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1 Introduction

In a mixed linear model with predictors, X, and response, y, we assume the relationship y = f(X) + ε

for an unknown smooth function, f(X) = Xβ + Zu, and independent error term, ε
i.i.d∼ N(0, σ2

ε ). Of-

ten we use penalized splines to fit this relationship with the goal of making inference on observed xi, for

i = 1, . . . , n, or perhaps predictions for a new x?. In a conventional analysis, we must first specify our

choice of basis, knots, and penalty. Ruppert et al. (2003) emphasize the truncated power bases and Hodges

(2014) supports this with further remarks that higher-order polynomials allow a smoother fit between knots.

For this paper, I use a truncated cubic basis with equally-spaced knots and a simple quadratic penalty of

the form λ2 (β,u)
T
D
(

β
u

)
, where λ2 = σ2

ε /σ
2
s , D is a diagonal matrix with either a 0 on the diagonal

entry, corresponding to the fixed effects β, or a 1 on the diagonal entry, corresponding to the random ef-

fects u, and σ2
s is a smoothing variance for u. For smaller σ2

s the random effects are shrunk more toward zero.

Now, we can maximize the restricted log likelihood to obtain estimates for β and u. Using the estimates of

β and u, we can calculate our fitted values, f̂(xi) for each i. However in this framework, f(xi) is random

due to the randomness of u. Variance estimates for f(xi) then differ depending on whether the randomness

of u is taken into account. So, how should we construct confidence intervals (CIs) for f̂(xi)? Ruppert et al.

(2003) argue that u is a modeling device used to capture curvature, thus variance calculations should be

carried out treating u as fixed but unknown. If we treat u as fixed but unknown, we introduce bias. We can

denote the conditional bias as b̂ias(x | u), which is given by

E[f̂(X)− f(X)|u] = −rC(C′C + rI)−1
(
0p

u

)
, (1)

where r = σ̂2
ε /σ̂

2
s and C = [X|Z]. If we average over all u in equation (1), the bias turns out to be zero. This

result has lead researchers to propose bias-correction methods that incorporate the conditional bias in either

the variance estimate or the center (fitted value) of the confidence interval. Through a simulation study, this

paper compares the coverage probabilities (CPs) of three different bias-correction methods.
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2 Methods

I consider three methods proposed by Ruppert et al. (2003), Hodges (2014), and Sun and Loader (1994), as

described below. The three methods under consideration differ in the adjustment of the CI to correct for

the conditional bias.

2.1 Ruppert, Wand and Carroll (RWC)

To account for bias, Ruppert et al. (2003) suggest replacing the conditional variance with the conditional

mean squared error, averaged over u (or the unconditional mean squared error). Assuming we have one

predictor, the RWC CIs can be calculated as

f̂ (x)± z1−α2

√
Ê
[
{f̂ (x)− f (x)}2

]
,

where

Ê
[
{f̂ (x)− f (x)}2

]
= CiĈov

 β̂

û− u

CT
i ,

and

Ĉov

 β̂

û− u

 =

 1

σ̂2
ε

CTC +

 0 0

0 1
σ̂2
s



−1

.

This correction widens the confidence interval by the calculated conditional bias.

2.2 Hodges (JH)

Rather than increasing the CI variability, Hodges (2014) suggests using the conditional variance and alter-

natively shifting the center of the CIs up or down by the calculated conditional bias. The JH CIs are given

by

[f̂ (x)− b̂ias(x | u)]± z1−α2 ŝt.dev.{f̂(x)|u},

where

v̂ar {f̂(x)|u} = CiĈov

 β̂

û

∣∣∣∣∣∣∣u
CT

i ,

and

Ĉov

 β̂

û

∣∣∣∣∣∣∣u
 =

1

σ̂2
ε

Ĉov

 β̂

û− u

CTCĈov

 β̂

û− u

 .
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The b̂ias(x | u) is defined as in Section 1.

2.3 Sun and Loader (S&L)

Others such as Sun and Loader (1994), have investigated confidence band coverage after adjusting for bias

and have shown no improvements. However, the work of Sun and Loader (1994) predates the developing

distinction between old- and new-style random effects and potentially used inappropriate data generation

mechanisms. Similar to Ruppert et al. (2003), Sun and Loader (1994) account for the bias in the confidence

band’s variance estimate. They calculate the bias-corrected confidence band as (f̂(x)− (c+ m̂(x))σ̂, f̂(x) +

(c + m̂(x))σ̂), where m̂(x) is the estimated bias and c is a suitable constant. For inference based on CIs

rather than confidence bands, we can consider using the conditional mean squared error to adjust for the

bias in the CI’s variance estimate. This will also allow us to compare the conditional and unconditional

mean squared errors. I will denote these as S&L CIs, which can be calculated as

f̂ (x)± z1−α2

√
Ê
[
{f̂ (x)− f (x) |u}2

]
,

where I calculate the conditional mean squared error as the sum of the conditional variance and the squared

conditional bias, as previously given.

3 Simulation Study

To investigate each method’s effect on coverage, I conduct a simulation study to generate several datasets

using various functions. Each dataset is simulated using a single predictor. The data generation functions

imitate artifacts such as fast turns or long valleys seen in real data. To generate such data, I use various

“broken-stick” and “bathtub” models, denoted as f(·) and g(·), respectively. In this simulation study, I as-

sume we have n = 100 observations and consider three curves from the “broken-stick” model and six curves

from the “bathtub” model.

First, I generate M = 1000 sets of error terms, εn×1
i.i.d∼ N(0, σ2

ε ) and consider n equally-spaced sample

values, xi ∈ [0, 5]. This setting is appropriate with a regularly observed independent variable, such as weekly

medical visits. For more general settings, I simulate observations from f(x) with higher frequency at lower

values of x, and lower frequency at higher values of x. This sampling scheme is achieved by generating

sample values, x, from a Gamma(1, 5/4) (this density specification has a large mass near zero and a long

tail across the domain).
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Next, I apply the nine functions (three from f(·) and six from g(·)) to my predictor xn×1 and add each

set of error terms, εn×1. This results in M datasets for each curve. Note these datasets have repeated

measures in the sample values and error terms across the nine curves. The repeated measures allow us to

compare coverage at different angles and curvature types across the nine curves. To investigate coverage

performance, I chose xi at and near locations where the data generation function displays high curvature.

The curves and points for evaluation (depicted as hashmarks) are displayed for each model in Figure 1 below.
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Figure 1: The “broken stick” model (top) and “bathtub” model (bottom) with CI coverage evaluated at the
hashmarks.

Coverage probability (CP) is computed as the number of times the 100× (1− α) % CI contains the true

data generation function over the M = 1000 simulations. For this paper, I assume α = 0.05. In my analysis,

I consider K = {10, 25, 100} equally-spaced knots taken between 0.2 and 4.8, where 25 is the number of knots
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recommended by Ruppert et al. (2003), and 100 is a fully saturated model (one knot for each observation).

Lastly, to investigate CP under various settings, I consider three levels of error deviation, σε = {0.05, 0.5, 1}.

Figure 1 shows that most of the functions are in the range [0, 2]. The black “broken stick” curve ranges over

[−1, 2]. Therefore, the values under consideration for σε cover an assortment of settings: very little, mild,

and heavy variation relative to y.

4 Results

Given the varying factors, my simulation study produced over 54 graphs, not including plots from simulations

assuming the sample values come from a Gamma distribution. Thus, I’ve chosen the interesting graphs to

display for different σε. The following graphs are the most extreme “broken stick” and “bathtub” models

(f3 in Figure 2, and g4 in Figures 3 and 4). The remaining curves, assuming σε = 0.5, are displayed in the

Appendix. If you are curious, I can send you the other 50 or so graphs.
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Figure 2: (Left) The last (most severe) “broken stick” model with σε = 0.5. (Right) The bottom of the same
curve with σε = 0.05.

For the most part, CP comparisons between the three methods are similar for all three sets of knots (recall,

K = {10, 25, 100} equally-spaced knots), thus all plots presented use the recommended 25 knots in the

analysis. Nevertheless, we see dramatic changes in CP between the JH and other two methods at difficult
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Figure 3: The forth (most severe) “bathtub” model with σε = 0.5.
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Figure 4: (Left) The top curvature of the forth (most severe) “bathtub” model with σε = 0.5. (Right) The
bottom of the same curve with σε = 0.05.

points (points of high curvature) as we decrease K for small deviations, σε = 0.05. For g4 with σε = 0.05,

at x = 1.25 (located on the steep slope after the roughly 90◦ angle drop) with 10 knots the CPs for JH,

RWC, and S&L are 0.38, 0.04, and 0.28, respectively. And as the number of knots increases the CPs drop

dramatically. For JH, RWC, and S&L, with 25 knots: 0.06, 0, and 0.03, respectively, and with 100 knots

all CPs equal 0; but this is the most extreme case considered of all the simulations. If we look at x = 1.2

for a less extreme curve, say f3 (x = 1.2 is after an approximately 135◦ drop, and still assuming σε = 0.05),

with 10 knots the CPs for JH, RWC, and S&L are 0.32, 0.62, and 0.62, respectively; and with 100 knots:

0.61, 0.78, 0.78, respectively. For a mild standard deviation (σε = 0.5), the CP is near the nominal value for

x = 1.2, as displayed in Figure 2 (left).

In other curves, we see a slight increase in CP at difficult points, such as x = 1, 1.2, as we decrease the

number of knots. I expected this on the linear points of a curve, but not the difficult points with high

curvature. However, I think this might be due to the location of the knots. Larger K placed a knot at the

difficult points, whereas K = 10 placed two knots near but not at the difficult points.

In general, as we increase σε, CP increases at difficult points of a curve but decreases at linear points

of a curve. However, the comparisons between the three methods’ CPs does not change greatly as we vary

σε. For the most part, I didn’t see a drastic difference between the three methods’ CPs, except RWC seemed
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to perform slightly better in most settings. However, I might just be going crazy at this point from looking

at so many plots and probabilities. The three bias-correction methods actually appeared so similar I had to

try to find ways to separate the lines.

While generating the sample values from a Gamma distribution did not change CP comparisons, it was

still interesting since the generated observations with a mild standard deviation resembled so many real

datasets I’ve encountered. Two curves assuming x ∼ Gamma are displayed in Figure 5. The left plot dis-

plays f2 with σε = 0.5 and the right plot displays g6 with σε = 0.05. Again assuming a small error deviation

is one of the few times we can see a difference between JH and the other two methods at places were there

is a steep slope or large bias (consider x = 1.3 in g6).
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Figure 5: (Left) The least severe “broken stick” function with σε = 0.5 and x ∼ Gamma. (Right) The last
“bathtub” function with σε = 0.05.

5 Remarks

Based on these simulations, it is difficult to extract some meaningful take-home messages when there are

no big distinctions between methods in the large number of results. However, it is important to note our

ability to estimate the conditional bias is really poor, regardless of K. The largest estimated bias, which is

less than 0.1, is at the boundary rather than points that we know have a large bias due to high curvature.

This most likely explains why the three methods’ CPs are so similar.
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Generally, RWC displays consistently higher CP at linear points of a curve and comparable CP at diffi-

cult points of a curve. JH only performs slightly better when the bias is larger than the variance, this is

apparent when the curve forms a 90◦ angle or less. S&L performance is similar to RWC, except when the

estimated variance is less than the estimated bias, as displayed in Figure 2 (right). Lastly, the unconditional

mean squared error is slightly larger than the conditional mean squared error (comparing CI widths for RWC

and S&L).

In light of my simulation results, I carried out an additional simulation to examine the impact on CP

by adjusting the CIs center and variance estimate by the conditional bias. The goal of such an adjustment

is to further accommodate the under-estimated bias, but these results proved to be futile. I also considered

user-specified knots, which resulted in an increase in CP. However, there was not much of difference across

methods. The above simulations are dependent on the chosen basis and penalty. As an extension, we could

consider alternative bases to investigate how the CPs of the three methods are affected.

6 Appendix: Figures
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