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1 Background

Conventional penalized spline utilize a `2 norm to penalize the coefficients of those splines basis. And this

penalized spline optimization problem corresponds to choosing (β,u) to be the minimizer of the following

optimization problem

(β̂, û) = argmin
(β,u)

{∥∥y − 1β0 −Xβ −Zu
∥∥2 + λ

K∑
k=1

u2k

}
, (1)

where K is the number of knots in the spline model. The `2 penalty serves well when we only want to

do prediction. In the case where prediction and knot selection are both desired, one may take advantage

of some other recently-proposed penalty which can do both penalization and variable selection. An early

landmark in this area was the lasso `1 penalty [5]. For our problem, the lasso corresponds to the penalty∑K
k=1 |uk|. And the estimator is defined as

(β̂`1 , û`1) = argmin
(β,u)

{∥∥y − 1β0 −Xβ −Zu
∥∥2 + λ

K∑
k=1

|uk|
}
, (2)

In the optimization problem (2), this lasso penalty has the effect of forcing individual uk’s to be exactly

zero, which is equivalent to doing variable selection (in our case knot selection). Equivalently, we will get a

sparse estimate û`1 with nonzeros components corresponds to the selected knots by this method. Not only

can lasso do automatic variable selection, as observed in [5] , it also often delivers much better predictive

performance as compared to `2 penalty when the number of variables is comparable or even larger than

the sample size. Penalized splines were used to fit models of the form yi = f(xi) + error, where xi is scalar

and f(·) is a smooth function of x. When the input variable xi = (xi1, · · · , xip) is a vector rather than a

scalar, the model would be of the form yi = f(xi) + error. Additive models where f(xi) =
∑p

j=1 fk(xij)

are the simplest version of this model that still allows a flexible shape for f(x). Similarly, we can apply
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the `1 penalty and optimize the following penalized log-likelihood

p∑
j=1

∥∥∥y − p∑
j=1

(
Xjβj +Zjuj

)∥∥∥2 + λ

p∑
j=1

K∑
k=1

|ujk|. (3)

2 Adaptive selection

One downside of either `2 or `1 penalized estimator is that they are both bias estimator of the underlying

true function. This phenomenon is ubiquitous for convex penalties. To alleviate this issue, many adaptive

procedure (adaptive lasso [7]) or non-convex alternatives (SCAD [3], MCP [6]) have been proposed recently.

Here we introduce a `0 penalty proposed in [4] and its computational surrogate to do simultaneous selection

and parameter estimation. It is shown in [4] that under some mild conditions on the design matrix and

the true coefficients both variable selection and optimal parameter estimation can be achieved for linear

models. For our spline model, we minimize the following objective

∥∥y − 1β0 −Xβ −Zu
∥∥2 + λ

K∑
k=1

Jτ
(
|uk|

)
, (4)

where Jτ
(
|x|
)

= min
(
|x|/τ, 1

)
is a computational surrogate of `0 function I

(
|x| 6= 0

)
and τ > 0 controls

the similarity between these two function in that limτ→0 Jτ
(
|x|
)
→ I

(
|x| 6= 0

)
.

By using this `0 penalty, the estimator recovers the true nonzero regression coefficients without incurring

any additional bias. In other word, this results in a nearly unbiased estimator of the true underlying function

curve and also it is expected to have much better predictive performance compared to `1 or `2 penalized

splines which both deliver seriously bias estimates of the true function curve especially for the case when

the total number of candidate knots is large compared to the sample size.

3 Computations

For `2-spline, the optimization is straight-forward which is equivalent to solve a linear equation. But for

`1 and `0 penalty, special optimization routines should be employed to overcome the non smoothness of

the objective functions in (2) and (4). For `1 penalized methods, there has been a huge literature recently

on how to get a efficient algorithm for super-large problems. Here I use a relatively fast methods called
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Alternating Directional Methods of Multipliers (ADMM) [2] which has been applied successfully be many

non-smooth high dimension problems in statistics and machine learning. See [2] for an recent overview.

For `0 penalty, we need an additional step before using ADMM because `0 penalty is not a convex function

which results in a non-convex objective function. Our approach is to use Difference of Convex programming

(DC programming) approach to convert the non-convex optimization problem into a sequence of convex

relaxations, c.f. [1]. Then each relaxed convex problems are solved by ADMM. The detailed formulation

of ADMM and DC programming is omitted here and can be found in [2] and [4].

4 Global mean surface temperature data

In this section, we compare results using `2, `1(Lasso) and `0 (TLP) methods to the global mean surface

temperature data using quadratic and cubic truncated polynomial basis.

4.1 Design matrix specifications

In this section, we detail how the design matrix X, Z in (1), (2) or (4) are generated from the raw data.

Here we assume the raw data is (x,y) with x being the predictor and y the response vector. If we consider

the general Mth order truncated polynomial basis for K knots, then the ”raw random effect” before scaling

is generated through

Zraw
1 =

(
x− κ1

)M
+
,Zraw

2 =
(
x− κ2

)M
+
, · · · ,Zraw

K =
(
x− κK

)M
+
,

where the knots κ1, · · · , κK are equally spaced points on the interval [min(x) + 5,max(x) − 5]. Also the

”raw fixed effects” Xraw is
(
x,x2, · · · ,xM

)
. To do penalized likelihood estimation, we must do some

scaling to these raw fixed effects and random effects in order to penalize equally among random effects and

also to ensure well-conditioned objective function for computational concerns. Here we scale all the effects:

Xraw and Zraw to get scaled design matrices: X, Z where the columns of these two matrices has mean

zero and `2 norm one. And also we center the response vector y to be yc. The final estimate
(
β̂, û, β̂0

)
is

obtained through first do the following optimization problem

(
β̂scaled(λ), ûscaled(λ)

)
= argmin

β∈RM ,u∈RK

(∥∥yc −Xβ −Zu∥∥2 + λp(u)
)
,
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where p(u) is the penalty function and λ is the penalty level controlling the complexity of the fit. After

solving this,
(
β̂scaled(λ), ûscaled(λ)

)
are scaled back (divided by the normalizing constant of the corre-

sponding column in the design matrix) to obtain
(
β̂(λ), û(λ)

)
. Finally, β̂0(λ) is set to be the mean of

y −Xrawβ̂(λ)−Zrawû(λ).

4.2 Discussions

The solution paths are displayed in Figure 1-6. Also we display a comparison figure comparing Lasso

solutions and TLP solutions on 9 different penalties in Figure 7. Here we discuss some key differences

between these methods.

• (Knot selection) Both `1 and `0 can do automatic knot selection since they are designed to do

simultaneous penalization and variable selection. We plot the selected knots with vertical lines in

Figure 3-6.

• Compared to the non-convex `0 penalty, `1 and `2, being convex functions, will incur bias in the

process of penalization. This is because `0 does knot pursuit of sparseness without incurring any bias

the estimates. So it is expected that the solution path generated by approach using `0 penalty has

bigger magnitude of fluctuation. So we plot estimators with same values of λ in Figure 7 to compare

`0 and `1 methods. The fitted curve using `0 penalization is marked different from that of using `1

penalty.

Also notice that the fitted line using quadratic splines is similar to that of cubic splines. And also checked

that the fitted curve is not sensitive to how many knots one uses as candidate knots. This is due to the

selection feature of the `1 and `0 penalization methods.
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Figure 1: Solution path of `2(Ridge) using quadratic spline with 20 knots
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Figure 2: Solution path of `2(Ridge) using cubic spline with 20 knots
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Figure 3: Solution path of `1(Lasso) using quadratic spline with 20 knots
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Figure 4: Solution path of `1(Lasso) using cubic spline with 20 knots
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Figure 5: Solution path of `0(TLP) using quadratic spline with 20 knots
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Figure 6: Solution path of `0(TLP) using cubic spline with 20 knots
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Figure 7: Comparison of `1(Lasso) and `0(TLP) using quadratic spline with 20 knots
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