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Smoothed analysis of variance, usually known as SANOVA, was proposed in different forms
with different goals by Nobile and Green [1], Gelman [2], and Hodges et al. [3]. This chapter
builds on the latter, which proposed a method for smoothing effects in balanced ANOVAs
having a single error term, that is, without random effects as understood by, for example,
Scheffé [4]. Zhang et al. [5] applied this approach to multivariate disease mapping as a
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simpler alternative to the intrinsic multivariate conditional autoregressive (MCAR) distri-
bution, often used to analyze multivariate areal data (Section 1 of Zhang et al. [5] gives
citations to pertinent MCAR literature). This application of SANOVA used specific known
linear combinations of the diseases under study, presumably with particular meanings, to
structure the covariance among diseases, which in most multivariate analyses is usually
assumed to be unknown and unstructured [6, 7]. More recently Maŕi-Dell’Olmo et al. [8]
proposed a reformulation of SANOVA for disease mapping that is simpler to implement and
allows extensions such as multivariate ecological regression and spatiotemporal modeling.

This chapter reviews the SANOVA approach and shows some modeling possibilities it
allows. The chapter is organized as follows: Section 32.1 introduces the original formula-
tion of SANOVA for multivariate disease mapping and the advantageous reformulation.
Section 32.2 discusses some settings where this approach can be applied, beyond its original
use for multivariate modeling. Finally, Section 32.3 shows a multivariate ecological regres-
sion of mortality data in Barcelona, Spain, illustrating one use of SANOVA and the powerful
epidemiological conclusions that can be drawn from it.

32.1 Smoothed ANOVA

For now, we consider the following multivariate disease mapping problem. Let Oij and
Eij denote, respectively, the number of observed and expected health events in the ith
geographical unit (i = 1, . . . , I) for the jth outcome under study (j = 1, . . . , J). From now
on, without loss of generality, we refer to counties when talking of areal geographical units
and to diseases when talking about outcomes. We assume

Oij ∼ Poisson(Eij exp(μij)).

The multivariate disease mapping problem is mostly concerned with how to model μ, the
matrix of log standardized mortality ratios (SMRs), to represent dependence both within
diseases (spatial dependence) and between diseases.

32.1.1 Zhang et al.’s SANOVA proposal

SANOVA for multivariate disease mapping was proposed by Zhang et al. [5], using as an
example the incidence of J = 3 cancers in the I = 87 counties of Minnesota. The idea was
to model vec(μ) = (μ′

·1, . . . ,μ′
·J)′, where each μ′

·j is an I-vector, using a two-way ANOVA
without replication, with factors disease and county. Because the number of diseases is
usually much smaller than the number of counties, the disease main effect was modeled as a
set of fixed effects. The proposed model did not include one fixed effect (indicator variable)
for each disease, but rather one fixed effect for each of J specified linear combinations of
the diseases. The coefficients of those linear combinations were arranged as the columns of
a matrix H. Zhang et al. proposed to set H·1 to J−1/21J , so the first linear combination
corresponds to the ANOVA’s grand mean. The remaining columns of H were called H(−),
so H may be written as [H·1 : H(−)]. H(−) was specified so that (H)′H = IJ−1; that is,
the columns of H(−) are orthogonal contrasts describing specific features of the diseases.
Obviously, H(−) could be defined infinitely many ways, yielding different SANOVA models.
The choice of a specific H(−) would depend on the questions of interest to the modeler.
This is similar to a traditional ANOVA, in which the selection of a specific set of contrasts
usually depends on the questions to be answered or the statistical design used to answer
them.
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Thus, the disease main effect’s contribution to the model for vec(μ) has this form:

(
H ⊗ (I−1/21I)

)
ΘDis =

(
H·1 ⊗ (I−1/21I)

)
ΘGM +

(
H(−) ⊗ (I−1/21I)

)
ΘContrast,

(32.1)

where ΘGM denotes the first component of ΘDis, used to model the grand mean, and
ΘContrast is a (J − 1)-vector modeling the effects of the contrasts. The vector I−1/21I

applies the J disease effects to each of the I spatial regions of vec(μ); I−1/2 is a normalizing
constant.

Conversely, the number of counties is usually large in this kind of setting, which precludes
modeling them as fixed effects. Moreover, it is convenient to use the counties’ geographical
arrangement to define dependence among their respective risks, especially given that coun-
ties are small areas. Thus, counties were modeled as a set of spatially correlated random
effects. Zhang et al. proposed an intrinsic CAR distribution for modeling counties, with
precision matrix τQ, where Qii = mi, the number of county i’s neighbors, and Qii′ = −1
if counties i and i′ are neighbors and 0 otherwise. Let Q have spectral decomposition
Q = V DV ′, where V is an orthogonal matrix and D is diagonal. In the sequel, we assume
the region of study defines a connected map (i.e., it consists of a single connected island),
so D has exactly one diagonal element equal to 0 [9], which we assume to be the first diagonal
element, contrary to the usual convention of sorting D’s diagonal elements in decreasing
order. Note that the eigenvector corresponding to that zero eigenvalue is V·1 = I−1/21I .
We denote as V (−) the I × (I − 1) submatrix of V containing the columns with nonzero
diagonal elements in D, so V may be written as [V·1 : V (−)]. Similarly, D(−) denotes the
submatrix of D with the first row and column removed. Zhang et al. proposed to model the
county main effect as V (−)ΘCounty, where ΘCounty ∼ NI−1(0, (τD(−))−1), which yields
the precision matrix

(
V (−)(τD(−))−1(V (−))′

)−1
= τ(V (−)D(−)(V (−))′) = τQ.

This model is equivalent to an intrinsic CAR distribution on the county main effect, which
is a random effect (though not in the sense used by, e.g., Scheffé [4]). The contribution of
the county random effect to the model for vec(μ) therefore has the following form:

(
J−1/21J ⊗V (−)

)
ΘCounty =

(
H·1 ⊗V (−)

)
ΘCounty, (32.2)

where the term J−1/21J applies the I county effects to each of the J diseases considered.
If the model included no more effects, the risks of all J diseases would have the same

geographical pattern except for differences in their intercepts arising from the disease main
effect. An interaction between disease and county is needed to allow deviation from this
additive structure. The design matrices of the disease and county effects in Equations 32.1
and 32.2 are built using the components of the matrix modeling the between-disease struc-
ture H = [H·1 : H(−)] and the components of the matrix modeling the spatial structure
V = [V·1 : V (−)]. Thus, the design matrix for the grand mean is just H·1 ⊗V·1; for the
contrasts in the columns of H(−), that is, the disease main effect, the design matrix is
H(−) ⊗V·1; and for the county main effect, the design matrix is H·1 ⊗V (−). It seems nat-
ural therefore for the disease-by-county interaction to have design matrix H(−) ⊗V (−),
combining the dependence between diseases defined by H(−) with the spatial dependence
structure in V (−). Thus, if Θinter ∼ N(I−1)(J−1)(0, diag(τ1, . . . , τJ−1) ⊗D(−)) and the
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disease–county interaction is defined as (H(−) ⊗V (−))Θinter, this version of SANOVA
models the log SMRs as

vec(μ) = (H ⊗V )Θ = ([H·1 : H(−)] ⊗ [V·1 : V (−)])(ΘGM ,Θ′
County,Θ′

Contrast,Θ
′
Inter)′

= [H·1 ⊗ V·1 : H·1 ⊗ V (−) : H(−) ⊗V·1 : H(−) ⊗V (−)]
× (ΘGM ,Θ′

County,Θ′
Contrast,Θ

′
Inter)′

= (H·1 ⊗ V·1)ΘGM + (H·1 ⊗V (−))ΘCounty + (H(−) ⊗V·1)ΘContrast

+ (H(−) ⊗ V (−))ΘInter. (32.3)

This model implies vec(μ) has precision matrix Q⊗ (Hdiag(τ, τ1, . . . , τJ−1)H ′), with
known H [5]. By contrast, the multivariate intrinsic CAR (MCAR) distribution has a
precision matrix of the form Q⊗Ω for an unknown symmetric, positive definite Ω, the
between-disease precision matrix. The fixed, known contrasts of SANOVA’s H play the role
of the eigenvectors of the MCAR’s Ω, and the more they resemble Ω’s true eigenvectors,
the better will be the fit of SANOVA. The drawback is that it is very difficult to have prior
intuition about the eigenvectors of Ω to help in specifying H, although Zhang et al. pre-
sented a modest simulation experiment suggesting that in practice, this creates little or no
disadvantage, most likely because the data provide weak information about Ω’s eigenvec-
tors. Zhang et al. viewed this as a weakness of the proposed model, but Maŕi-Dell’Olmo
et al. [8] saw it as an opportunity: if H’s columns are chosen to focus on substantive ques-
tions of interest to the modeler, SANOVA becomes a way to simplify multivariate modeling
of several diseases. From this viewpoint, SANOVA-based smoothing uses just J parame-
ters (τ, τ1, . . . , τJ−1) to define the multivariate dependence between diseases, in contrast to
MCAR, which uses Ω’s J(J + 1)/2 parameters. In this sense, SANOVA can be considered
a simpler and more convenient way to induce multivariate dependence between diseases.

32.1.2 Maŕi-Dell’Olmo et al.’s SANOVA proposal

The starting point of Maŕi-Dell’Olmo et al.’s [8] proposal is Equation 32.3. There, the log
SMRs are modeled as the product (H ⊗V )Θ, which can be expressed as

vec(μ) = (H ⊗V )Θ = (H ⊗ II)(IJ ⊗V )Θ = (H ⊗ II)vec(Ψ), (32.4)

where the random effects in the (I ·J)-vector vec(Ψ) = (IJ ⊗V )Θ follow an intrinsic CAR
distribution. If Ψ = (Ψ′

·1, . . . ,Ψ′
·J)′ for I-vectors Ψ′

·j, then Equation 32.4 can be written as

(H ⊗ II)vec(Ψ) =

⎛
⎜⎝

H11II · · · H1JII

...
. . .

...
HJ1II · · · HJJII

⎞
⎟⎠

⎛
⎜⎝

Ψ·1
...

Ψ·J

⎞
⎟⎠ =

⎛
⎜⎝

H11Ψ·1 + . . .+ H1JΨ·J
...

HJ1Ψ·1 + . . .+ HJJΨ·J

⎞
⎟⎠

= H·1 ⊗Ψ·1 + . . .+ H·J ⊗Ψ·J . (32.5)

Therefore, Zhang et al.’s proposal can be seen as the sum of J Kronecker products of disease
contrasts and the spatial patterns. Because H·1 is simply J−1/21J , Ψ·1 contributes to the
fit exactly the same way for every disease; that is, it models the component common to all
the diseases, which we previously called the county main effect. Ψ·2 contributes to the fit
in one way for diseases for which the corresponding element in H·2 is positive, and in the
opposite way for diseases with negative elements in H·2. In general, then, for j = 2, . . . , J ,
Ψ·j models the spatial pattern associated with the jth contrast in diseases, identifying
regions where this contrast takes higher or lower values. With this reformulation, SANOVA
allows exploration of each contrast in which the modeler has an interest.
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This reformulation of Zhang et al.’s proposal also has computational advantages. First,
Zhang et al.’s approach requires that the matrix Q in the intrinsic CAR’s precision matrix
has no unknown parameters, so it does not extend to other spatial distributions, such as the
proper CAR distribution, for which the analogous matrix and its spectral decomposition
depend on unknown parameters. In that case, if MCMC was used to sample from the
posterior distribution, this would require a new spectral decomposition of Q at every MCMC
iteration, which could be prohibitive. Maŕi-Dell’Olmo et al.’s reformulation does not have
this problem because computationally, it makes little difference if Ψ·1, . . . ,Ψ·J follow an
intrinsic CAR distribution or any other spatially structured distribution. Moreover, even the
graphical modeling approach in Chapter 31 could also be implemented within the SANOVA
framework just introduced in order to ascertain an appropriate geographical dependence
structure for the available data.

Maŕi-Dell’Olmo et al.’s reformulation can be used to extend the original SANOVA
formulation to nonseparable multivariate dependence structures by putting different distri-
butions on the Ψ·1, . . . ,Ψ·J , in which case the resulting covariance structure cannot be the
Kronecker product of a disease covariance matrix and a single spatial covariance. In this
sense, the reformulated SANOVA generalizes the original because it can reproduce nonsep-
arable covariance models. Moreover, Maŕi-Dell’Olmo et al.’s reformulation has a second
advantage: it can be implemented in standard Bayesian software such as WinBUGS,
OpenBUGS, or INLA. Equation 32.5 defines a SANOVA model as the sum of several
Kronecker products of predefined contrasts and vectors of spatial random effects. For the
jth disease, this sum of Kronecker products is

μj = Hj1Ψ·1 + . . .+ HjJΨ·J ,

that is, a known linear combination of the spatial random effects. This simple expression of
the log SMRs for any disease avoids Kronecker products and is therefore easily implemented
in the aforementioned packages.

32.2 Some Specific Applications of Smoothed ANOVA

Although Zhang et al. [5] proposed SANOVA as a tool for traditional multivariate modeling
in disease mapping studies, it can be used in a wider collection of settings. The contrasts
in H are defined by the modeler, and this could be seen as a drawback. But these contrasts
provide room for modeling; if properly used, they permit a great variety of models. For
example, although H was described above as representing contrasts among levels of a
single factor (diseases), with no change to the preceding theory, H can represent contrasts
defining a balanced design with any number of factors, for example, a three-factor design
with factors diseases, sex, and time periods. With this in mind, we now describe some
settings where SANOVA can be applied for purposes somewhat different from its original
conception.

32.2.1 Design-based studies in disease mapping

From their beginning, disease mapping studies have had mainly an observational aim, that
is, obtaining reasonably reliable estimates for small areas to describe the geographical pat-
tern underlying some diseases. At most, such studies may suggest the presence of a risk
factor influencing the disease pattern, and this hypothesis could be tested in a confirmatory
ecological regression study. Such a confirmatory study would ideally be done with new data
to avoid post hoc analyses, possibly leading to the “Texas sharpshooter fallacy” [10].
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Sometimes research questions involve comparing the geographical patterns of different
diseases, different population groups, or different time periods. Unfortunately, traditional
disease mapping methods do not address these questions; they were not conceived to do
so. For example, suppose we have data for males and females for a disease and we want to
explore the common geographical pattern of both sexes, as well as the geographical pat-
tern of differences between sexes, that is, places with higher occurrence of the disease for
one sex than for the other. These questions could be addressed only informally with tra-
ditional univariate disease mapping studies. Multivariate models such as MCAR include
the correlation structure of the diseases and sexes, but that correlation does not necessar-
ily address the questions of interest. Therefore, traditional disease mapping methods are
not helpful. SANOVA, however, can incorporate those questions into the study’s design
through the matrix of contrasts H. In this sense, smoothed ANOVA enables new multi-
variate disease mapping analyses, going beyond disease mapping’s traditional descriptive
purpose. Design-based studies to confirm or explore the hypothesis of interest become pos-
sible; indeed, this may require changing the descriptive conception of most disease mapping
professionals.

32.2.2 Variance decomposition

The design matrices arising from the SANOVA approaches outlined in the previous section
are orthonormal. Thus, if we use J − 1 contrasts in diseases or groups in a SANOVA study, in
addition to the linear combination modeling the grand mean, the design matrix’s orthonor-
mality allows us to decompose the variance of vec(μ) into these J components [8]. This
decomposition can be a valuable epidemiological component in this kind of study, allowing
us to see which elements of the decomposition explain most (or least) of the variance in the
original data patterns.

This variance decomposition could be used, for example, in the study of lung cancer
mortality in two periods and both sexes. In that case, we would define H with four columns:
the common geographical pattern underlying all four maps (i.e., one map for each of the two
periods × two sexes), the geographical pattern of differences between mortality in the two
periods, the geographical pattern of differences between the mortality of the sexes, and
the geographical pattern of deviations from these time and sex main effects, that is, the
interaction of period and sex. If the four original sex-by-period maps are labeled so that
the first two maps correspond to the first period and the first and third maps correspond
to males, the H matrix arising from this design would be

H =
1
2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ . (32.6)

Several obvious epidemiological questions arise here. Which of the four geographical patterns
explains the most variance? Are geographical differences between sexes more important than
those between periods, in terms of the variance explained? Is the sex-by-period interaction—
the change between periods in the difference between sexes—important for explaining the
original data pattern, after accounting for the effects of sex and period? Answers to these
questions can provide important clues about the epidemiology of lung cancer. This kind
of result is clearly beyond the scope of traditional univariate and even multivariate disease
mapping studies.
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32.2.3 Multivariate ecological regression

One more application of SANOVA is ecological regression [8, 11]. Following Maŕi-Dell’Olmo
et al.’s approach, the original patterns in the data can be modeled or decomposed as a
function of Ψ·1, . . . ,Ψ·J , where each of these vectors contains the geographical pattern
of a contrast in a column of H, or the common underlying pattern in the case of Ψ·1.
But these vectors Ψ·j could themselves be modeled by means of an ecological regression
linking them to covariates of interest. In that case, we could determine the relationship
between the covariate and the original data patterns through the estimated relationship
between the covariate and the patterns corresponding to the contrasts in H’s columns. In
this sense, we use the contrasts to do a multivariate ecological regression study: we do not
separately model the covariates’ contribution to the original data patterns; we model these
contributions entirely through the contrasts. Section 32.3 discusses an example in detail.

A second use of ecological regression in this context is linked to the variance decom-
position described just above. As described so far, SANOVA splits the original variance
into as many components as H has columns. But in ecological regression, we split these
components further, into a part explained by the covariate and a second part attributed
to other, possibly unknown factors, typically modeled using a spatial random effect. If the
spatial random effect is defined to be orthogonal to the covariate [12, 13], we can split
the variance explained by each contrast into at least two parts, the variance explained by
the covariate and the “residual” unexplained variance [8]. Besides permitting the variance
decomposition, placing an orthogonality restriction on the random effect avoids so-called
spatial confounding, that is, confounding between the covariate of interest and the residual
spatial pattern, a common problem in ecological regression problems [12].

32.2.4 Spatiotemporal modeling

Spatiotemporal problems [14] are just a kind of multivariate study with an order relationship
(i.e., time sequence) on the geographical patterns being modeled, so SANOVA can be used
for spatiotemporal studies [15]. In this case, it suffices to specify the columns of H as the
elements of a basis of functions used to model the time trends for the geographical units
composing the region of study. If an orthogonal basis is used, the variance decomposition
mentioned above is retained, allowing us to explore which elements of the basis explain
more and less of the variance in the spatiotemporal dataset.

The time trend for the ith geographical unit is modeled as

μi· = (H·1ψi1 + . . .+ H·JψiJ)′,

where H·j is the jth element of the basis for functions of time, evaluated at all the time
units of the period of study. Since Ψ·j will typically have some spatial structure for each j,
the parameters defining the time trend for the geographical units will be correlated: the
time trends for nearby regions will be similar because they are similar combinations of the
same basis elements.

The basis functions used to model time trends can be tailored to the data at hand. If no
cyclic time trend is expected, a polynomial basis could be used. But if, as often happens,
a cyclic trend is present, a Fourier basis could be used and will yield a much better fit.
Therefore, SANOVA provides a powerful, versatile tool for modeling spatiotemporal disease
mapping datasets.

Note also that other factors, such as sex or multiple diseases, can be modeled
simultaneously with time, as indicated in this section’s introduction.
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32.3 Multivariate Ecological Regression Study Using SANOVA

We now illustrate the potential of SANOVA using chronic obstructive pulmonary disease
(COPD) and lung cancer mortality data for the city of Barcelona, Spain. These two diseases
have common risk factors, mainly tobacco consumption, so it seems reasonable to do a
multivariate study of them. We have mortality data for both diseases and sexes, that is,
observed and expected counts for all four combinations of these two factors on Barcelona’s
1491 census tracts (each with about 1000–2000 inhabitants). Since tobacco consumption
can be heavily influenced by deprivation, we also have this variable for every census tract
so we can control for its effect, if possible.

Given these mortality data, researchers might be interested in several epidemiological
questions, such as:

• Which census tracts show more mortality for all four combinations of disease and sex
(common component)?

• Which census tracts show more mortality for one of the diseases regardless of sex (disease
component)?

• Which census tracts show more mortality for one of the sexes regardless of disease (sex
component)?

• Given the geographical distribution of the common, disease, and sex components, does
the interaction between disease and sex make an important contribution to the variance
of disease incidence?

• Is it possible to quantify the variability of the factors above with respect to the total
variability of all four geographical patterns?

• What part of the variability of the common, disease, and sex components can be
explained by deprivation?

• What is the geographical distribution of the common, disease, and sex components that
cannot be attributed to deprivation?

These epidemiological questions cannot be addressed by traditional disease mapping tech-
niques, but they can be addressed with SANOVA, as we will illustrate. The analysis we
suggest is an example of what Section 32.2 called a design-based study, because both the
design of the data to be studied and the questions to be answered make it convenient to
consider specific relationships among all four geographical patterns in the study. This goal
can be achieved easily using SANOVA.

From now on, we will label as geographical patterns 1 and 2 those corresponding to
COPD deaths, for men and women, respectively, and label as 3 and 4 those corresponding to
lung cancer deaths, also for men and women, respectively. We use expression (32.6) as the H
matrix, so Ψ·1 represents the common component for all four geographical patterns, having
higher risks for all four disease-by-sex groups than those regions i with Ψi1 > 0. Similarly,
Ψ·2 represents the disease-specific component, taking values higher than 1 for regions with
a ratio of COPD versus lung cancer mortality higher than that for Barcelona in aggregate.
Ψ·3 represents the sex-specific component, taking values higher than 1 for regions with a
ratio of male versus female mortality higher than that for Barcelona in aggregate. Finally,
Ψ·4 represents the disease-by-sex interaction, taking values higher than 1 for regions with
particularly high mortality for COPD in men and lung cancer in women.



T&F Cat #K23899 — K23899 C032 — page 593 — 12/10/2015 — 17:32

Smoothed ANOVA Modeling 593

All four components in matrix Ψ are modeled in the same manner, as

Ψ·j = μj ·1+ fj(D) + S·j, j = 1, . . . , 4,

where μj is the intercept, modeling the mean of Ψ·j for the whole city. As proposed in
Mar-Dell’Olmo et al. [8], the expression fj() is a step function of D, the deprivation index.
Values of D are split into groups at specific quantiles, and fj() assigns the same value to all
census tracts in the same group. In our study, we used 40 groups to define fj() and modeled
(fj(1), fj(2), . . . , fj(40)) with an intrinsic CAR distribution, considering consecutive quan-
tile groups as neighbors. The vector S·j, modeled as the usual sum of heterogeneous and
intrinsic CAR random effects [16], models the residual variability in each component that
cannot be explained by deprivation. We impose the condition that S·j sums to 0 for every
group defined by quantiles of the deprivation index to guarantee orthogonality of fj() and
S·j. This has two benefits: first, the variance of the original dataset can be decomposed as a
function of all the terms in the model, and second, this avoids potential spatial confounding
of fj() and S·j, which otherwise could compete to explain the same variation in the data.
All computations were made using INLA [17]. Further modeling and computational details
are in Maŕi Dell’Olmo et al. [8], which used a very similar model.

Table 32.1 shows the variance explained by each component in the model. The variance
attributable to the intercept of each component has not been included in Table 32.1 because
it is 0 for all components. This is because expected cases have been calculated by internal
standardization for each disease–sex combination, so the mean relative risk for each com-
bination is 1, and this term does not induce any variability in the model. Among the four
components considered, the common component explains the largest proportion of variance,
followed by the sex and disease main effects, in that order. The disease-by-sex interaction
explains hardly any variance, so henceforth we will ignore it. As a consequence, the maps
for the four sex–disease combinations will be similar because of the common component’s
large fraction of the total variance, while maps for the two sexes will be less similar than
those for the two diseases. Finally, the effect on the map of changing sex will be the same
regardless of the disease, and analogously for the effect of changing disease.

Regarding the effect of deprivation, most of the variance in the data (77.5%) is associated
with this factor. Nevertheless, deprivation is not equally associated with all four components
considered. For instance, deprivation explains almost 99% of the variance of the difference
between maps for males and females, with negligible variance attributable to other factors.
On the other hand, deprivation accounts for only 68% of the variance of the difference
between diseases, with, presumably, other factors underlying the remaining differences.

Figure 32.1 shows the estimated association between deprivation and the common, dis-
ease, sex, and interaction components, exp(fj(·)), j = 1, . . . , 4, respectively. All four plots
show the posterior mean and 95% posterior credible interval for the 40 deprivation groups.

TABLE 32.1
Percentage of variance explained by each component in the model

Variance Variance Total
Component deprivation (%) random effect (%) (%)
Common 34.5 15.2 49.7
Disease 13.2 6.2 19.4
Sex 29.2 0.3 29.5
Interaction disease–sex 0.6 0.8 1.4
Total 77.5 22.5



T&F Cat #K23899 — K23899 C032 — page 594 — 12/10/2015 — 17:32

594 Handbook of Spatial Epidemiology

Deprivation

Ri
sk

 fo
r a

ll 
4 c

om
bi

na
tio

ns

Low High Low High

Low High Low High

1.3

1.1

0.9

0.7

1.1

0.9 0.9

1.1

1.3

1.4

1.7

Common pattern vs. deprivation

Deprivation

H
ig

he
r l

un
g c

an
ce

r –
 H

ig
he

r
CO

PD

Disease vs. deprivation

Deprivation

H
ig

he
r w

om
en

 –
 H

ig
he

r m
en

 

Sex vs. deprivation

Deprivation

0.95

1.00

1.05

Interaction vs. deprivation

FIGURE 32.1
Relationship between deprivation and all four components included in the model.

Many deprivation levels have posterior credible intervals completely above or below 1, pro-
viding evidence that those census tracts have particular features linked to deprivation,
making them different from the city’s mean level. Specifically, the most deprived regions
have, in general, higher mortality (for all four combinations of disease and sex), with risk up
to 70% higher than the city’s mean. Also, the most deprived groups show particularly high
COPD mortality compared to lung cancer mortality, in contrast to the most affluent census
tracts, which show the opposite trend. The most deprived regions show a higher mortality
for men than for women, while the most affluent regions show higher mortality for women.
This effect is especially pronounced for census tracts with the lowest deprivation, where the
fitted curve has its steepest slope; this is consistent with the historically high prevalence
of tobacco consumption by women in Spain’s most affluent social groups [18]. As expected
from Table 32.1, deprivation is not associated with the disease–sex interaction component.

Figures 32.2 and 32.3 show choropleth maps of the parts of the common and disease
specific terms that are not related to deprivation, exp(S·1) and exp(S·2), respectively.
The analogous maps for the sex and interaction components are not shown because
they explain very little variance and neither has any census tract with significant excess
risk compared to the city’s mean risk (i.e., with 95% credible interval excluding 1).
Ellipses in these figures indicate regions with significant deviations from the level of the
city as a whole. Full-color versions of these figures can be found as annex material at
https://www.crcpress.com/9781482253016.

The patterns in Figures 32.2 and 32.3 are uncorrelated with deprivation by construc-
tion, so they reflect the presence of other risk factors. Both components have regions with
significant departures from Barcelona’s mean mortality. Thus, for all four combinations of
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Non-deprivation-related common component

Highest risk

Lowest risk

FIGURE 32.2
Geographical distribution of the part of the common component that is not related to
deprivation. Ellipses indicate regions with large risk deviations compared to the whole city.
Darker regions stand for larger deviations showing either higher (regions with thick border)
or lower (regions with thin border) risk than the mean of the city.

disease and sex (Figure 32.2), a large region along the city’s northern shoreline (the lower
ellipse) has a significant risk excess. This risk excess cannot be explained by deprivation;
indeed, that region includes census tracts with both the highest and lowest deprivation
levels. Moreover, that region also includes both relatively new and old neighborhoods with
very different demographic and social groups, suggesting an environmental risk factor as a
possible explanation. Figure 32.3 shows regions with a risk excess for just one of the dis-
eases, which cannot be explained by deprivation, pointing to the presence of risk factors for
just one disease. Risk excesses have been found for both COPD (both upper-side ellipses)
and lung cancer (lower-side ellipse).

This example shows that SANOVA is a powerful tool, making it possible to address
questions that traditional disease mapping methods cannot. Indeed, all the questions posed
at the beginning of this section have been answered using SANOVA. In this sense, SANOVA
as a data analysis technique is particularly fitted to discerning mechanisms underlying
diseases, beyond the exploratory aim of most disease mapping methods. This can make
SANOVA a particularly appropriate tool to push disease mapping toward more analytical
purposes.
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Non-deprivation-related differences between diseases

Highest-risk COPD

Highest-risk lung cancer

FIGURE 32.3
Geographical distribution of the part of the disease-specific component that is not related
to deprivation. Ellipses indicate regions with large risk deviations compared to the whole
city. Darker regions stand for larger deviations showing either higher (regions with thick
border) or lower (regions with thin border) risk than the mean of the city.
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An autoregressive approach to spatio-temporal disease mapping. Statistics in Medicine,
27:2874–2889, 2008.

[15] Francisco Torres-Avilés and Miguel A. Martinez-Beneito. STANOVA: A smooth-
ANOVA-based model for spatio-temporal disease mapping. Stochastic Environmental
Research and Risk Assessment, 29:131–141, 2014. doi: 10.1007/s00477-014-0888-1.

[16] Julian Besag, Jeremy York, and Annie Mollié. Bayesian image restoration, with two
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