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1 Introduction

The Lasso [1] is a method in regression model for coefficients shrinkage and model selection. It is often used in the
linear regression model

y = µ1n +Xβ + ε

where y is the response vector with the length of n, µ is the overall mean, X is the n× p standardized design matrix,
β = (β1, · · · , βp)′, and ε is the n× 1 vector of iid normal errors with zero mean and unknown variance σ2. The Lasso
estimates, β̂, minimizes the sum of the squared residuals subject to |β| ≤ t. It can be described as

argmin
β

(ỹ −Xβ)′(ỹ −Xβ) + λ
p∑
i=1
|βi|

where ỹ = y− ȳ1n, and λ ≥ 0 is the tuning parameter relating to the bound t. It is indicated that β̂ can be interpreted
as a Bayesian mode estimate when the parameters βi’s have iid double exponential priors, i.e.,

π(β) =
p∏
i=1

λ

2 e
−λ|βi|. (1)

The double exponential distribution can be writen as a scale mixture of normals:

α

2 e
−a|z| =

∫ ∞
0

1√
2πs

e−z
2/(2s)a

2

2 e
−a2s/2ds, a > 0. (2)

The detailed hierarchical model formulation and the Gibbs sampler implementation can been seen in Park and Casella’s
Bayesian Lasso paper [2]. Note that λ can be not only pre-specified, but also estimated if a hyperprior is placed. A
slightly more complicated Bayesian hierarchical model and its Gibbs sampler implementation will be given in Section 4.

However, as Park and Cassella said [2], this method cannot automatically perform predictor selection, in other words,
it cannot force some of the regression coefficients to zero. We propose an algorithm to automatically select predictors in
the process of the Gibbs sampler. We applied this method to ordinary linear regression problem with variable selection.
Another important application is the penalized spline using the l1 penalty. Using the Bayesian Lasso with predictor
selection, we can not only fit the spline model, but also automatically select knots.
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2 Algorithm for predictor selection

As described above, we have p predictors, X1, · · · , Xp and denote the corresponding regression parameters of the
predictors as β1, · · · , βp. The main idea of the algorithm is to throw out one predictor whose coefficient is the most
insignificant after some iterations of the Gibbs sampler till all the remaining predictors’ coefficients are significant based
on a specific Bayesian credible interval (BCI). The algorithm can be fulfilled through the following steps:

1. Run N1 iterations of the Gibbs sampler, where N1 is a large number, say 10, 000. Note that the N1 iterations are
just burn-in and we found it neccessary especially when p is large.

2. Run another M iterations where M is relatively small, like 1, 000. For a specific p∗, for example, 0.05, if the
(1 − p∗) Bayesian credible interval based on the last M iterations of all the p β’s exclude zero, then continue
running the Gibbs sampler till convergence. Otherwise, go to Step 3.

3. Define

kdrop = argmax
k

min(
N1+M∑
g=N1+1

I(β(g)
k > 0),

N1+M∑
g=N1+1

I(β(g)
k < 0))


where β(g)

k is the sample value of βk in the gth iteration of the Gibbs sampler for k = 1, · · · , p. Throw out Xkdrop
.

That is to say, we throw out the β that is most centered to 0 based on the last M iterations of the Gibbs sampler.

4. Replace N1 by N1 +M and p by p− 1. Let k = 1, · · · , kdrop − 1, kdrop + 1, · · · , p and go to step 2.

This algorithm will select very few predictors if Xi’s are highly correlated, even though there are a large number of
predictors. We can define the number of predictors to be selected in the algorithm rather than defining p∗. This may
result in some of the selected predictors’ coefficient of insignificance.

3 Linear regression

We applied our algorithm to a linear regression problem on the diabetes data [3], which has n = 442 and p = 10.
The predictors are 10 baseline variables, age, sex, body mass index, average blood pressure, and six blood serum
measurements were obtained for each of 442 diabetes patients, and the response of interest is a quantitative measure
of disease progression one year after baseline.

We performed a Bayesian Lasso with the predictor selection algorithm described in Section 2, setting p∗ = 0.05 and
placing a hyperprior on λ to estimate it simultaneously. Then we perform the Bayesian Lasso without selecting predictors
and the ordinary Lasso both of which have the tuning parameter matching the value of λ estimated by the algorithm.
The results are summarized in Table 1 along with the ordinary Lasso whose λ is chosen by n-fold cross-validation.
Comparing the Bayesian Lasso using the algorithm with the one not using the algorithm, the algorithm threw out all
predictors that have an insignificant coefficient based on the 95% credible interval, except one predictor, (7) hdl. hdl has
a marginally significant coefficient in the Bayesian Lasso without the algorithm, but has a highly significant coefficient
if using the algorithm. If we compare the Bayesian Lasso with the algorithm and the ordinary Lasso with λ matched,
we find the algorithm tends to select fewer predictors: (5) tc and (10) glu are non-zero in the ordinary Lasso but are
thrown out by the algorithm. If we look at the last two columns, we find the Lasso with λ matched shinks β more than
that by the cross-validation.

Furthermore, we performed the Bayesian Lasso without the predictor selection algorithm and estimate λ simultane-
ously by placing a hyperprior. We also fit the model by the Bayesian Lasso using the algorithm and the ordinary Lasso
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predictor Bayesian Lasso
(predictor selection)

95% BCI Bayesian Lasso 95% BCI Lasso
(λ matched)

Lasso
(n-fold c.v.)

(1) age 0 NA -3.41 (-107.68, 104.08) 0 0
(2) sex -206.18 (-325.21, -89.66) -204.32 (-321.71, -91.80) -178.92 -195.13
(3) bmi 520.06 (396.68, 653.10) 519.28 (391.97, 649.30) 520.02 521.95
(4) map 313.71 (181.85, 437.34) 303.78 (176.65, 428.40) 287.35 295.79
(5) tc 0 NA -146.16 (-552.47, 135.28) -81.13 -100.76
(6) ldl 0 NA -11.44 (-269.57, 312.16) 0 0
(7) hdl -267.55 (-392.72, -134.28) -160.04 (-378.52, 64.75) -217.80 -223.07
(8) tch 0 NA 81.12 (-120.75, 359.53) 0 0
(9) ltg 472.74 (335.30, 598.74) 512.75 (325.79, 720.73) 501.06 512.84
(10) glu 0 NA 59.88 (-52.77, 195.31) 45.40 53.46

Table 1: Comparison of linear regression parameters for the diabetes data using the λ estimated by the Bayesian lasso
with the predictor selection algorithm.

both of which match the tuning parameter. The results are given in Table 2. We found the Bayesian Lasso using the
algorithm selects 5 predictors while the ordinary Lasso selects 7. From the 5th and 10th rows in both Table 1 and 2 we
can see, given a tuning paramter, for a predictor that the Bayesian Lasso using the algorithm throws out whereas the
ordinary Lasso selects, the estimate of its coefficent by the ordinary Lasso always has a larger absolute value than by
the Bayesian Lasso without the algorithm.

predictor Bayesian Lasso
(predictor selection)

95% BCI Bayesian Lasso 95% BCI Lasso
(λ matched)

(1) age 0 NA -3.30 (-110.02, 109.24) 0
(2) sex -216.05 (-333.69, -98.77) -218.93 (-340.17, -87.23) -195.39
(3) bmi 521.11 (396.80, 651.19) 523.03 (395.94, 652.81) 521.99
(4) map 316.00 (186.78, 447.18) 309.39 (183.42, 439.15) 295.92
(5) tc 0 NA -199.04 (-666.78, 137.80) -101.08
(6) ldl 0 NA 10.51 (-290.87, 418.43) 0
(7) hdl -274.46 (-400.46, -151.25) -144.30 (-387.20, 92.73) -223.16
(8) tch 0 NA 92.90 (-135.19, 340.37) 0
(9) ltg 472.56 (349.14, 593.77) 534.82 (335.42, 749.72) 513.03
(10) glu 0 NA 63.30 (-49.00, 196.43) 53.59

Table 2: Comparison of linear regression parameters for the diabetes data using the λ estimated by the Bayesian Lasso
without predictor selection.

4 Penalized Spline using l1 penalty

The Bayesian Lasso with the predictor selection algorithm can be applied to penalized spline models using l1 penalty so
that we can fit the model and select knots from a set of candidates simultaneously. The model is constructed as

y = µ1n +Xβ +Zu+ ε (3)
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where Z is the n×K standardized design matrix, u = (u1, · · · , uK)′ and other notations are defined as in Section 1.
Then (β,u) are estimated as

(β̂, û) = argmin
(β,u)

(ỹ −Xβ −Zu)′(ỹ −Xβ −Zu) + λ
K∑
i=1
|ui|

where ỹ and λ has the same meaning as in Section 1.

4.1 Bayesian hierarchical model and Gibbs sampler implementation

Analougous to Bayesian Lasso for linear regression model [2], the hierarchical representation of the full model is

ỹ|X,β,Z,u, σ2 ∼ Nn(Xβ +Zu, σ2In)

β ∼ π(β)dβ, π(β) ∝ 1

u|τ2
1 , · · · , τ2

K , λ, σ
2 ∼ NK(0K , σ2Dτ ), Dτ = diag(τ2

1 , · · · , τ2
K)

τ2
1 , · · · , τ2

K |λ ∼ Gamma(1, λ
2

2 )

λ2 ∼ Gamma(r, δ)

σ2 ∼ π(σ2)dσ2, π(σ2) ∝ 1
σ2

with τ and σ2 independent. According to (2), integrating out τ , the conditional prior on u will be

π(u|λ, σ2) =
K∏
i=1

λ

2σe
−λ|ui|/σ. (4)

Park and Casella [2] explained in detail why the prior in (4) is preferred to the one in (1). As for the Gamma prior on
λ2, we need the prior variance of λ large enough to make the prior relatively flat. So set r = 1 and δ = 0.1 so that the
prior mean of λ2 is much larger than λ̂ (λ̂’s are less than 1 throughout all models in this paper). The full conditional
distributions of the parameters are

β| · · · ∼ Np

(
(X ′X)−1X ′(ỹ −Zu), σ2(X ′X)−1

)
u| · · · ∼ NK

(
(Z ′Z +D−1

τ )−1Z ′(ỹ −Xβ), σ2(Z ′Z +D−1
τ )−1

)
σ2| · · · ∼ InvGamma

(
p+ n− 1

2 ,
||ỹ −Xβ −Zu||2 + u′D−1

τ u

2

)
1
τj
| · · · ∼ Inverse Gaussian with mean parameter as

√
λ2σ2

u2
j

and scale parameter as λ2, j = 1, · · · ,K

λ2| · · · ∼ Gamma
(
K + r,

∑K
j=1 τ

2
j

2 + δ

)

The Gibbs sampler samples parameters cyclically from their full conditionals above. We construct the hierarchical
model using ỹ instead of y since µ is often of secondary interest. But we make inference of µ, we can still draw samples
from its full conditional distribution, N( 1

n

∑n
i=1,

σ2

n ), if each column of X and Z is centered.
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4.2 Penalized spline model for the global temperature data using B-spline Basis

The Global temperature data [4] recorded 125 years (x) of global temperature (Y ) from year 1881 to 2005. The design
matrix X is obtained by standardizing (x, x2, x3) so that each column of X has mean zero and l2 norm one. If Z is
a polynomial basis matrix, its columns will be highly correlated. It is known that Lasso is not good at dealing with
problems when the predictors are highly correlated [5], so we use a B-spline basis matrix generated by the R function
splineDesign: set the option order = 4 and knots as 23 equally spaced points on the interval [min(x)+2,max(x)−2]
such that the function returns a design matrix with 21 columns. We obtain Z by standardizing this matrix.

4.2.1 B-spline and truncated cubic spline using l2 penalty

This section is to show how B-spline fits (3) using the l2 penalty and compare it to the truncated cubic spline. Define

W =
(
(x− κ1)3

+, · · · , (x− κ21)3
+

)
where the knots κ1, · · · , κ21 are equally spaced points on the interval [min(x)+2,max(x)−2]. Then we obatin Z∗ by
standardizing W . We use Z to fit (3) using l2 penalty on u by the R function lme, and compare the fitted curve with
the one using Z∗. The curves are plotted in Figure 1 and we can see the curve fitted using B-spline are more bumpy.
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Figure 1: B-spline and truncated cubic spline using l2 penalty.
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4.2.2 B-spline knots selection

We can apply the predictor selection algorithm to the penalized spline model to select knots automatically. We use
the design matrix X and the B-spline basis matrix Z using l1 penalty to fit (3). Running the Gibbs sampler with the
algorithm, 3, 5, 6 and 6 knots are selected corresponding to p∗ equal to 0.01, 0.05, 0.1 and 0.2, respectively. The fitted
curves are plotted in Figure 2. We can see the smoothed curves do not fit very well; the curve tends to fit better as p∗
increases. We can also specify the number of knots to select in the algorithm, rather then setting p∗. Figure 3 plotted
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Figure 2: B-spline using l1 penalty and knots selection for p∗ = 0.01, 0.05, 0.1, 0.2.

the fitted curve with 10 knots. It fits much better than all in Figure 2.

5 Discussion

Like ordinary Lasso, the Bayesian Lasso with the predictor selection algorithm does not select predictors stably; even
if we run the Gibbs sampler several times with all the same settings, the results of predictor selection and parameter
estimation may differ a lot especially when the predictors are highly correlated. Another problem of the algorithm is the
computing speed. First, we need a burn-in of N1 iterations and N1 may be a very big number, say 100000, when we
initially have a lot of predictors. Furthermore, M should also be large, say 10000, because the coefficient of a predictor
may change a lot after throwing out a correlated predictor.

When we stop throwing out predictors, we need to run the Gibbs sampler till convergence. In this paper, we just run
a big number of iterations and use the trace plot to check convergence. The method of Monte Carlo standard errors
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Figure 3: B-spline using l1 penalty with 10 knots.

can be used to determine when to stop the sampler [6].
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