2, class 2
neighbors are highly smoothed; because they form a connected
graph, class 1 neighbors are forced to be similar regardless
of z1; that is, the data provide little information for z1. Thus
for large z2 (say z2 ≥ 4) z1’s posterior is nearly flat [Fig. 4(f )].

For small z2 (say z2 = −1), smoothing of class 2 neighbors does
not obscure smoothing of class 1 neighbors, allowing the data
to rule out z1 < 0. For z2 = −1, z1’s posterior is still flat for
large z1, because all large z1’s correspond to almost complete
smoothing of class 1 neighbors.

5. ANALYSIS OF PERIODONTAL DATA FOR
MANY PATIENTS

This section uses the model of Section 2 to analyze baseline
AL from N = 50 patients in the clinical trial described in Sec-
tion 1, originally described and analyzed by Shievitz (1997).
MCMC convergence was improved by integrating out the CAR
random effects and sampling from the marginal posterior of
(b, z0p , z1p , z2p). For each model, structured MCMC (Sargent,
Hodges, and Carlin 2000) with blocks b and (z0p , z1p , z2p) was
used to make 20,000 draws from p(b, z0p , z1p , z2p |y). Draws
of θp were then generated from the conditional distribution of
θp given each iteration’s (b, z0p , z1p , z2p). Convergence was as-
sessed by comparing summaries of the (z1p , z2p ) draws to con-
tour plots of the exact posterior of (z1p , z2p ) given by (7).

Figure 5(a) is a scatterplot of (z̃0p , z̃1p) from the 1NR grid as-
suming that the patients’ zlp have independent uniform(−10,10)
priors, where z̃lp is zlp ’s posterior median. Most of the z̃0p =
log(τ̃0p) are near zero, corresponding to measurement error
with standard deviation of roughly 1.0, as mentioned in Sec-
tion 1. The most striking feature of this plot is the patient-to-
patient variation in the smoothing parameters z1p . For exam-
ple, z̃115 = −6.48 (i.e., smoothing of θ15 is negligible; Fig. 6)
and z̃11 = 5.97 (i.e., θ1 is smoothed substantially; Fig. 7). The
different amounts of smoothing for these two patients may be
driven by the steady increase in AL from the front to the back of
the lower jaw for patient 15. In contrast with the random scat-
ter for patient 1, this distinct spatial pattern indicates that the
site-to-site variation in patient 15’s AL is real and should not
be smoothed over. In contrast, the model with (z0p , z1p , z2p)

′ ∼
N(µ,�) a priori smooths the (z̃0p , z̃1p) toward (0, 0) [Fig. 5(b)].

Figure 5(c) also shows considerable patient-to-patient varia-
tion in (z̃1p , z̃2p) for grid A assuming that the zlp ’s have indepen-
dent uniform(−10,10) priors. For the most part, z̃1p ∈ (0,4),
but the z̃2p ’s vary almost uniformly from −3 to 5. The plot of
posterior medians resembles the shape of the marginal posterior
distribution of patient 1’s (z11 , z21) under grid A in Figure 4(b).
This may be explained by the counts of free terms in Table 3.
Because grid A gives many free terms for z1 and few free terms
for z2, we expect the data to provide less information about z2
than about z1. Therefore, the sampling distribution of z̃2p should
have more variation than the sampling distribution of z̃1p , as in
Figure 5(c).

The counts of free terms may also explain the shrinkage of
(z̃1p , z̃2p) under the model where the (z0p , z1p , z2p) have a multi-
variate normal prior. Figure 5(d) shows that the z1p ’s are shrunk
moderately compared with Figure 5(c), but the z2p ’s are shrunk
almost completely. Because z1 has more free terms than z2, the
data are more informative for z1 than for z2, and the prior has
less influence on z1’s posterior than on z2’s posterior.

We compare the models using the deviance information cri-
terion (DIC) of Speigelhalter, Best, Carlin, and van der Linde
(2002). Defining D(θ ,b, z0, z1, z2) = −2 log f (y|θ ,b, z0, z1,

z2), DIC = D̄ + PD, where PD = D̄ − D̂, D̄ = E(D(θ ,b, z0, z1,
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(a) (b)

(c) (d)

(e) (f )

Figure 4. Posterior of (z1, z2) for Patient 1 Under Various Spatial Grids. (a) Nonidentified curves based on (z1, z2)’s posterior median under
grid A. (b) Contour plot of (z1, z2)’s log marginal posterior under grid A. (c) Nonidentified curves based on (z1, z2)’s posterior median under grid B.
(d) Contour plot of (z1, z2)’s log marginal posterior under grid B. (e) Nonidentified curves based on (z1, z2)’s posterior median under grid C.
(f) Contour plot of (z1, z2)’s log marginal posterior under grid C.

z2)|y), and D̂ = D(E(θ ,b, z0, z1, z2|y)), with the expecta-
tions taken with respect to the full posterior. The model’s
fit is measured by the posterior mean of the deviance, D̄,

Table 3. Free-Term Counts for Each Periodontal Grid for Patient 1

Free terms
for z1

Free terms
for z2

Mixed
termsGrid n G G1 G2

A 162 3 6 84 81 3 75
B 162 3 54 84 81 51 27
C 162 3 114 3 0 111 48

whereas the model’s complexity is captured by PD, the effec-
tive number of parameters in the model. Models with smaller
DIC and D̄ are favored. The DIC can also be computed
individually for each patient. Defining Dp(θ ,b, z0, z1, z2) =
−2 log f (yp|θ ,b, z0, z1, z2), DICp = D̄p + PDp , where PDp =
D̄p −D̂p, D̄p = E(Dp(θ ,b, z0, z1, z2)|y), and D̂ = Dp(E(θ ,b, z0,

z1, z2|y)). Because
∑N

p=1 Dp(θ ,b, z0, z1, z2) = D(θ ,b, z0, z1,

z2),
∑N

p=1 DICp = DIC and
∑N

p=1 PDp = PD.
Table 4 gives the DIC for each grid and prior choice for

the zlp . Although the spatial models are more complex (i.e.,



50 Journal of the American Statistical Association, March 2007

(a) (b)

(c) (d)

Figure 5. Summary of the Posterior of Each Patient’s Smoothing Parameters. (a) (z0p , z1p ) under the 1NR grid assuming the zlp are independent
a priori. (b) (z0p , z1p ) under the 1NR grid assuming the (z0p , zlp ) are shrunk with a normal prior. (c) (z1p , z2p ) under grid A assuming the precisions
are independent a priori. (d) (z1p , z2p ) under grid A assuming the (z0p , zlp , z2p ) are shrunk with a normal prior. The boxes represent the posterior
medians, and the whiskers represent the interquartile ranges of each patient’s (z0p , z1p ) or (z1p , z2p ), p=1, . . . ,50.

have larger PD) than the nonspatial models, the DIC strongly
favors spatial modeling of these periodontal data because of the
substantial improvement in fit (i.e., reduction in D̄); the two
models with only fixed effects and without spatial CAR ran-
dom effects (“FE only”) have the largest DIC statistics by far.
No patient’s DICp favors these nonspatial models. Moreover,
for each grid, DIC and D̄ overwhelmingly favor independent zlp
over shrunken zlp . This is not surprising considering the large
patient-to-patient variation and non-Gaussian scatters in Fig-
ures 5(a) and 5(c).

Assuming independent zlp a priori, the 1NR grid has smaller
DIC and D̄ than each 2NR grid (Table 4). However, patients
are far from unanimous in favoring the 1NR grid. 2NR grid
minimizes 35 of the 50 patients’ DICp (“no. of patients DICp”).
Grid A has the smallest DIC of the 2NR grids and minimizes
DICp for more patients than the 1NR grid. Even grid C, which
has the largest DIC of the spatial grids, minimizes DICp for
10 of the 50 patients.

Table 5 gives posterior summaries for the fixed effects. Un-
der the nonspatial model (“FE only”) each fixed-effect posterior
interval except tooth 4 excludes 0. Under this model, mean AL
is higher at direct sites than sites in the gaps between teeth,
lower on teeth 2 and 3 than on tooth 1, and higher on teeth 5–7
than tooth 1. As expected, the 95% interval of each fixed ef-
fect is wider under each spatial model than under the FE-only
model. In addition, the posterior medians of the tooth-number
fixed effects are generally closer to 0 under the spatial models,
especially grid B, compared with the FE-only model. Under the
spatial models, variation in θ absorbs some of the tooth num-
ber effects and nudges the tooth number fixed effects toward 0.
Reich, Hodges, and Zadnik (2006) explored the effect of adding
CAR parameters on the fixed effects in spatial regression and
found that spatial smoothing has the greatest effect on covari-
ates that vary smoothly in space, explaining why the changes
in medians from the nonspatial model to the spatial models are
larger for the tooth number effects than for the direct-site effect.



Reich, Hodges, and Carlin: Spatial Analyses of Periodontal Data 51

Figure 6. Patient 15’s Data ( ∇) and Posterior Mean of X15β + θ15
( —) for the 1NR Grid Assuming That the zls ’s Are Independent a priori.
“Maxillary” and “mandibular” refer to upper and lower jaws, and “buccal”
and “lingual” refer to the cheek and the tongue sides of the teeth.

Grid A minimizes DIC1, the DIC specific to patient 1. Fig-
ure 7 plots patient 1’s data (symbols) and fitted values (i.e.,
θ1 + X1b’s posterior mean) under the 1NR grid (solid lines)
and grid A (dashed lines). The fitted values under the 1NR
grid are similar to the fitted values under grids B and C (not
shown), but often differ from grid A’s fitted values by >.5 mm.
For grid A, draws of z1 are generally larger than draws of z2

and (z̃11 , z̃21) = (7.36,−2.70); here z1 controls smoothing of
type I and II neighbor pairs, which form long strips of sites
along the buccal and lingual sides of each jaw. Large z1 and
small z2 smooth substantially within these long strips but not
between them. Figure 7 shows that this is preferable for the up-
per jaw, where AL is similar across tooth number but larger
for lingual sites (mean AL = 3.49) than buccal sites (mean
AL = 2.20). Grids B, C, and 1NR smooth more between these
strips.

Figure 7. Patient 1’s Data ( ∇) and Posterior Mean of X1β + θ1 As-
suming That the zlp ’s Are Independent a priori for the 1NR Grid ( —) and
Grid A ( − − −−). “Maxillary” and “mandibular” refer to upper and lower
jaws, and “buccal” and “lingual” refer to the cheek and the tongue sides
of the teeth.

6. EFFECT OF THE PRIOR DISTRIBUTION

Choosing parameterizations and priors for the scale pa-
rameters in hierarchical models is an important and unre-
solved issue (Daniels and Kass 1999, 2001; Natarajan and
Kass 2000; Kelsall and Wakefield 2002) that we cannot set-
tle here. However, the generally poor identification of the
smoothing parameters calls for an investigation into the sen-
sitivity of the results of Section 5 to changes in the priors
for the scale parameters. This section considers five putatively
vague parameterizations/priors, each independent across pa-
tients: uniform(−10, 10) and loggamma(.01, .01) priors for
the zlp , uniform(0, 10) priors on the standard deviations σlp =
τ

−1/2
lp

, gamma(.01, .01) priors on the variances σ 2
lp

, and a prior
motivated by Besag and Higdon (1999) with τ0p ∼ G(.01, .01),
λp = τ1p + τ2p ∼ G(.01, .01), and βp = τ1p/(τ1p + τ2p) ∼
U(0, 1). For each parameterization/prior, we consider grid A

Table 4. Summary of the DIC for Various Models

FE only 1NR grid Grid A Grid B Grid C

zlp ∼uniform(−10, 10) a priori, independent across l and p
DIC 16,449 7,863 8,669 8,720 8,793
D̄ 16,391 6,244 7,213 7,361 7,152
PD 57.8 1,619 1,456 1,359 1,640
DIC1 358.1 283.8 272.4 283.4 281.7
No. of patients min DICp 0 15 16 9 10

(z0p , z1p , z2p )’ ∼ N(µ, �) a priori
DIC 16,451 9,953 9,968 10,199 9,899
D̄ 16,394 8,140 8,065 8,597 8,091
PD 57.3 1,813 1,903 1,602 1,808

NOTE: “DIC1” is the DIC specific to only patient 1. “No. of patients min DICp ” is the number of patients that have the smallest DICp for the given model. “FE only” is the nonspatial model with only
fixed effects.
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Table 5. Posterior Median and 95% Interval of the Fixed Effects Under Different Grids Assuming zlp ∼ uniform(−10, 10)
Independent Across l and p

FE only 1NR Grid A Grid B Grid C

Direct .18 (.13, .22) .21 (.16, .26) .20 (.15, .25) .21 (.16, .26) .21 (.16, .26)
Tooth 2 −.14 ( − .21, − .06) −.09 ( − .19, .01) −.10 ( − .20, .00) −.10 ( − .20, .00) −.09 ( − .18, .02)
Tooth 3 −.26 ( − .33, − .18) −.22 ( − .34, − .10) −.24 ( − .36, − .13) −.25 ( − .38, − .13) −.22 ( − .34, − .10)
Tooth 4 −.02 ( − .10, .06) .01 ( − .14, .14) −.01 ( − .14, .12) −.03 ( − .17, .11) .01 ( − .13, .15)
Tooth 5 .19 (.11, .27) .19 (.03, .35) .18 (.02, .33) .13 (.04, .29) .20 (.03, .35)
Tooth 6 .80 (.72, .88) .76 (.56, .94) .76 (.58, .92) .69 (.50, .88) .74 (.54, .92)
Tooth 7 .91 (.83, .99) .82 (.61, 1.03) .83 (.63, 1.01) .74 (.53, .96) .83 (.62, 1.03)

NOTE: “FE only” refers to the nonspatial model with only fixed effect.

and discuss the types of fit that it encourages, and also exam-
ine the influence on fixed-effect estimates, fitted values, and the
posteriors of the smoothing parameters.

Figure 8 summarizes the induced prior (contour lines) and
posterior samples (boxes and whiskers) of the (z1p , z2p) for each
parameterization/prior. For several patients, the posterior of the
smoothing parameters is affected by the prior, especially for
patients with large z1p or z2p . For example, the loggamma(.01,
.01) prior for zlp is Figure 8(b) favors small zlp and precludes
extremely smooth fits with z1p > 5 or z2p > 5. The priors in
Figures 8(c)–8(e) all have mode (0, 0) and encourage mod-
erate levels of smoothing. Of these three priors, the uniform
prior on the standard deviations [Fig. 8(c)] shrinks the (z1p , z2p)

most toward (0, 0), and the inverse gamma prior for the vari-
ances [Fig. 8(d)] is most like the uniform prior on zlp . The uni-
form(0, 1) prior on the βp’s, which control the relative amount
of smoothing of the two classes of neighbor pairs, discourages
fits with large zlp and small z2p (i.e., βp ≈ 1), or small zlp and
large z2p (i.e., βp ≈ 0), and shrinks the smoothing parameters
toward the line z1 = z2 [Fig. 8(e)].

The prior also has a noticeable effect on patient 1’s fitted val-
ues. Figure 9 shows X1β + θ1’s posterior mean for patient 1’s
left maxillary island under two priors for the scale parameters:
zlp ∼ uniform(−10, 10) (solid lines) and the prior motivated
by Besag and Higdon (dashed lines). Under grid A, z11 con-
trols the smoothing of type I and II neighbor pairs, which form
long strips of sites along the buccal and lingual sides of each
jaw; that is, z11 controls smoothing of adjacent sites within Fig-
ure 9’s two rows. With zlp ∼ uniform(−10, 10), β1’s posterior
median is .998 (i.e., z11 is generally larger than z21 ), and the
fitted values within Figure 9’s rows are very similar. Recall that
the uniform prior on βp discourages fits with large z11 and small
z21 [Fig. 8(e)]. Under this prior, β1’s posterior median is .867,
and the fitted values within Figure 9’s rows are less smooth, dif-
fering from the fitted values under the uniform prior on the zlp
by as much as 1.47 mm (tooth 1).

The fixed-effects estimates and intervals in Table 6 are nearly
identical under the five priors. This agrees with previous work
in this area (e.g., Daniels and Kass 1999). These authors
showed that the prior on the scale parameter may lead to sub-
stantial changes in the posterior of the scale parameters, but
such changes typically do not affect the fixed effects’ posteri-
ors.

7. DISCUSSION

In our periodontal data analysis, our model choice statis-
tic sometimes favored models with two neighbor relations de-
spite their increased complexity. Although the 1NR grid had a

smaller overall DIC than any of the 2NR grids, grid A mini-
mized the patient-specific DIC for more patients than the 1NR
grid. The spatial structure appeared to vary considerably among
these 50 patients, who were selected haphazardly from the
study population.

The empirical correlations in Table 1 suggest a fourth 2NR
grid, grid D, that allows for differential smoothing of neighbor
pairs on the same tooth (types I and III) and neighbor pairs on
different teeth (types II and IV). Assuming that the zls ’s have in-
dependent uniform(−10, 10) priors, grid D has a smaller over-
all DIC than grid A. However, as Figure 10 shows, this result is
largely driven by patients 3, 15, 29, 36, and 38, who all have se-
vere periodontal disease (e.g., patient 15 in Fig. 6) and may not
represent the study population. Although these patients do not
seem to be influential on the fixed effects, they do influence the
choice of spatial grid; grid A has a smaller patient-specific DIC
than grid D for 28 of the 45 remaining patients. Stratification
into more homogeneous groups of patients, such as “moderate”
and “advanced” groups, may be needed for one grid to prevail
as the “best” for all patients. Stratification may also allow the
degree of smoothing to be the same for all patients in a stratum,
although our model still enables different smoothing for differ-
ent patients when this is appropriate (Figs. 6 and 7). Modeling
with random grids is also possible; see, for example, Lu et al.
(2006).

The smoothing parameters zl = log(τl/τ0) are identified ex-
cept in trivial cases, but identification can be poor depending
on the spatial structure. Free terms greatly enhance identifi-
cation. Free terms arise from prior contrasts in θ with preci-
sion depending on only one zl. Generally, zl with no free terms
are poorly identified, especially if neighbor pairs of the other
class are highly smoothed. This may cause computing prob-
lems, such as poor MCMC convergence. MCMC algorithms
exploiting the free-term structure may give better performance.

For CAR models with two neighbor relations, the prior on the
smoothing parameters is very important. The posterior of sev-
eral patients’ smoothing parameters were affected by the pri-
ors considered in Section 6. The prior also had a significant ef-
fect on patient 1’s fitted values. However, similar to other work
in this area (e.g., Daniels and Kass 1999), for these data, the
smoothing parameters’ prior did not affect the fixed-effect esti-
mates.

Finally, this article presents a method for analyzing baseline
periodontal data. In practice, longitudinal data may also be of
interest. The 2NRCAR prior could be applied in this spatiotem-
poral setting by defining the two neighbor types to be “spatial
neighbors” at the same visit and “temporal neighbors” at the
same spatial location.
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(a) (b)

(c) (d)

(e)

Figure 8. Summary of Each Patient’s Smoothing Parameters Under Different Priors. (a) zlp ∼ U(−10, 10), l ∈ {0, 1, 2}. (b) zlp ∼ LG(.01, .01),

l ∈ {0, 1, 2}. (c) σ lp ∼ U(0, 10), l ∈ {0, 1, 2}. (d) σ 2
lp

∼ IG(.01, .01), l ∈ {0, 1, 2}. (e) τ 0p ∼ G(.01, .01), λp ∼ G(.01, .01), βp ∼ U(0, 1). The boxes
represent the posterior medians, and the whiskers represent the interquartile ranges of each patient’s (z1p , z2p ), p = 1, . . . ,50. The shaded lines
are contours of (z1p , z2p )’s induced prior density. The transformations used are σ 2

lp
= 1/τ lp , λp = τ 1p + τ 2p , and βp = τ 1p/(τ 1p + τ 2p ).
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Figure 9. Data (symbols) and Posterior Mean of X1β + θ1 for Patient
1’s Left Maxillary Island Under Grid A Assuming zlp ∼ uniform(−10, 10)
(—) and τ 0p ∼ G(.01, .01), λp ∼ G(.01, .01), and βp ∼ U(0, 1) (− − −),
Each Independent Across l ∈ {0, 1, 2} and p ∈ {1, . . . ,50}. “Buccal” and
“lingual” refer to the cheek and the tongue sides of the teeth.

APPENDIX A: THE CONDITIONALLY
AUTOREGRESSIVE PRIOR WITH TWO

NEIGHBOR RELATIONS

Newcomb (1961) showed how to construct a nonsingular B such
that Q1 = B′D1B and Q2 = B′D2B, where Dl is diagonal with n − Gl
positive diagonal entries and Gl zero entries. Thus the exponent of (2)
can be written as − 1

2 θ ′B′{τ1D1 + τ2D2}Bθ . B is orthogonal only if
Q1Q2 is symmetric (Graybill 1983, thm. 12.2.12). In addition, B is
not unique, but apart from permuting rows or columns, any B can be
obtained from any other B by premultiplying by a diagonal matrix with
positive diagonal entries. As will become clear, any such change, or
any permutation of B’s rows or columns, has no noteworthy effect.

For a given B, define Dl’s diagonal elements as dlj ≥ 0, l = 1,2 and
j = 1, . . . ,n. (The dlj’s depend on B; we suppress this for simplicity.)
For exactly G values of j, d1j = d2j = 0. To see this, set τ1 = τ2, turn-
ing the problem back into a CAR prior with one class of neighbor
relations; D1 + D2 has exactly G zero diagonal entries, and the result
follows. Without loss of generality, define B so Dl’s last G diagonal
entries are 0 and d1j + d2j > 0 for j = 1, . . . ,n − G.

Following Hodges, Carlin, and Fan (2003), define θ∗ = Bθ and par-
tition θ∗ as θ∗′ = (θ∗

1
′, θ∗

2
′), where θ∗

1 has length n − G and θ∗
2 has

length G. Then (2)’s exponent is − 1
2 θ∗

1
′ diag{τ1d1j + τ2d2j}θ∗

1, with
diag{νj} being a diagonal matrix with {νj} on the diagonal in the order
j = 1, . . . ,n − G. This exponent is the kernel of a proper multivariate
normal density for θ∗

1, which has multiplier

n−G∏
j=1

(τ1d1j + τ2d2j)
1/2. (A.1)

For j with both dlj’s positive, the jth term’s contribution to the mul-
tiplier is determined by the ratio d1j/d2j, because d2j > 0 can be fac-

Figure 10. Plot of Each Patient’s DICp Under Grids A and D.

tored out and disappears in the proportionality constant. For j with only
one dlj positive, that dlj likewise can be factored out. Thus the proper
version of this CAR prior is unique even though B is not.

APPENDIX B: PROOF THAT z1 AND z2 ARE
IDENTIFIED IN NONTRIVIAL CASES

If d1j/d2j = c for j = 1, . . . ,n − G, then D1 = cD2, which implies
that Q1 = cQ2. Because off-diagonal elements of Ql are 0 or −1, either
c = 1 and Q1 = Q2, so each neighbor pair is a pair of both classes, or
c = 0 and Q1 is the zero matrix, that is, its neighborhood structure is
null. Both possibilities were ruled out by assumption, so there are at
least two distinct d1j/d2j.

[Received April 2004. Revised August 2005.]
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