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17.1.3 Gaussian Processes Using the Spectral Approximation

This section describes a way to extend the re-expressed restricted likelihood for two-
variance models to Gaussian processes (GPs). At this point, it is just an idea, though
it does seem to explain two common observations about fitting GP models to data.

The idea is to use the spectral approximation to turn a GP observed on a rectan-
gular grid into a model to which Chapter 15’s tools are easily extended. The tools
are applied to the approximation and not to the GP itself, but this is still of interest
for two reasons. First, if we can develop interesting facts about the approximation,
these facts are hypotheses about GPs, which can be tested mathematically or by sim-
ulation. Second, spectral approximations have been used to avoid the computational
burden of GPs (e.g., Paciorek 2007, Fuentes & Reich 2010), so facts about the spec-
tral approximation itself are of interest.

The presentation here draws heavily on Appendices A.1 and A.3 of Paciorek
(2007), which built on Wikle (2002). My purpose is to describe the idea and give a
sense of how it might help us understand GPs as data-analytic tools. Thus, I con-
sider only the one-dimensional case, although Paciorek (2007) gives explicit ex-
pressions for two dimensions and his R package, spectralGP, handles the one- and
two-dimensional cases. For the present purpose, I ignore the periodicity problem dis-
cussed in Appendix A.2 of Paciorek (2007), though a full development will need to
face this problem.

For concreteness, suppose we have an updated global-mean surface temperature
series with n = 128 observations. Paciorek (2007) requires a rectangular grid with
each dimension’s grid size a power of 2; for our purposes, the grid size only needs
to be even. Suppose we want to smooth this series using a one-dimensional GP with
no fixed effects. Some will object that this series is clearly not stationary, so it’s
inappropriate to fit a GP, which is stationary. I find this objection uncompelling. First,
in practice GPs are routinely used to smooth data that are obviously not stationary.
This may be ill-advised but standard software makes it easy and even sophisticated
GP users do it. Thus, this case is of interest. Second, the material to follow is a
first step toward analyses that do include fixed effects. For the global-mean surface
temperature data, the fixed effects might be low-order polynomials but even if such
fixed effects were included, the series’s residual variation would not be stationary but
merely non-stationary at higher frequencies and lower amplitude than the original
series. The question then is how the residual non-stationarity affects estimates of the
GP’s parameters, and the following material may help us think about that.

Consider, then, a one-dimensional GP for modeling an n-vector y, where n is
even. The approximation is a mixed linear model with the intercept as the only fixed
effect, so p = 1, with an (n�1)-dimensional random effect having diagonal covari-
ance matrix G. The equation for an observation yt , t = 1, . . . ,n, is

yt = b0 +2
n
2�1

Â
m=1

[u1m cos(wm2pt)�u2m sin(wm2pt)]+u1,n/2 cos(wn/22pt)+ e,

(17.25)
where b0 is the intercept, the u j are random effects, and as usual e is an n-vector
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of iid N(0,s2
e ) errors. (This notation differs a bit from Paciorek’s.) The wm are fre-

quencies taking values wm 2 { 1
n ,

2
n , . . . ,

1
2}, indexed by m = 1,2, . . . ,n/2 respectively.

The random-effect design matrix Z is n⇥ (n�1). Its first n�2 columns are cos/sin
pairs where the cosine and sine terms in a pair share the frequency wm but have dif-
ferent random-effect coefficients u1m and u2m, while Z’s last column is an unpaired
cosine term with frequency wn/2. It can be shown that Z0Z = n diag(2,2, . . . ,2,1)
and 10nZ = 0. The covariance matrix G is diagonal, as follows. Suppose the spectral
density of the GP’s covariance function is s

2
s f(w;q) for frequency w and unknown

parameters q . Then in this approximation, u1,n/2 has variance 1
n s

2
s f(wn/2;q) while

u1m and u2m have variance 1
2n s

2
s f(wm;q). I consider some specific f(w;q) below.

This approximate GP extends the two-variance model of Chapter 15 by changing
the variance of each u j from s

2
s times a constant to s

2
s times a function of the un-

known q . Because Z’s columns are orthogonal and X0Z = 0, the desired simple form
of the restricted likelihood is easily derived. The approximate model is

y = 1nb +Zu+ e for e ⇠ N(0,s2
e In) and u ⇠ N(0,s2

s D(q)), (17.26)

where D(q) is (n � 1)⇥ (n � 1) and diagonal, as above. Pre-multiply (17.26) by
(Z0Z)�0.5Z0 — note that the power is –0.5, not –1 — to give

v̂ ⌘ (Z0Z)�0.5Z0y = (Z0Z)0.5u+(Z0Z)�0.5Z0
e

⌘ v+x , (17.27)

where x is (n�1)⇥1 with cov(x ) = s

2
e In�1 and v is (n�1)⇥1 with

cov(v) = s

2
s (Z0Z)0.5D(q)(Z0Z)0.5

= s

2
s diag( f(wm( j);q) )

for m( j) =

⇢
( j+1)/2 for odd j
j/2 for even j

�
, j = 1, . . . ,n�1.

The restricted likelihood is the likelihood for (s2
e ,s

2
s ,q) arising from (17.27):

logRL(s2
e ,s

2
s ,q) = K �0.5

n�1

Â
j=1

⇥
log(s2

s a j(q)+s

2
e )+ v̂2

j/(s
2
s a j(q)+s

2
e )

⇤

where a j(q) = f(wm( j);q), j = 1, . . . ,n�1, (17.28)

and K is an unimportant constant.
The restricted likelihood for the approximate model has no free terms for s

2
e . The

mixed terms are

�0.5
⇥

log(s2
s a j(q)+s

2
e )+ v̂2

j/(s
2
s a j(q)+s

2
e )

⇤
; (17.29)

j = 1,2 correspond to frequency w1, j = 3,4 to frequency w2, and so on. The canon-
ical predictors are the columns of Z(Z0Z)�0.5 and the v̂ j are the coefficients of pro-
jections of y onto those columns. Thus the v̂ j decompose y into components corre-
sponding to the frequencies wm. Note that the canonical predictors are the same for
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all GPs on a given rectangular grid, so for a given y the v̂ j are also the same for all
GPs. Therefore, given y, the restricted likelihoods for different GPs are differentiated
— in this approximation — only by their a j(q).

Because a j(q) is a function of the unknown q , this scalarized restricted likeli-
hood is not a gamma-errors generalized linear model with identity link. However,
given q , this spectral approximation is a two-variance model and its restricted like-
lihood is a gamma-errors GLM as in Chapters 15 and 16. In those chapters, the a j
were the key to understanding the restricted likelihood, so an understanding of how
a GP works as a data-analysis engine (using the spectral approximation) begins with
examining the a j(q) as a function of q .

To test this idea’s potential, we’ll consider two GPs in the Matérn family. Pa-
ciorek (2007, equation 5) parameterizes the Matérn family for D-dimensional space
somewhat differently than usual, so that the spectral density is

s

2
s f(w;r,n) = s

2
s K(n ,D)rD

✓
1+

(pr)2

4n

w

0
w

◆�(n+D/2)

, (17.30)

where n and r are the Matérn family’s smoothness and range parameters, w is the
D-vector of frequencies, and K(n ,D) is a function of n and D but not r or w . This
f(w;r,n) has the form of a D-variate t density with dispersion matrix proportional
to the identity and scale parameter

p
2/pr . For the one-dimensional case, D = 1

and w

0
w = w

2. In the Matérn model, r describes the range at which the correlation
between pairs of observations (t1, t2) decays to a small value.

The parameter n is usually described as controlling the smoothness of realiza-
tions generated from the GP when it is used as a probability model (as distinct from
using it as a likelihood) and n is usually fixed a priori in analyses. We’ll consider
two GPs, with n = 0.5, the exponential form, and n = •, the squared exponential
form. For n = 0.5, f(w;r) has the form of a Cauchy density,

f(w;r) =
1p
2

r

✓
1+

(pr)2

2
w

2
◆�1

, (17.31)

while for n = •, f(w;r) has the form of a normal (Gaussian) density,

f(w;r) =

p
p

2
r exp

✓
� (pr)2

4
w

2
◆
. (17.32)

The functions f(w;r) give the a j(r) in the re-expressed restricted likelihood for
these two (approximate) GP models. How do these a j(r) decline as the frequency
wm increases, and how does this differ between n = 0.5 and n = •? Figure 17.1 tells
the story. Figure 17.1 shows a j(r) for two values of r , 0.1⇥ 128 (i.e., 10% of the
series length) and 0.025⇥ 128. However, the pattern is the same for any r . For a
given r , the two models (n = 0.5 and n = •) have quite similar a j(r), and these
a j(r) are the only aspect of the restricted likelihood that differs between these two
(approximate) GP models. This explains the common observation that in fitting a GP
to data, the data provide hardly any information about n . The two n depicted here
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Figure 17.1: For a global-mean surface temperature series with n = 128, a j(r) for
GPs with n = 0.5 and n = •. The horizontal axis is m, the index of the frequencies
wm. (This choice of axis avoids showing repeated a j(r).)

are the conventional extreme small and large values of n and they produce restricted
likelihoods that barely differ, so it is no wonder that data cannot distinguish more
subtle differences in n .

Figure 17.1 shows that the a j(r) do depend strongly on r . Recalling that for
fixed r this model is a gamma-errors GLM with identity link but that r can also
be adjusted, we can develop some intuition for how the unknown r , s

2
s , and s

2
e are

adjusted to fit the data. In this gamma-errors GLM, the “observations” are the v̂2
j ,

which have expectation

E(v̂2
j |s2

s ,r,s
2
e ) = s

2
s a j(r)+s

2
e . (17.33)

For large j, E(v̂2
j |s2

s ,s
2
e ) ⇡ s

2
e , so select a value for ŝ

2
e in the “middle” of the v̂2

j
for large j. Recall that a j(r) = r f (r,w2

m( j)), where f declines as j increases; so
choose r̂ to fit the rate at which the v̂2

j decline for small j. Finally, choose ŝ

2
s to

make ŝ

2
s a j(r̂)+ ŝ

2
e go through the middle of the v̂2

j for small j.
It is now easy to understand the common observation that s

2
s and r are poorly

identified. The only thing identifying them is the rate at which f (r,w2
m) declines and

if we recall the “noise” in v̂2
j as a function of j for earlier problems we’ve considered,

it is clear that r is not very well-determined by the data, so s

2
s isn’t, either.
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To suggest how this approximation might be used to learn about GPs, I offer
some conjectures about how influential v̂2

j — squared lengths of projections onto
particular sine or cosine basis functions — might affect estimates of r , s

2
s , and s

2
e .

These conjectures can be tested for actual GPs using simulation experiments. (An
exercise incites you to do so.)

One conjecture begins with the observation that a strong low-frequency trend
(e.g., quadratic) implies large v̂2

j for small j but much smaller v̂2
j for succeeding j.

To capture this sharp decline in the v̂2
j , r̂ will be large. Then ŝ

2
s will be selected so

that for small j, ŝ

2
s a j(r̂)+s

2
e , which is dominated by ŝ

2
s a j(r̂), fits the large v̂2

j . The
resulting fit to y will, however, not necessarily be smooth. That depends on the level
of the v̂2

j for large j, which determines ŝ

2
e and thus the DF in the fit of a canonical

predictor’s coefficient v j, which is

a j(r)

a j(r)+s

2
e /s

2
s
=

s

2
s a j(r)

s

2
s a j(r)+s

2
e
. (17.34)

If ŝ

2
e is large relative to ŝ

2
s a j(r̂), the fit is smooth; otherwise, the fit is rough.

Another conjecture is that an outlier in a high frequency will have little effect on
ŝ

2
s or r̂ but will inflate ŝ

2
e and thus result in a smoother fit.

17.1.4 Separable Models

The restricted likelihood has the simple re-expression for models that are separa-
ble in the following sense. Suppose the n-vector y is modeled as y = d + e , where
e ⇠ Nn(0,s2

e In) and d has a possibly improper normal density with mean zero and
precision matrix of the form ÂK

k=1 tkQk, where the tk are scalar precision parameters
and the Qk are n⇥n matrices. The Qk have the form Qk = A1⌦ . . .⌦AM , where ⌦ is
the Kronecker product, Al = I for l 6= k, Ak is positive semi-definite, and Al has the
same dimensions for all Qk. The proof is straightforward and given as an exercise;
the idea is that by properties of the Kronecker product, we just need to simultane-
ously diagonalize the identity and one positive semi-definite Ak at a time, and this
can always be done.

This class of models includes some 2NRCAR models, for example, those in
which the areas form a rectangular grid with neighbors within rows being one class
of neighbors and neighbors within columns being the second class (Besag & Higdon
1999). This class of models also includes spatio-temporal ICAR models in which
spatial neighbors are one class of neighbors and temporal neighbors are the second
class. Spatio-temporal ICAR models with more than one class of spatial neighbor
pairs are separable if the spatial part of the model is.

The following two assertions appear to be true in general for separable models
as defined above but I have not proved them (proofs are exercises). This form of
separability is a type of balance but separable models as defined here do not satisfy
the conditions of general balance. Also, models of this form do not produce restricted
likelihoods that are likelihoods for generalized linear models.

The intuition for these assertions comes from a separable 2NRCAR model. Re-


