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Summary. Disease-mapping models for areal data often have fixed effects to measure the effect of spatially
varying covariates and random effects with a conditionally autoregressive (CAR) prior to account for spatial
clustering. In such spatial regressions, the objective may be to estimate the fixed effects while accounting for
the spatial correlation. But adding the CAR random effects can cause large changes in the posterior mean
and variance of fixed effects compared to the nonspatial regression model. This article explores the impact
of adding spatial random effects on fixed effect estimates and posterior variance. Diagnostics are proposed
to measure posterior variance inflation from collinearity between the fixed effect covariates and the CAR
random effects and to measure each region’s influence on the change in the fixed effect’s estimates by adding
the CAR random effects. A new model that alleviates the collinearity between the fixed effect covariates
and the CAR random effects is developed and extensions of these methods to point-referenced data models
are discussed.

Key words: Collinearity; Conditional autoregressive prior; Diagnostics; Disease mapping; Spatial regres-
sion models.

1. Introduction
Spatially referenced public health data sets have become more
available in recent years. A common objective when analyzing
these data sets is to estimate the effect of covariates on region-
specific disease rates while accounting for spatial correlation.
As a motivating example, consider analyzing the relationship
between socioeconomic factors and stomach cancer incidence
in Slovenia for the years 1995–2001 using data originally pre-
sented by Zadnik and Reich (2006).

Figure 1a plots the n = 192 municipalities’ observed stan-
dardized incidence ratio (SIR), that is, the ratio of observed
(Oi ) to expected (Ei , computed using indirect standardiza-
tion) number of cases, where i indexes municipalities. Each
region’s socioeconomic status has been placed into one of five
ordered categories by Slovenia’s Institute of Macroeconomic
Analysis and Development based on a composite score calcu-
lated from 1999 data. Figure 1b shows the centered version of
this covariate (SEc). Both SIR and SEc exhibit strong spatial
patterns. Western municipalities generally have low SIR and
high SEc while eastern municipalities generally have high SIR
and low SEc. This suggests a negative association between
stomach cancer rates and socioeconomic status. A simple re-
gression assuming the Oi are independent Poisson random
variables with log{E(Oi )} = log(Ei ) + α + βSEc ∗ SEci and
flat priors on α and βSEc (Model 1, Table 1) shows SEc is
indeed related to SIR: under this nonspatial model βSEc has

posterior median −0.137 and 95% posterior interval (−0.17,
−0.10).

To model these data correctly, the spatial structure must
be incorporated into the analysis. A popular Bayesian disease-
mapping model is the conditionally autoregressive (CAR)
model of Besag, York, and Mollié (1991). Under this model,
the observed numbers of cases in each region follow condi-
tionally independent Poisson distributions with log{E(Oi )} =
log(Ei ) + βSEc ∗ SEci + Si + Hi . This model has one fixed ef-
fect, βSEc, which is given a flat prior. The intercept is not fixed
but is the sum of two types of random effects: S captures spa-
tial clustering and H captures region-wide heterogeneity. The
Hi are modeled as independent draws from a normal distribu-
tion with mean zero and precision τ h . Spatial dependence is
introduced through the prior (or model) on S = (S1, . . . ,Sn)

′.
The CAR model with L2 norm (also called a Gaussian Markov
random field) for S has improper density

p(S | τs) ∝ τ (n−G)/2
s exp

(
−τs

2
S ′QS

)
, (1)

where τ s controls smoothing induced by this prior, larger
values smoothing more than smaller; G is the number of
“islands” (disconnected groups of regions) in the spatial struc-
ture (Hodges, Carlin, and Fan, 2003); and Q is n × n with
nondiagonal entries qij = − 1 if regions i and j are neigh-
bors and 0 otherwise, and diagonal entries qii are equal to the
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Figure 1. Each municipality’s observed standardized incidence ratio (SIR = O/E) and centered socioeconomic status (SEc).

number of region i’s neighbors. This is a multivariate normal
kernel, specified by its precision matrix τ sQ instead of the
usual covariance matrix. In this article, we give the precision
parameters τ s and τ h independent gamma(0.01, 0.01) priors
parameterized to have mean 1 and variance 100.

Table 1 shows that Model 2 including the heterogeneity and
spatial random effects has smaller deviance information crite-
ria (DIC; Spiegelhalter et al., 2002) than the simple Poisson
regression (1081.5 vs. 1153.0) despite the increase in model
complexity (the effective number of parameters pD increases
from 2.0 to 62.3). Adding the random effects to the simple
Poisson model also has a dramatic effect on β’s posterior: its
posterior mean changes from −0.137 to −0.022 and its poste-
rior variance increases from 0.0004 to 0.0016.

This article proposes several diagnostics to investigate the
change in the posterior of the fixed effects by adding spa-
tial random effects. In the literature, diagnostics for the
fixed effects in spatial regression have focused primarily on
case deletion (e.g., Christensen, Johnson, and Pearson, 1992;
Christensen, Pearson, and Johnson, 1993; Haslett, 1999).
While measuring the change in the fixed effects’ posterior due
to removing individual observations is an important model-
building step, it does not help explain the surprisingly large
difference in βSEc’s posterior under the spatial and nonspa-
tial models. In this article, diagnostic measures analogous to
leverage and the variance inflation factor for linear regression
are developed to clarify the effect of adding spatial random
effects on the posterior mean and variance of the fixed effects
parameters.

The article proceeds as follows. Section 2 begins by analyz-
ing the case of normally distributed outcomes, both for its own

Table 1
DIC, D̄, and pD of various models along with 95% posterior confidence intervals for β (fixed effects parameters), τ s (the
prior precision of the CAR random effects), and τ h (the prior precision of the heterogeneity random effects). The models
are (1) simple Poisson regression, (2) spatial regression with CAR and heterogeneity random effects and a fixed effect for

SEc, (3) Model 2 with a fixed effect for urban, and (4) Model 2 removing the CAR effects in the span of SEc.

Model DIC D̄ pD βSEc βUrban τ s τ h

1 1153.0 1151.0 2.0 (−0.175, −0.098) — — —
2 1081.5 1019.2 62.3 (−0.100, 0.057) — (4.7, 77.4) (21.0, 1224.0)
3 1081.8 1014.9 66.9 (−0.133, 0.044) (−0.06, 0.25) (5.4, 89.2) (18.9, 248.1)
4 1088.0 1018.0 70.0 (−0.166, −0.069) — (4.9, 175.1) (16.3, 236.8)

usefulness and because its more explicit theory sheds light on
the Poisson case. We propose diagnostics to identify the effect
of adding CAR random effects on the posterior mean and vari-
ance of the fixed effects parameters, and identify combinations
of covariates and spatial grids that are especially troublesome.
Section 3 presents one way to sidestep these collinearity prob-
lems by restricting the domain of the spatial random effects
to the space orthogonal to the fixed effect covariates. The
methods of Sections 2 and 3 are then extended to the gener-
alized linear spatial regression model in Section 4. Section 5
illustrates these methods using the Slovenia stomach cancer
data. Section 6 summarizes the results and briefly describes
how the methods could be extended to other spatial models,
such as geostatistical models for point-referenced data.

2. Collinearity in the CAR Model
with Normal Observables

Let y be the n-vector of observed values and X be a known
n × p matrix of covariates standardized so that each column
sums to zero and has unit variance. The CAR spatial regres-
sion model is

y |β, S, τe ∼ N(Xβ + S, τeIn) (2)

S | τs ∼ N(0, τsQ), (3)

where β is a p-vector of fixed effect regression parameters,
S is an n-vector, τeIn and τ sQ are precision matrices, and
Q is the known adjacency matrix described in Section 1. Be-
cause the rows and columns of Q sum to zero, the CAR model
necessarily implies a flat prior on each island’s average of S. A
common solution to this impropriety is to add fixed effects for
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island’s intercept and place a sum-to-zero constraint on each
island’s S. However, because collinearity between the inter-
cept and the spatial random effects is not of interest, we let S
remain unconstrained and assume X does not have a column
for the intercept, so that the intercept is implicitly present
in S. To complete a Bayesian specification, β is given a flat
prior and τ e and τ s are given independent gamma(0.01, 0.01)
priors.

An equivalent representation of (2)–(3) highlighting iden-
tification and collinearity concerns is

y |β,b, τe ∼ N(Xβ + Zb, τeIn) (4)

b | τs ∼ N(0, τsD), (5)

where b = Z ′S and Q = ZDZ ′ represents Q’s spectral
decomposition for n × n orthogonal matrix Z and n × n
diagonal matrix D with positive diagonal elements d1 ≥ · · ·
≥ dn−G. The last G diagonal elements of D are zero. The
corresponding elements of b represent the intercepts of the
G islands and are implicit fixed effects. The mean of y
in (4) has p + G fixed effects (β, bn−G+1, . . . , bn) and n
− G random effects (b1, . . . , bn−G) for a total of n + p
predictors; given that there are only n observations, this
raises identifiability and collinearity concerns. Each column
of X is a linear combination of the n orthogonal columns
of Z. Therefore, ignoring b’s prior, that is, setting τs =
0, the data cannot identify β and b in the sense that
β’s marginal posterior is proportional to its prior, that is,
p(β |y) ∝ p(β). Identification of β relies on smoothing of b,
which is controlled by τ s . As τ s increases, b is smoothed closer
to zero and the posterior of β becomes more similar to its pos-
terior under the ordinary linear model (OLM). This effect of
τ s on the fixed effect’s posterior is illustrated in the analysis
of the Slovenian data in Section 5.

To measure the influence on the posterior mean and vari-
ance of β from including and smoothing the spatial ran-
dom effects, we investigate the posterior of β conditional on
(τe, τs). After integrating out b, β is normal with

E(β | τe, τs,y) = E{E(β |b, τs, τe,y)}
= E{(X ′X)−1X ′(y − Zb) | τs, τe,y}

= (X ′X)−1X ′(y − Zb̂)

= β̂OLM − (X ′X)−1X ′Zb̂ (6)

var−1(β | τe, τs,y) = τeX
′X −X ′var(Zb |β, τe, τs,y)X

= τeX
′ZD̃Z ′X, (7)

where β̂OLM = (X ′X)−1X ′y, b̂ = E(b | τe, τs,y) = (Z ′P cZ +
rD)−1Z ′P cy is b’s posterior mean given (τs, τe) but
not β, var(b |β, τe, τs, y) = (I + rQ)−1 is b’s
full conditional variance, P c = I − X(X ′X)−1X ′, r =
τs/τe, and D̃ = I − (I + rD)−1. The posterior mean and vari-
ance of β under the OLM with b ≡ 0 are β̂OLM and (τeX

′X)−1,
respectively. By adding the random effects, β’s posterior mean
is shifted by (X ′X)−1X ′Zb̂, (6), and β’s posterior precision
(inverse variance) is decreased by X ′var(b |β, τe, τs)X, (7).
These two effects are discussed separately in Sections 2.1
and 2.2.

2.1 Influence of Spatial Random Effects on E(β | τ e , τ s , y)

This section provides diagnostics measuring each region’s con-
tribution to the difference between E(β | τe, τs, y) and β̂OLM.
Case influence on the estimates in the OLM has a long his-
tory, with two common diagnostics being leverage and the
DFBETA statistics (Hocking, 1996). For the OLM, the lever-
age of the ith observation is the ith diagonal element of
X(X ′X)−1X ′ and measures the ith observation’s potential to
be overly influential in fixed effect estimation. The leverages
are properties of the design and do not depend on the out-
comes yi ; observations with outlying Xi typically have large
leverage. By contrast, the DFBETA statistics are functions
of the observed data, y. They measure the influence of the
ith observation on the estimate of βj by comparing the esti-
mate of βj with and without the ith observation included
in the analysis. This section develops measures of poten-
tial and actual influence analogous to leverage and DFBETA
diagnostics.

The posterior mean of β given (τe, τs) under the spa-
tial model is (X ′X)−1X ′(y −Xb̂) (equation (6)), the least
squares estimate using the residuals y − Zb̂ as the ob-
servables. Define the change in β’s posterior mean given
(τe, τs) due to adding the CAR random effects as Δ =
β̂OLM −E(β | τe, τs,y) = (X ′X)−1X ′Zb̂. Δ can be positive or
negative, that is, adding the spatial random effects does not
necessarily push the posterior mean of β toward zero as in
the example in Section 1.

Δ can be written as Δ = Ce, where C is the p × n matrix,

C = {(X ′X)−1X ′}{Z(Z ′P cZ + rD)−1Z ′}Pc

= {(X ′X)−1X ′}{(P c + rQ)−1}P c, (8)

and e = P cy is the n-vector of OLM residuals. As for leverage,
the elements of C depend on the design (i.e., the spatial struc-
ture and the covariates) but not on the data except through
r = τs/τe, on which we have conditioned. Plotting the abso-
lute values of the jth row of C, which we call |Cj |, shows which
regions have the potential to make a large contribution to the
change in βj when spatial effects are added to the OLM.

Section 4 develops an approximation for C that is more
appropriate for analyzing Poisson outcomes, as in Section 1’s
Slovenian data. Nonetheless, we analyze (8) here for the Slove-
nia design to compare (8) with well-understood measures of
influence for the OLM. Figure 2a plots |C| for the Slovenia
spatial grid with one covariate, X = SEc, and r = 0.1. A care-
ful comparison of Figure 1b and Figure 2a shows that regions
with extreme SEc (i.e., high leverage in OLM) do not nec-
essarily have large |Ci |; the regions with large |Ci | are those
with extreme SEc relative to the SEc of nearby regions. For
example, most regions with large SEc are in western Slovenia
(Figure 1b). However, only western municipalities with mod-
erate SEc have large |Ci | because moderate SEc is unusual
relative to other western regions.

Figure 2b plots |C| with little spatial smoothing (r =
0.1) on the horizontal axis and substantial spatial smoothing
(r = 10) on the vertical axis. |C| is generally smaller with r =
10 because for large r the spatial random effects are smoothed
to zero and β’s posterior is similar to its posterior under the
OLM. Also, the number of regions that qualify as “nearby”
is determined by r. Consider the northwestern municipality
Jesenice indicated in Figure 2. For small r (Figure 2a), there
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Figure 2. Plot of |C| for Slovenian municipalities with X = SEc. (a) shows |C| with r = 0.1 and (b) compares |C| with r =
0.1 and r = 10.

is little spatial smoothing and Jesenice’s SEc is primarily
compared to its immediately neighboring regions. Its SEc is
smaller than the SEc of the three adjacent municipalities (Fig-
ure 1b), so its |Ci | is moderately large. However, for r = 10
(Figure 2b, vertical axis) Jesenice’s |Ci | is one of the largest
because for large r (strong spatial smoothing) its SEc is com-
pared not only to adjacent regions, but to all northwestern
regions. Because Jesenice has the smallest SEc in the entire
northwest and few other regions are extreme relative to such
a large group of nearby regions, its |Ci | is now among the
largest.

Only regions with nonzero Cij and nonzero ei contribute

to Δj =
∑n

i=1 δij =
∑n

i=1 Cijei. In the OLM, β̂j is computed
assuming all associations between nearby regions can be ex-
plained by the fixed effects. Cij measures the ith region’s po-
tential to update this estimate of βj when spatial clustering
is introduced as a second explanation of association between
nearby regions. Sites with covariates that are similar to neigh-
boring sites (small |Cij |) cannot distinguish between these
competing explanations of association because both spatial
clustering and the fixed effects predict the region will be sim-
ilar to its neighbors. Regions with extreme covariates relative
to nearby regions (large |Cij |) can provide information to up-

date β̂j because the two explanations of association predict
different outcomes. The OLM predicts that yi will be different
from its neighbors. If yi really is different from its neighbors
(small |ei |) this supports the assumption that all associations
are caused by fixed effects and an update to β̂j is not war-
ranted. In contrast, if yi is similar to the outcomes of nearby
regions (large |ei |), this is evidence that spatial clustering, not
fixed effects, is responsible for the similarity of nearby regions.
This suggests a large change in βj , that is, |δij | will be large.
That is, if the simple linear regression fits poorly at regions
where Xij is different from neighboring regions’ Xij , there will
be a large adjustment to the posterior mean of βj when the
spatial structure is incorporated into the model.

2.2 Effect of Collinearity on var(β | τ e , τ s , y) and var(β | r, y)

The variance inflation factor is commonly used in OLM the-
ory to measure collinearity among covariates (Hocking, 1996).

This diagnostic is defined as the actual variance of the jth re-
gression parameter divided by its variance assuming the jth
covariate is uncorrelated with the other covariates. Although
collinearity among fixed effects is an important issue, in this
section we will inspect the increase in βj ’s posterior variance
by adding CAR random effects to the OLM.

Because the columns of Z are an orthogonal basis for
	n , we can write X = (n− 1Zρ)

1
2 for an n × p ma-

trix ρ where ρij is the correlation between the ith col-
umn of Z and the jth column of X and

∑n

i=1 ρ
2
ij =

var(Xj) = 1. The posterior variance of β in (7) can be
written var(β | τe, τs,y) = {(n− 1)τeρ

′D̃ρ}−1, where D̃ = I −
(I + rD)−1 = diag{rdi/(1 + rdi)}. Under the OLM with τs =
∞, var(β | τe, y) = (τeX

′X)−1 = {(n − 1)τeρ
′ρ}−1, so

VIFj(β | r, τe) =
(X ′ZD̃Z ′X)−1

jj

(X ′X)−1
jj

=
(ρ′D̃ρ)−1

jj

(ρ′ρ)−1
jj

(9)

is the inflation in βj ’s variance by adding the CAR random
effects. Although we have conditioned on τ e , VIFj(β | r, τe)
depends only on r = τs/τe, not τ e . The relationship between
τ e and variance inflation is discussed below.

If X is a vector, that is, the number of covariates is p = 1,
(9) reduces to

VIF(β | r, τe) =

(
1 −

n∑
i=1

ρ2
i

1 + rdi

)−1

≥ 1 for all r > 0. (10)

For any spatial grid and for any covariate, conditional on
τe, β’s posterior variance is larger under the spatial model
than the OLM for any r > 0. VIF(β | r, τe) → ∞ as r →
0+, that is, β has infinite variance if the random effects b
are not smoothed. As r increases, b is smoothed to zero and
VIF(β | r, τe) → 1. The rate at which VIF(β | r, τe) descends
to 1 depends on the ρi and the corresponding di . VIF(β | r,
τe) approaches 1 less quickly if the eigenvectors Zi with large
ρi are associated with small di . Reich and Hodges (2005)
show that the eigenvectors associated with small eigenvalues
di are generally “low-frequency” eigenvectors, that is, those
that vary gradually in space. For example, the eigenvector
with the smallest eigenvalue for the Slovenian grid describes
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the southwest/northeast gradient. In summary, variance infla-
tion arising from collinearity between fixed effects and random
effects is most troublesome when r is small and/or the covari-
ates are highly correlated with low-frequency eigenvectors of
the spatial adjacency matrix Q.

If ρi ≈ 1 for some i, the vector of covariates X is very
similar to the ith column of Z, so β and bi must compete to
explain the same one-dimensional projection of y (4). Both
parameters are identified if r > 0 because bi ’s prior shrinks
bi toward its prior mean, zero (5). If bi ’s prior is strong,
β will be well identified; if bi ’s prior is weak, β will be weakly
identified. The strength of bi ’s prior relative to the prior on
the other elements of b is controlled by di . The inflation of β’s
variance due to collinearity with Zi persists for larger r if X
is highly correlated with Zi corresponding to small di because
small di means bi ’s prior is less restrictive.

Of course, when τ e is unknown its estimate will generally
be different under the spatial model from the OLM, which can
indirectly affect β’s variance inflation. In practice, it might be
useful to investigate β’s variance after integrating out both
θ and τ e . If X is a vector (i.e., p = 1) and τ e is given a
gamma(ae/2, be/2) prior under both models, the ratio of β’s
variance under the spatial and nonspatial models after inte-
grating out (θ, τ e) is

VIF(β | r) =
B(r) + be

n− 3 −G + ae

(
B(∞) + be
n− 3 + ae

)−1

VIF(β | r, τe),

(11)

where VIF(β | r, τe) is the variance inflation factor con-
ditional on r and τ e in (10), B(∞) = y′P cy, B(r) =
y′(Γ − ΓX(X ′ΓX)−1X ′Γ)y, Γ = I − (I + rQ)−1, and G is the
number of spatial islands. A plot of VIF(β | r) over a range of
r could be used to illustrate the variance inflation of β due to
adding the spatial random effects and might suggest a prior
for r, analogous to ridge regression, that ensures variance in-
flation will be less than a particular value by prohibiting small
values of r, that is, requiring at least a certain amount of
smoothing.

3. Spatial Smoothing Orthogonal to the Fixed Effects
Several remedial measures have been proposed for collinearity
in the OLM including variable deletion, principal component
regression, and ridge regression (Hocking, 1996). If a pair of
covariates is highly correlated, the natural reaction is variable
deletion, that is, remove one of the covariates from the model.
The estimates of the remaining coefficients will be more pre-
cise but potentially biased. In situations where both corre-
lated covariates are of scientific interest, it may be difficult to
decide which covariate to remove, and removing a scientifi-
cally relevant covariate may result in a model that is difficult
to interpret.

Collinearity between the fixed effects and CAR random
effects in Section 2’s spatial regression model leads to many
of the same problems as collinearity in the OLM, such as vari-
ance inflation and computational problems. However, a natu-
ral ordering of parameter importance may distinguish spatial
regression from the OLM. The primary objective in a spa-
tial regression may be to estimate the fixed effects; in such a
situation, the CAR random effects are added merely to

account for spatial correlation in the residuals when comput-
ing the posterior variance of the fixed effects, or to improve
predictions. With these objectives in mind, it may be reason-
able to proceed by removing the combinations of CAR random
effects that are collinear with the fixed effects.

The orthogonal projection matrices P = X(X ′X)−1X ′ and
P c = I − P have ranks p and n − p, respectively. Let K
be the p × n matrix whose rows are the p eigenvectors of P
corresponding to nonzero eigenvalues. Similarly, let L be the
(n − p) × n matrix whose rows are the n − p eigenvectors of
Pc corresponding to nonzero eigenvalues. θ1 = KZb are the
combinations of the CAR random effects in the span of X,
while θ2 = LZb are the combinations of the CAR random
effects that are orthogonal to X. Transforming from b to θ =
(θ′

1, θ
′
2)

′ gives the model

y |β,θ, τe ∼ N(Xβ + K ′θ1 + L′θ2, τeIn) (12)

θ | τs ∼ N(0, τsQ̃), (13)

where Q̃ = (K ′L′)′Q(K ′L′) and τ e I and τsQ̃ are precision
matrices.

Identifying both β and θ1 is entirely dependent on prior
information because X and K′ have the same span. Because β
is given a flat prior, it is free to explain all y’s variation in the
span of X or K′, so it is not clear whether the data identify θ1

at all. After integrating β out of (12) and (13), the posterior
of (θ1, θ2) given (τe, τs) can be written as

p(θ1,θ2 | τe, τs,y)

∝ τ (n−p)/2
e exp

{
−τe

2
(Ly − θ2)

′(Ly − θ2)
} (14)

× τ (n−G)/2
s exp

{
−τs

2

(
θ1

θ2

)′ (
Q̃11 Q̃12

Q̃′
12 Q̃22

)(
θ1

θ2

)}
, (15)

where Q̃11 = KQK ′, Q̃12 = KQL′, and Q̃22 = LQL′. The like-
lihood (14) involves only Ly and θ2; neither θ1 nor the part
of y in the span of X(Ky) remain in the likelihood after in-
tegrating out the fixed effects. Assuming Q̃12 = 0, the data
indirectly identify θ1 through θ1’s prior correlation with θ2

(15), so the strength of θ1’s identification depends on τ s and
Q̃12. If τ s is small or Q̃12 ≈ 0, the identification of θ1 is weak.
If each column of X is an eigenvector of Q, Q̃12 = 0, and θ1 is
not identifiable.

As with variable deletion in the ordinary linear model, set-
ting θ1 to zero alleviates collinearity. With θ1 ≡ 0, the model
in (12) and (13) becomes

y |β,θ2, τe ∼ N(Xβ + L′θ2, τeIn) (16)

θ2 | τs ∼ N(0, τsQ̃22). (17)

Conditional on (τe, τs), β’s posterior under this model is the
same as its posterior under the OLM, normal with mean β̂OLM
and variance (τeX

′X)−1. In spatial regression, two factors
can inflate βSEc’s posterior variance compared to the OLM:
collinearity with the spatial random effects and reduction in
the effective number of observations because of spatial correla-
tion in the data. The reduced model in (16) and (17) removes
any increase due to collinearity, but the marginal posterior



1202 Biometrics, December 2006

of β will have larger variance than the marginal posterior of
β from OLM because τ e is stochastically decreased by the
spatial correlation of the residuals.

To see this, first transform from (τe, τs) to (τe, r = τs/τe).
After integrating out β and b, the marginal posterior of τ e

given r is

τe | r,y ∼ gamma
[
0.5(n− p) + ae, 0.5(Ly)′

×
{
I − (I + rQ̃22)

−1
}
(Ly) + be

]
, (18)

where τ e ’s prior is gamma(ae , be). The marginal posterior
of τ e from OLM is gamma(0.5(n − p) + ae , 0.5(Ly)′(Ly) +
be). Because (Ly)′{I − (I + rQ̃22)

−1}(Ly) < (Ly)′(Ly) for all
r, the marginal posterior of the error precision in the reduced
CAR model in (16) and (17) is stochastically smaller than the
marginal posterior of the error precision in the OLM.

4. Influence and Collinearity in the CAR Model
with Nonnormal Observables

As is often the case with disease-mapping models, Section 1’s
analysis of the Slovenia stomach cancer data assumed that
outcomes followed Poisson distributions. Spatial models for
non-Gaussian data were popularized by Clayton and Kaldor
(1987). Although the intuition gained from studying collinear-
ity in the linear model with Gaussian errors is useful in
studying collinearity in the generalized linear model, sev-
eral authors have shown that the diagnostics used in lin-
ear models can be misleading when applied to generalized
linear models (Schaefer, 1979; Mackinnon and Puterman,
1998). Therefore, in this section we extend the methods of
Sections 2 and 3 to the generalized linear spatial regression
model.

Assume the observations yi are independent given ηi with
conditional log likelihood

log{p(yi | ηi)} = yiηi − b(ηi) + c(yi), (19)

where E(yi | ηi) = μi, and g(μi) = ηi = Xiβ + Si + Hi for
some link function g. The linear predictor η is the sum of three
vectors: Xβ, where X is a known n × p matrix of covariates
and β is a p-vector of fixed effects; the spatial random effects
S, which follow a CAR(τsQ) distribution; and heterogeneity
random effects H, which follow a normal(0, τhIn) distribution,
where τhIn is a precision matrix.

Following Section 2, the linear predictor can be rewritten
to highlight collinearity issues. After reparameterizing from S
to b = Z ′S where Q = ZDZ′ for n × n orthogonal matrix Z
and n × n diagonal matrix D with positive diagonal elements
d1 ≥ · · · ≥ dn−G, the linear predictor is η = Xβ + Zb +
H where b’s prior is normal with mean zero and precision
τ sD.

The diagnostics of Sections 2.1 and 2.2 required closed-form
expressions of β’s posterior mean and variance. Non-Gaussian
likelihoods prohibit closed-form expressions but these diag-
nostics can be extended to the non-Gaussian case using ap-
proximate methods (Lee and Nelder, 1996). One method for
computing the posterior mode of p(β, b, H | τh, τs, y) is it-
eratively reweighted least squares (IRLS). This method be-
gins with an initial value, (β(1), b(1), H (1)), and the new

value at (t + 1)th iteration is computed using the recurrence
equation⎛⎝ β(t+1)

b(t+1)

H (t+1)

⎞⎠ =

⎛⎝ β(t)

b(t)

H (t)

⎞⎠ − h(β(t),b(t),H (t))−1

×

⎛⎝X ′

Z ′

I

⎞⎠{
y − μ

(
β(t),b(t),H (t)

)}
, (20)

where μ(β, b, H)i = E(yi |β, b, H),

h(β,b,H)

=

⎛⎝X ′W (β,b,H)X X ′W (β,b,H)Z X ′W (β,b,H)

Z ′W (β,b,H)X Z ′W (β,b,H)Z + τsD Z ′W (β,b,H)

W (β,b,H)X W (β,b,H)Z W (β,b,H) + τhI

⎞⎠
(21)

is the Hessian matrix, and W(β, b, H) is diagonal with
W (β, b, H)ii = var(yi |β, b, H).

To assess each region’s contribution to the difference be-
tween the posterior mode of p(β | τe, τs, y) with (β̂) and
without (β∗) the random effects in the model, we approxi-
mate β̂ using one IRLS step with initial value (β, b, H) =
(β∗, 0, 0), that is,⎛⎜⎝ β̂

b̂

Ĥ

⎞⎟⎠ ≈

⎛⎝β∗

0

0

⎞⎠ − h(β∗, 0, 0)−1

⎛⎝X ′

Z ′

I

⎞⎠ {y − μ(β∗, 0, 0)}.

(22)

Using this approximation, Δ = β∗ − β̂ ≈ C{y − μ(β∗, 0, 0)}
where C is the p × n matrix whose rows are the first p rows
of h(β∗, 0, 0)−1(X Z I )′. As with the diagnostic for normal
data in Section 2.1, this approximation of Δ is the product of a
p × n matrix and the n-vector of residuals from the fit with-
out spatial random effects. In Section 5 the δij = Cij {yi −
μ(β∗, 0, 0)i} are plotted to search for municipalities of Slove-
nia that are highly influential in the change of βSEc from the
nonspatial to the spatial regression model.

Using Fisher’s observed information, the posterior vari-
ance of (β, b, H) given (τh, τs) can be approximated by
var(β,b,H | τs, τh,y) ≈ h(β̂, b̂, Ĥ)−1, where (β̂, b̂, Ĥ) is the
mode of p(β, b, H | τh, τs, y). The normal-case variance in-
flation factor due to adding spatial effects (9) extends to the
present non-Gaussian models as the ratio of h(β̂, b̂, Ĥ)−1

jj and
the approximate posterior variance of βj under the nonspatial
model,

VIFj(τs, τh) =
h(β̂, b̂, Ĥ)−1

jj

{X ′W (β∗, 0, 0)X}−1
jj

. (23)

In the normal case, the variance inflation factor (9) was a
function of only r = τs/τe and did not depend on τ e . In the
nonnormal case, the variance inflation factor (23) is a function
of both τ s and τ h . The spatial model for nonnormal outcomes
in (19) adds both spatial and heterogeneity random effects to
the simple generalized linear model. If either of these random
effects is given a flat prior, that is, if either τ s or τ h is zero,



Effects of Residual Smoothing 1203

βj will be perfectly correlated with some combination of the
random effects and VIFj will be infinite.

The reduced model in Section 3 diminished the variance
inflation of the fixed effects caused by collinearity by delet-
ing the spatial smooth linear combinations of the spatial ran-
dom effects that were correlated with the fixed effects. Ex-
tending this method to the nonnormal case requires removing
the combinations of both b and H that are correlated with
β. h(β̂, b̂, Ĥ) resembles the Hessian of the linear mixed model
with linear predictor Ŵ 1/2Xβ + Ŵ 1/2Zb + Ŵ 1/2H, where
b ∼ N(0, τsD), H ∼ N(0, τhI), and Ŵ = W (β̂, b̂, Ĥ). To
remove the collinearity between the fixed effects and the ran-
dom effects in this model, we could delete the combinations of
Ŵ 1/2Zb and Ŵ 1/2H that are in the span of Ŵ 1/2X. Following
the steps of Section 3 to remove the collinear combinations of
Ŵ 1/2Zb and Ŵ 1/2H gives a reduced generalized linear mixed
model analogous to the reduced Gaussian model in (16) and
(17), that is,

η = Xβ + Ŵ−1/2L′θ2 + Ŵ−1/2L′γ2 (24)

θ2 = LŴ 1/2Zb ∼ N
(
0, τsLŴ

1/2QŴ 1/2L′) (25)

γ2 = LŴ 1/2H ∼ N(0, τhLŴL′), (26)

where τsLŴ
1/2QŴ 1/2L′ and τhLŴL′ are precisions, and L

is the (n − p) × p matrix whose rows are the eigenvectors
of I − Ŵ 1/2X(X ′ŴX)−1X ′Ŵ 1/2 that correspond to nonzero
eigenvalues.

Let (β̂2, θ̂2, γ̂2) be the mode of p(β, θ2, γ2 | τh, τs, y)
and Ŵ2 = W (β̂2, θ̂2, γ̂2). Using Fisher’s observed information
approximation, under (24)–(26) var(β, θ2, γ2 | τh, τs, y) is
approximately⎛⎜⎝ X ′Ŵ2X X ′Ŵ2Ŵ

−1/2L′ X ′Ŵ2Ŵ
−1/2L′

LŴ−1/2Ŵ2X LŴ−1/2Ŵ2Ŵ
−1/2L′ + τsLŴ

1/2QŴ 1/2L′ LŴ−1/2Ŵ2Ŵ
−1/2L′

LŴ−1/2Ŵ2X LŴ−1/2Ŵ2Ŵ
−1/2L′ LŴ−1/2Ŵ2Ŵ

−1/2L′ + τhLŴL′

⎞⎟⎠
−1

. (27)

The posterior of η should be similar under the full model (19)
and the reduced model (24)–(26) because the only difference
in these models is that redundancies in η have been removed.
Because W is a function of η, the estimate of W from the
full model (Ŵ ) and reduced model (Ŵ2) should be similar.
If Ŵ ≈ Ŵ2,X

′Ŵ2Ŵ
−1/2L′ ≈ 0 (because L is, by construction,

orthogonal to Ŵ 1/2X) and β is approximately uncorrelated
with θ2 and γ2.

5. Analysis of Slovenia Data
Section 2 predicts that the change in the fixed effects due to
adding the CAR parameters will be large if there is little spa-
tial smoothing of the CAR parameters and if the covariate is
highly correlated with low-frequency eigenvectors of Q. Both
of these criteria are met in the Slovenia analysis: the effective
number of parameters in the model is pD = 62.3 (Table 1) out
of a possible n = 192 and the correlation between SEc and
the eigenvector of Q corresponding to the smallest eigenvalue
is 0.72. The posterior variance of βSEc increases from 0.0004
under the simple Poisson regression model to 0.0016 under
the spatial Poisson regression model.

In this section, the methods of Section 4 are used to inves-
tigate influence and collinearity in the analysis of the Slovenia

cancer data. These diagnostics rely on a one-step approxima-
tion to βSEc’s posterior. For the Slovenia data, this approxi-
mation works fairly well. The estimate of βSEc’s variance given
by assuming (τs, τh) = (10.5, 125.9), their posterior medians
under Model 2, and by inverting the Hessian matrix (21) is
0.0013, which is similar to βSEc’s posterior variance under the
spatial Poisson regression model, 0.0016. Figure 3a shows that
the one-step estimate for βSEc in (22) (solid line) is near βSEc’s
true posterior median (centers of the boxplots) under Model 2
for all values of τ s that have appreciable posterior mass.

As mentioned in Section 1, the posterior median of βSEc

shifts from −0.137 to −0.022 after adding the spatial terms
to the simple Poisson regression model. Figure 3a depicts the
joint posterior of (βSEc, τ s) and shows how this shift in βSEc’s
median depends on τ s , the parameter that controls smoothing
of the CAR parameters. For small τ s , the CAR parameters
are unsmoothed and βSEc’s median is close to zero. As τ s in-
creases, βSEc’s median gradually tends toward βSEc’s posterior
median from the simple Poisson regression model (the middle
horizontal dashed line). For the range of τ s with apprecia-
ble posterior mass, βSEc’s posterior median does not reach its
posterior median from the simple Poisson regression model.
The model in (24)–(26) resolves the collinearity problem by
removing the combinations of the CAR random effects that
are collinear with the fixed effects. Figure 3b shows that delet-
ing the collinear spatial terms removes βSEc’s dependence on
τ s ; βSEc’s median under the reduced model is similar for all
τ s and much closer to its posterior median in the nonspatial
Poisson model.

The δij statistics of Section 4 can be used to measure
each region’s contribution to the shift in β’s posterior due to

adding the spatial random effects. These statistics are plotted
in Figure 4 for the Slovenia data with (τs, τh) equal to their
posterior medians under Model 2 (Table 1); δi < 0.010 for each
municipality except the northeastern regions Murska Sobota
and Ptuj that have δi > 0.015. Murska Sobota and Ptuj are
unusual because despite having higher SEc than their neigh-
bors (Figure 1b), they do not have lower SIR than their neigh-
bors (Figure 1a). Comparing these regions to their neighbors
contradicts the general pattern that regions with high SEc
have low SIR. Removing these municipalities from Model 2
causes βSEc’s posterior median to shift from −0.022 to −0.052,
a change that is very close to the sum of the δi for Murska
Sobota and Ptuj.

Another feature that distinguishes Murska Sobota and Ptuj
from their neighbors is that they are 2 of the 11 municipali-
ties the Slovenian government defines as urban. Because rural
and urban neighbors are probably less similar than neigh-
boring rural regions, smoothing these two types of neighbor
pairs equally may not be appropriate. Smoothing all neighbors
equally may be more sensible after including an urban indi-
cator as a fixed effect to account for rural/urban differences.
The model with a fixed effect for urban/rural is summarized
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Figure 3. Plot of (βSEc, τs)’s joint posterior with the combinations of the random effects that are collinear with SEc (a)
included as in Section 1 and (b) excluded as in (24)–(26). The 30,000 MCMC samples from βSEc’s posterior are divided into
bins according to the corresponding draws of τ s . Each panel shows box-plots of the samples of βSEc in each bin with the
box-plot’s width indicating the number of samples in the bin. The solid line in (a) represents the one-step estimate of βSEc in
(22) evaluated at τ h ’s posterior median, τ h = 125.9, and the dashed lines represent βSEc’s posterior median and 95% confidence
interval from the Poisson regression without spatial terms.

Figure 4. Plot of |δ|, that is, each region’s contribution to
the change in β’s posterior mode due to the spatial terms,
with (τs, τh) set to their posterior medians (10.5, 125.9).

in the third row of Table 1. Adding an urban fixed effect leads
to only a small change in βSEc. Thus, urban/rural differences
do not mediate the effect of collinearity on βSEc.

The model in (24)–(26) resolves the collinearity problem by
removing the combinations of the CAR random effects that
are collinear with the fixed effects. Table 1 shows that the
posterior of βSEc after removing the collinear spatial effects
(Model 4) is indeed more similar to its posterior under the
simple Poisson model (Model 1) than its posterior under the
usual spatial regression (Model 2). Also, βSEc’s posterior vari-
ance is twice as large under Model 4 (0.0008) compared to
Model 1 (0.0004). Two factors inflate βSEc’s marginal poste-
rior variance from Model 1 to Model 2: collinearity with the
spatial random effects and an increase in the effective num-
ber of parameters in the model. The variance of βSEc under
Model 4 is smaller than its variance under Model 2 because
the collinearity effect is removed but is larger than its variance

under Model 1 because the spatial correlation in the data is
taken into account.

However, βSEc’s posterior is not identical under Models 1
and 4. Under Model 4, βSEc’s posterior median is −0.120
compared to −0.137 under Model 1. In deriving Model 4
(Section 4), we assumed the posterior modes of eηj were the
same under Models 2 and 4. The slight difference in βSEc’s pos-
terior median under Models 1 and 4 may be due to slight dif-
ferences in posteriors of eηj under Models 2 and 4 (Figure 5).

Figure 5a plots the posterior mean relative risks (eηj ) un-
der the usual CAR model (Model 2) and the model without
the collinear CAR parameters (Model 4). Although remov-
ing the collinear terms from the spatial regression impacts
βSEc’s posterior, the posterior mean relative risks under the
reduced model are similar to the full spatial model. The re-
maining spatial random effects in Model 4 are smoothed more
than the spatial random effects in Model 2 (the posterior me-
dian of τ s increases from 10.5 under Model 2 to 15.0 under
Model 4). However, the remaining heterogeneity random ef-
fects in Model 4 are smoothed less than the heterogeneity
random effects in Model 2 (the posterior median of τ h de-
creases from 125.9 under Model 2 to 38.9 under Model 4). As
a result, the fit under the model without the collinear spatial
terms is less smooth and neighboring relative risk estimates
are less similar (Figure 5b).

The model without the collinear random effects (DIC =
1088.0) has slightly larger DIC than the usual spatial regres-
sion (DIC = 1081.5). The models are similar in terms of fit
(the posterior mean deviance, D̄, is 1019.2 for Model 2 and
1018.0 for Model 4) but removing the collinear random ef-
fects gives 7.7 additional effective parameters (the effective
model size, pD , is 62.3 for Model 2 and 70.0 for Model 4),
mostly heterogeneity random effects. A researcher focused on
estimating each municipality’s relative risk would prefer the
usual spatial regression because of its smaller DIC. However,
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Figure 5. Comparison of the fitted values under the usual spatial regression model of Section 1 and the spatial regression
model of Section 4 that excludes the CAR parameters that are collinear with SEc. (a) plots each municipality’s posterior
mean relative risk (eηj ) and (b) plots eηj − eη(j), where eη(j) is the average posterior mean relative risk of the municipality j’s
neighbors.

a researcher primarily focused on measuring the association
between socioeconomic status and stomach cancer may pre-
fer the model without the collinear random effects because
of the interpretability of the βSEc parameter under this
model.

6. Discussion
This article investigated the effect of adding spatial random
effects on the posterior distribution of fixed effects in CAR
models for disease mapping. Assuming normal outcomes, Sec-
tion 2.1 proposed the Cij and δij statistics to investigate each
region’s contribution to the change in the fixed effect esti-
mate by including spatial random effects. The Slovenia ex-
ample illustrated that regions were highly influential if they
have different covariates from nearby regions and also if they
have large OLS residuals. Section 2.2 showed that the variance
inflation from collinearity with the spatial random effects is
most troublesome if there is little spatial smoothing and the
covariates are highly correlated with low-frequency eigenvec-
tors of the adjacency matrix Q. Sections 3 and 4 developed
a model removing the collinear spatial terms and Section 5
applied it to the Slovenia data.

This article’s results were developed for the CAR model of
areal data but can be extended to other spatial models. A
common geostatistical model for point-referenced data is

y |β, S, τe ∼ N (Xβ + S, τeIn)

S | τs ∼ N (0, τsQ(φ)),
(28)

where φ is a vector of unknown parameters. Mechanically, the
only difference between this model and the CAR model in (2)
and (3) is that Q(φ) depends on φ. This complicates matters
because the geometry of the model, that is, the eigenvectors
and eigenvalues of S’s prior precision, depends on φ. For exam-
ple, the collinearity between the fixed effects and the random
effects was illuminated in (4) and (5) by a transformation that
depended on Q’s eigenvectors. This transformation would be
more difficult to interpret if the eigenvectors themselves were

functions of unknown parameters as in (28). However, be-
cause the methods developed in Sections 2–4 conditioned on
the precisions, (τe, τs), these methods could be applied to the
geostatistical model by simply conditioning on (τe, τs, φ).
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