
Statistical methods research done as science
rather than math:

Estimates on the boundary in random
regressions



This lecture is about how we study statistical methods.

It uses as an example a problem that arises in analyzing data with the
so-called random regressions model.

I’ll begin by describing the example.



The random regressions model

Data are grouped in clusters i ; j indexes observations within clusters.

The outcome yij is presumed to arise as

yij = β0i + β1ixij + εij , i = 1, . . . ,N, j = 1, . . . , s,

For today, xij is scalar

εij are iid N(0, σ2
e )

(β0i , β1i )
′ are iid N((b0, b1)′,Σ), with

Σ =

[
σ2
c ρσcσs

ρσcσs σ2
s

]
Subscripts “c”, “s” are for intercepts β0i , slopes β1i respectively.



Example: Pig weights over 9 weeks (RWC)



The RL-maximizing estimates (σ̂2
c , σ̂

2
s , ρ̂) can be on the boundary of legal

values:

ρ̂ = −1 or +1, or σ̂2
c = 0, or σ̂2

s = 0

In my experience this happens often enough to be a real problem.

This research was motivated by a lot of datasets giving ρ̂ = ±1.



Is it even a problem that ρ̂ = ±1? Yes.

In the pig-weight example, ρ̂ = −1 means

“the slope and intercept for each piglet are perfectly anti-correlated in
the population of pigs”

which is nonsense.



Isn’t this just a software problem? No.

When ρ̂ = ±1, standard software gives useless or misleading information.

OK then . . . examine the profiled log-likelihood or do a Bayesian analysis.

But we have no idea why boundary estimates happen. Multiplying the
same function by a prior doesn’t change that.

We need more understanding, not just more convenient software.



Why do we have so little understanding of our methods?

Our primary tool is math:

I Most of us are trained in math.

I You can’t beat a theorem that establishes a useful fact.

But that’s asking a lot:

I You must be able to prove a theorem, and

I it must establish a useful fact.

Asymptotic theorems do not establish useful facts.
Are finite-sample theorems even possible?



There are other ways to learn about our methods

This talk considers a tool for opening our black-box methods

modeled explicitly on

the approach molecular biologists use to open Nature’s black boxes.



This tool would be a complement to math

As a matter of strategy,

we are better off doing something relatively simple (the
molecular-biological approach) and learning something quickly

compared to

betting we can produce useful theorems in the long run.

A reasonable strategy would do some of each.



Here’s what our colleagues in molecular biology do

1. Capture the phenomenon in a simple model system, e.g., an animal
or cell-culture model.

2. Hypothesize about the phenomenon in terms of the model system.

3. Do experiments with the model system to test those hypotheses.

4. Iterate; revise the model system and hypotheses as needed.

5. Test the revised hypotheses in a more realistic in vivo system.

I’ll demonstrate this approach by asking, for the RR model, what
conditions make it likely that ρ̂ = ±1.



I am not the first person to suggest this

We have big designed experiments to measure operating characteristics:

I Larntz (JASA 1978): Massive simulation study of small-sample
properties of three goodness-of-fit statistics for categorical data.

I JL Adams (1990): “Evaluating regression strategies” using split-plot
designs, response-surface models, optimal design.

It’s harder to find simulation experiments testing explicit hypotheses:

I RE Schapire (2013 Vapnik Festschrift, 2015 JSM talk) “Explaining
AdaBoost”, work with Leo Breiman.



Outline

I’ll talk about each of the five steps in turn:

I Demonstrate it.

I Talk about its intellectual content.

I’ll do this to gain some understanding of what conditions make it likely
that ρ̂ = ±1 in the random-regressions model.



Step 1. The model system

For observation j in cluster i , model

yij = β0i + β1ixij + εij , i = 1, . . . ,N, j = 1, . . . , s,

εij ∼ iid N(0, σ2
e )

(β0i , β1i )
′ ∼ iid N((b0, b1)′,Σ),

Σ =

[
σ2
c ρσcσs

ρσcσs σ2
s

]
,

Cluster size is s = 2m + 1 for m a positive integer

In each cluster, xij takes the values in

h = (−1,−(m − 1)/m, . . . , 0, . . . , (m − 1)/m, 1)′



The RL is straightforward, with these assumptions.

It’s relatively simple but still too complicated for intuition.

Thus, I’m not going to show it.

To develop hypotheses, I simplified some more to produce a predictor of
when ρ̂ = −1.



Intellectual content: As simple as possible . . .

In molecular biology:

I Benefits: Control inputs, measure outputs, isolate causal effects.

I Cost: Need to hedge on interpretation.

In statistical methodology:

I Benefits: More explicit derivations; simpler, faster computing.

I Cost: Maybe it omits important things.

Simplifications here:

I One regressor.

I All clusters have the same design matrix, with orthogonal columns.



Step 2. Generating hypotheses

A necessary condition for ρ̂ = −1 is:

∂/∂ρ log RL or log profiled RL, evaluated at ρ = −1, < 0.

Using this condition, I derive a predictor of ρ̂ = −1, with these steps:

I simplify the log RL,

I profile out one unknown,

I get ∂/∂ρ of the profiled simplified log RL at ρ = −1,

I make more simplifications.

This has no intrinsic interest; it’s just a device for generating hypotheses.



Simplify: Let σ2
c = σ2

s ≡ σ2
r .

Profile out σ2
r . The profiled log RL is a function of ρ and r = σ2

e/σ
2
r .

Take ∂/∂ρ of the profiled simplified log RL at ρ = −1.

Simplify: Replace functions of the data by their expected values.

The predictor for ρ̂ = −1 (ρ̂ = +1 has a very similar predictor):

(
Ns − N − 1

(1 + r/s)(1 + r/q)

)1−
(

Ns − 2

Ns − N − 1

) 1− N−1
N(s−2)ρ

1 + 2(N−1)
N(s−2)

(1+r/s)(1+r/q)+ρ
(1+r/s)(1+r/q)−1

.


Note s = 2m + 1, q = (2m2 + 3m + 1)/3m are about cluster size.

Easy to show: predictor > 0 for all legal N, s, r , and ρ ∈ (−1, 1).



Generating hypotheses using the predictor

(
Ns − N − 1

(1 + r/s)(1 + r/q)

)1−
(

Ns − 2

Ns − N − 1

) 1− N−1
N(s−2)ρ

1 + 2(N−1)
N(s−2)

(1+r/s)(1+r/q)+ρ
(1+r/s)(1+r/q)−1

.



Easy to prove:

I Given N, s, and ρ, as r = σ2
e/σ

2
r increases the predictor → 0.

I Given ρ and r , as N or s increases, the predictor →∞.

I Given N, s, and r , as ρ goes to −1, the predictor → 0.

Easy to show with simulations: small predictor ⇒ high chance ρ̂ = −1
large predictor ⇒ small chance ρ̂ = −1.

⇒ We have three hypotheses about ρ̂ = −1.



Developing more quantitative hypotheses

Let’s exercise the predictor a little harder:

I Draw 1000 sets of (N, s, ρ, r).

I Compute log10 predictor for those 1000 sets.

I Analyze the results using main effects and interactions.

This gives some quantitative hypotheses:

I The effect of multiplying r by 2.5 is nullified by multiplying s by
about 3 and N by about 5.

I Some changes in r are so large that no change in ρ can un-do them.



Intellectual content: The difference between good and
brilliant scientists . . .

Hypothesis generation is one of the central creative activities of science.

Molecular biologists:

I Generate & test hypotheses by, e.g., using gene-knockout organisms.

Us:

I Generate hypotheses by using approximations to manipulate our
equations and algorithms.

The math approach to methodology does generate hypotheses . . .

. . . they’re called unproven conjectures.



Step 3. Test the hypotheses in simulation experiments

(1) To derive the predictor, I set σ2
c = σ2

s .

The experiments simulated data by setting σ2
c = σ2

s , but I

fit models that allow different σ2
c and σ2

s .

(2) I identified predictor values giving some “bad” estimates;
this is a good region for testing hypotheses.

(3) Datasets simulated from the RR model: β = (0, 0)′, σ2
c = σ2

s = 1.

(4) All analyses used the lmer function in the R package lme4.



A bit more about the experiments

(Recall r = σ2
e/σ

2
c = σ2

e/σ
2
s in the simulated data, tho’ not the fit.)

The experiments are in three groups:

1. Increasing r produces bad estimates.

2. Trading off r against N, s, and ρ.

3. The effect of the true ρ.



Increasing r produces bad estimates

Experiment A predictor % with ρ̂
N s ρ r -1 +1 -1 +1 NaN Bad

500 21 0 101 3.6e+2 3.6e+2 0 0 0 0
500 21 0 102 6.4e+0 6.4e+0 11 7 1 19
500 21 0 103 8.0e–2 8.0e–2 21 33 30 84
500 21 0 104 8.2e–4 8.2e–4 19 29 40 88
500 21 0 105 8.2e–6 8.2e–6 15 36 32 83

Experiment B predictor % with ρ̂
N s ρ r -1 +1 -1 +1 NaN Bad

500 21 0.95 101 6.8e+2 1.5e+1 0 25 0 25
500 21 0.95 102 1.3e+1 2.6e–1 0 54 3 57
500 21 0.95 103 1.5e–1 3.1e–3 17 31 29 77
500 21 0.95 104 1.6e–3 3.2e–5 22 37 31 90
500 21 0.95 105 1.6e–5 3.2e–7 21 36 29 86



Points re Experiments A, B – 100 datasets/setting

N = 500 and s = 21 are a bit large, in my experience.

Given N, s, and r , the chance of a “bad” estimate is minimized by
setting ρ = 0 (Expt A).

BUT for large r , ρ has no effect on ρ̂ = −1 (Expts A & B).



Trading off r against N , s, and ρ

Experiments C through F all have the same structure:

I Setting 1: r was chosen to give some “bad” estimates.

I Setting 2: r was changed by a factor of 100.4.

I Settings 3, 4, and 5: Choose N, s, and ρ to change the predictor of
ρ̂ = −1 back to its value in Setting 1.

400 datasets/setting except Experiment D, which had 600/setting.



Experiments C and D: Moderate N and s

Experiment C predictor % with ρ̂
setting N s rho r -1 +1 -1 +1 NaN Bad

1 100 9 -0.8 6.3 8.2 67 18 0 0 18
2 100 9 -0.8 15.8 1.7 15 39 0 2 41
3 500 9 -0.8 15.8 8.4 74 17 0 0 17
4 100 25 -0.8 15.8 8.7 76 20 0 0 20
5 100 9 0.0 15.8 8.2 8.2 8 6 17 30

Experiment D predictor % with ρ̂
setting N s rho r -1 +1 -1 +1 NaN Bad

1 100 9 -0.8 15.8 1.66 14.60 42 1 1 44
2 100 9 -0.8 6.3 8.23 67.47 19 0 0 19
3 21 9 -0.8 6.3 1.67 13.69 48 1 1 50
4 100 3 -0.8 6.3 1.83 15.14 42 0 0 42
5 100 9 -0.96 6.3 1.66 72.82 47 0 0 47



Experiments E and F: N , s have one large, one small

Experiment E predictor % with ρ̂
setting N s rho r -1 +1 -1 +1 NaN Bad

1 20 25 -0.8 6 9.88 79.92 23 0 0 23
2 20 25 -0.8 15 1.85 16.02 42 2 2 45
3 104 25 -0.8 15 10.00 86.64 15 0 0 15
4 20 63 -0.8 15 9.66 83.30 23 0 2 25
5 20 25 0.0 15 9.06 9.06 9 10 4 23

Experiment F predictor % with ρ̂
setting N s rho r -1 +1 -1 +1 NaN Bad

1 1000 3 -0.8 9 10.05 86.15 24 0 0 24
2 1000 3 -0.8 23 1.88 16.77 38 0 0 38
3 5350 3 -0.8 23 10.08 89.81 21 0 0 21
4 1000 9 -0.8 23 8.78 77.92 19 0 2 20
5 1000 3 0.0 23 9.36 9.36 10 6 0 16



Points re Experiments C, D, E, F

I I used ρ = −0.8 because ρ < 0 is more plausible than ρ > 0.

I These chosen N and s offset multiplying r by 2.5, ≈ as predicted:

I s: multiple of 2.8, 3, 2.5, 3.
I N: multiple of 5, 4.8, 5.2, 5.4.

I ρ does not trade off against r as the predictor predicted.

I Predictor: Increasing ρ from -0.8 to 0 offsets the change in r .
I Experiments: Fewer ρ̂ = −1, but more ρ̂ = +1 or NaN.



Experiment G: More on the effect of ρ

All settings have the same N and s.

Each block of 5 settings has one r and ρ ranging from −0.95 to +0.95.

400 datasets/setting

Experiment G – smallish r
predictor % with ρ̂

setting N s rho r -1 +1 -1 +1 NaN Bad
1 500 21 -0.95 53 1.00 38.65 45 0 7 52
2 500 21 -0.50 53 9.96 29.78 10 0 10 20
3 500 21 0.00 53 19.89 19.89 3 1 1 5
4 500 21 0.50 53 29.78 9.96 0 12 1 13
5 500 21 0.95 53 38.65 1.00 0 47 1 48



But look what happens when r increases

Experiment G – larger r
predictor % with ρ̂

setting N s rho r -1 +1 -1 +1 NaN Bad
6 500 21 -0.95 271 0.05 1.94 45 8 11 64
7 500 21 -0.50 271 0.50 1.50 30 17 15 62
8 500 21 0.00 271 1.00 1.00 23 27 9 58
9 500 21 0.50 271 1.50 0.50 13 40 8 61

10 500 21 0.95 271 1.94 0.05 6 52 5 64

11 500 21 -0.95 3000 4.4e-4 1.7e-2 23 30 31 83
12 500 21 -0.50 3000 4.4e-3 1.3e-2 21 33 30 84
13 500 21 0.00 3000 8.9e-3 8.9e-3 22 31 31 83
14 500 21 0.50 3000 1.3e-2 4.4e-3 22 34 29 84
15 500 21 0.95 3000 1.7e-2 4.4e-4 20 35 25 80

Settings 16-20 use r = 100,000 and are effectively identical to r = 3,000.



Comments on Experiment G

For large enough r , the true ρ doesn’t matter.

There’s an oddity:

I When r is large, we’d expect ρ̂ = −1 and ρ̂ = +1 about equally
often, but ρ̂ = +1 is more frequent.



Intellectual content: Hypothesis-driven simulation
experiments

Explicit hypotheses about statistical methods suggest non-standard
simulation designs.

“Attractive ideas, after all, are cheap and much of the stuff of scientific
genius is devising tests” (Judson 1979)

I e.g., Meselson & Stahl, separating macromolecules by buoyant
density.

Perhaps we don’t see the creative potential of simulation experiments
because we make such limited use of them.



Step 4. Iterate; revise the model system and hypotheses.

Re Hypothesis 7, “Changes in ρ have a smaller effect on ρ̂ = −1 than
changes in N or s”, the experiments say “you asked the question poorly”.

Our original question, “What conditions make it likely that ρ̂ = −1?”,
was a red herring.

The disease is poor resolution; the different kinds of bad estimate are
merely different symptoms.



Final experiment: N-by-r interaction



ρ-by-r interaction



s-by-r interaction



Intellectual content: The most important step?

In the theory used to teach us, a hypothesis is stated and tested and the
story ends.

This does not describe scientific practice.

Experiments designed to test particular hypotheses often motivate a
reformulation of the structure of hypotheses.

This may be the most important result of a set of experiments.



Step 5. “An in vivo” experiment

Can the experimental results can be reproduced in a natural situation?

HMO data (Hodges 1998): yij = premium for health plan j in state i

Fit the model

yij = b0 + b1(log10 families)ij + [1, (log10 families)ij ](ui0, ui1)′

+ b0E (expenses per admission)i + b0N(New England)i + εij

(ui0, ui1) ∼ N(0,Σ), and εi,j ∼ iid N(0, σ2
e )

(b̂0, b̂1, b̂0E , b̂0N) = (180,−2.2, 4.8, 16)

(ρ̂, σ̂2
e , σ̂

2
c , σ̂

2
s ) = (0.12, 487, 98, 5.34)



This differs from the model system

I The fit has non-zero fixed effects and “extra” fixed effects.

I Within-state sample size varies: ni ranges from 1 to 31, median 5.

I State-specific design matrices vary.

I (log10 families)ij isn’t scaled to make σ2
c ≈ σ2

s .

I εij actually have non-constant variance and are right skewed.



Test our findings by inflating the error variance

Define the artificial datum y(φ)ij as

y(φ)ij = fitij + φε̂ij
ε̂ij = yij − fitij

fitij = b̂0 + b̂1(log10 families)ij + [1, (log10 families)ij ](ûi0, ûi1)′

+ b̂0E (expenses per admission)i + b̂0N (New England)i

(ûi0, ûi1) are the EBLUPs.

φ = 1 is the real data; φ > 1 is fake data with inflated errors.



Increasing error variance has the predicted effect

φ ρ̂ σ̂2
e σ̂2

e/φ
2 σ̂2

c σ̂2
s

1.0 0.115 487 487 97.73 5.39
1.1 0.164 590 488 94.13 5.25
1.2 0.230 704 489 88.99 4.97
1.3 0.320 828 490 82.36 4.55
1.4 0.444 963 491 74.32 3.98
1.5 0.626 1108 492 65.05 3.26
1.6 0.920 1263 493 54.77 2.39
1.7 1.000 1427 494 44.68 2.68
1.8 1.000 1599 494 34.73 3.21
1.9 1.000 1781 493 25.14 3.58
2.0 1.000 1972 493 16.36 3.62
2.1 1.000 2171 492 8.97 3.16
2.2 1.000 2379 492 3.54 2.02
2.3 1.000 2594 490 0.23 0.22
2.4 NaN 2814 489 0 5×10−12

2.5 NaN 3043 487 0 4×10−13



Conclusions about the random regressions model

Bad estimates are a symptom of large error variation.

The number of clusters N and cluster size s matter when σ2
e is middling.

Implications:

I Experimental design: Increasing s pays more than increasing N.

I Model choice: A bad estimate suggests omitting the random effect.

“Too many” ρ̂ = ±1 is probably an artifact of a very flat RL.



Statistical methods research done as science

Results like this could never be discovered using asymptotic methods.

Only simulation experiments could reveal “too many” ρ̂ = ±1.

We produced useful facts with math and computing exercises that could
be executed by a capable Master’s student under faculty supervision.

The results are useful; the design of each step can be a contribution.

If utility has merit, empirical studies of methods merit publication as
much as theorems.


