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have contours parallel to the z1 axis, as in all three panels of Figure 17.2. When these
two sets of u-free terms and the mixed terms are multiplied together, they produce
the two-legged contour plots for Classifications A and B. Classification C’s contour
plot has only one “leg” parallel to the z1 axis because it has no u-free terms for z1.

This leads to a secondary puzzle: If the u-free terms dominate the marginal pos-
terior of (z1,z2), why don’t Figures 17.2a,b have “legs” pointing down and to the
right, giving substantial posterior mass to small values of z2 and z1 respectively? To
understand this, we need to examine the marginal posterior itself, equation (17.38).
The intuition is that as either z1 or z2 takes increasingly large values — as either
class of neighbor pairs is shrunk more stringently — the marginal posterior de-
clines slowly and eventually becomes flat. This happens because past a certain point,
neighbors have already been shrunk together as much as they practically can be
and a further increase in z1 or z2 has no practical effect. Mechanically, it happens
because

⇥
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⇤�(n�I)/2�ae converges to a finite

positive constant while ’n�I
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z1d1 j + ez2d2 j)0.5 and |In + ez1Q1 + ez2Q2|�0.5 offset
each other. This flattening can be seen in the upper right corner of Figures 17.2a,b
and the upper half of Figure 17.2c. By contrast, as z1 takes increasingly negative
values, the marginal posterior drops off precipitiously if there are u-free terms for z1
and analogously for z2. Mechanically, this happens because
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where nk is the number of u-free terms for zk. If one zk becomes more negative with
the other held constant, enkzk/2 goes to zero while the other two terms in (17.41) go
to finite positive constants.

The counts of u-free terms also help us understand why, in Figures 17.2a,b, the
two legs differ in mass and width. For Classifications A and B, z1 has more u-free
terms than z2 so in both contour plots the “leg” parallel to the z2 axis is both higher
and narrower than the “leg” parallel to the z1 axis. For Classification C, z1 has no free
terms so there is no “leg” parallel to the z2 axis.

17.2.2 Expedient 2: Ignore the Non-zero Off-Diagonals

I developed this expedient as yet another attempt to get some leverage on Michael
Lavine’s dynamic linear model puzzle (Chapters 6, 9, and 12). I’ve only used it on
these DLMs but it takes advantage of features that are present in other time series
and spatial models so it may be useful for other problems.

I present this expedient using Model 2, which includes signal, mystery (one har-
monic), respiration (one harmonic), and heartbeat components having smoothing
variances s

2
ss, s

2
sm, s

2
sr, and s

2
sh respectively, with error variance s

2
e . (In earlier chap-

ters I used the symbol W instead of s

2.) Model 2’s fit was a puzzle because it shrank
the signal component to a straight line and shrank the respiration component close
to a sine curve while the mystery curve captured almost all the variation those two
components had captured in Model 1’s fit.



386 Extending the Re-expressed Restricted Likelihood

As in Section 12.2, gather the four components’ fixed effects into a single design
matrix X and parameter b but leave their random effects in separate design matrices
Zk,k = s,m,r,h and random effects uk. Thus Model 2 for these data is

y = Xb +Â
k

Zkuk + e, (17.42)

where X is 650⇥ 8, each Zk is 650⇥ 1298, cov(uk) = s

2
skI1298, and R = s

2
e I650.

The projection onto the orthogonal complement of X’s column space is I �
X(X0X)�1X0 = KK0 for any 650⇥ 642 matrix K with orthonormal columns span-
ning the orthogonal complement of X’s column space. The restricted likelihood is
then the likelihood arising from the transformed data K0y, which is
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To put this restricted likelihood in the desired simple form, the four K0ZkZ0

kK and
I642 must be simultaneously diagonalized and that is impossible. In earlier chapters,
however, we noted that the canonical re-expressions of quasi-cyclic DLM compo-
nents have design matrices Zk with columns that are, loosely speaking, sinusoidal
with frequencies that start just above the nominal frequency of the quasi-cyclic com-
ponent (e.g., 1/117 cycles per time step for the mystery term) and increase from there.
Also, the signal component’s canonical re-expression has design matrix columns that
(loosely speaking) start with a half-cycle of a sinusoidal curve and increase in fre-
quency from there. This suggests that if we transform the data to diagonalize I642
and K0ZsZ0

sK (for the signal component), the K0ZkZ0
kK for mystery, respiration,

and heartbeat will have mostly small off-diagonals. If so, we can approximate the
restricted likelihood (17.43) by ignoring those off-diagonals and this approximation
has the desired form. Because the four model components have different nominal fre-
quencies, the components should have large diagonal elements for different canonical
predictors. As we’ll now see, this worked for the present problem, more or less.

So let K0ZsZ0
sK = GAsG0 be the spectral decomposition of K0ZsZ0

sK. Then
(17.43) is proportional to
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where Ak = G0K0ZkZ0
kKG,k = s,m,r,h. As is diagonal; Am, Ar, and Ah are not, but

we now approximate each one using its diagonal. Define a jk to be the jth diagonal
element of Ak; the approximate restricted likelihood is then
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where the canonical observations v̂ j are v̂ = G0K0y. This approximate restricted like-
lihood is identical to the likelihood from a gamma-errors GLM with identity link,
“observations” v̂2

j with expected value Âk s

2
ska jk +s

2
e , and shape parameter n j = 0.5.

This approximate restricted likelihood is also the exact restricted likelihood for
an approximation to the DLM in equation (17.42), namely

y = Xb +KGv+ e (17.46)

where v is (n�8)⇥1 with diagonal covariance G having var(v j) = Âk=s,m,r,h a jks

2
sk.

For the signal component, KGdiag(a js)G0K0 = KK0ZsZ0
sKK0 by construction. For

the other components, KGdiag(a jk)G0K0 ⇡ KK0ZkZ0
kKK0 . . . we hope.

The first question about this approximation is whether the off-diagonals of the
Ak, which we’re setting to zero, are in fact small. For the mystery component, almost
all of them are. Considering the absolute values of the 205,761 distinct off-diagonals,
the mystery term’s off diagonals have 99.9th percentile 0.064; the 99.99th is 0.46 and
the maximum is 0.72. For the respiration component, the off-diagonals are not quite
so small. The 95th percentile is 0.060, the 99th is 0.32, and the maximum is 0.80.
For the heartbeat component, the median absolute off-diagonal is 5⇥ 10�6, but the
percentiles increase quickly from there. The 55th percentile is 0.11, the 75th is 0.46,
the 95th is 0.71, and the maximum is 0.82. None of this is surprising given that in
the canonical representation of individual quasi-cyclic components, the progression
of design-matrix columns through increasingly high frequencies is good for lower
frequencies but breaks down after a point.

With this modest rationale, we’ll use this approximation for what it’s worth.
For two-variance models, the a j and canonical predictors were the key to under-

standing the restricted likelihood. For Model 2’s approximate restricted likelihood,
each smoothing variance has its own a jk, while there is a single set of canonical pre-
dictors, the columns of KG as in equation (17.46). Figure 17.3 shows the log(a jk)
for Model 2’s four components. Each component’s a jk vary over many orders of
magnitude. The largest a jk are about the same for the three quasi-cyclic components
(mystery, respiration, heartbeat), while signal’s largest a jk are higher by about 10
logs. Signal’s smallest a jk are also smaller than the other components’. (This is con-
sistent with our earlier observation that the signal component is a penalized spline
and each quasi-cyclic component is similar to the ICAR model.) The peaks of the
four curves follow the expected order: Signal’s a js are maximized at j = 1 by con-
struction, mystery’s a jm peak at a slightly higher frequency (i.e., slightly larger j),
respiration’s a jr peak at a somewhat higher frequency (about j = 70), and heartbeat’s
a jh peak far from the others. Each curve is fairly smooth, with progressively more
jiggle for mystery, respiration, and heartbeat.

As for the canonical predictors, the columns of KG in (17.46), recall that these
are roughly sinusoidal with frequencies that increase with j. I’ll describe the canon-
ical predictors for the four groups of j for which one of the components has large
a jk. Figure 17.4 shows the canonical predictors for j = 1,2,3,4, for which the signal
component’s a js are largest. Broadly, they are sinusoidal with 1, 1.5, 2, and 2.5 cy-
cles, i.e., roughly quadratic, cubic, quartic, and quintic, as might be expected given
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Figure 17.3: Optical imaging data, Model 2: log(a jk) for components k = signal,
mystery, respiration, heartbeat.

that signal’s fixed effects are the intercept and a linear term. These canonical pre-
dictors deviate from sinusoidal or polynomial shapes because they have been made
orthogonal to the DLM’s fixed effects, which include sine/cosine pairs at the nominal
frequency of each quasi-cyclic component. Thus, for j = 1, there are six secondary
peaks at the mystery component’s nominal period of 117 time steps and tertiary peaks
at the respiration component’s nominal period.

For the three quasi-cyclic components, I describe the canonical predictors for j
having large a jk using their dominant period or wavelength, i.e., the reciprocal of the
frequency with the greatest power in the canonical predictor’s spectral density (esti-
mated by the R function “spectrum”). Each component’s largest a jk occur for canon-
ical predictors j having dominant period close to the component’s nominal period.
The mystery component, with nominal period 117, has largest a jm for j = 7, . . . ,13,
which have dominant periods 168.8, 135, 135, 96.4, 96.4, 96.4, and 84.4. Note that
this sequence has a gap at period 117; this period was removed from the canonical
predictors when they were made orthogonal to the fixed effects. Similarly, the res-
piration component, with nominal period 18.75, has largest a jr for j = 64, . . . ,68,
which have dominant periods 19.3, 19.3, 18.2, 18.2, and 17.8; again, note the gap at
period 18.75. Finally, the heartbeat component, with nominal period 2.78, has largest



Expedients for Restricted Likelihoods That Can’t Be Re-expressed 389

0 100 200 300 400 500 600

−0
.0
8

−0
.0
4

0.
00

0.
04

Canonical predictor 1

time

0 100 200 300 400 500 600

−0
.0
5

0.
00

0.
05

Canonical predictor 2

time

0 100 200 300 400 500 600

−0
.0
8

−0
.0
4

0.
00

0.
04

Canonical predictor 3

time

0 100 200 300 400 500 600

−0
.0
5

0.
00

0.
05

Canonical predictor 4

time

Figure 17.4: Optical imaging data, Model 2: Canonical predictors for j = 1,2,3,4,
for which the signal component’s a js are largest.

a jh for j = 459, . . . ,463, which have dominant periods 2.80, 2.80, 2.789, 2.77, 2.77,
again with a gap at 2.78.

The rest of this section is as follows. First we consider the fit of Model 1, which
did not have the mystery component. Then we consider Model 2, which added the
mystery component, and identify features of the data and model that produced the
DLM mystery. This suggests some changes to Model 2; after these changes, the
modified Model 2 gives a reasonable smooth for the signal component.

So consider Model 1. The mixed-linear-model version of Model 1 is equation
(17.42) but omitting the mystery component’s two columns from X and its random
effect Zmum. Following the same sequence of steps as above yields an approximate
restricted likelihood for Model 1 with the desired simple form. A plot of Model
1’s a jk looks nearly identical to Figure 17.3 but without the curve describing mys-
tery’s a jm. Model 1’s canonical predictors are similar to Model 2’s, differing in two
ways. First, Model 1 has two more canonical predictors with dominant periods about
117. Second, Model 1’s canonical predictors have not been made orthogonal to a
sine/cosine pair with period 117. Thus, for example, the canonical predictor for j = 1
lacks the six secondary peaks visible in Figure 17.4.
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Figure 17.5: Optical-imaging data, Model 1: v̂2
j (triangles) and fitted values (line)

from maximizing the approximate restricted likelihood. The vertical scale is loga-
rithmic. The left panel shows all j, the right panel shows j = 1, . . . ,80, with dashed
and dotted lines for the signal and respiration parts of the fit, respectively.

Figure 17.5 uses these tools to examine Model 1’s fit. In each panel of Fig-
ure 17.5, the horizontal axis is j, the vertical axis is logarithmic, and the triangles
are the v̂2

j . The solid line is the fitted values Âs,r,h ŝ

2
ska jk + ŝ

2
e , which have three

peaks: from left to right, these arise from the signal, respiration, and heartbeat com-
ponents. In the right panel, the dashed and dotted lines are the signal and respiration
components’ contributions to the fit respectively. If Model 1 fit these v̂2

j , the solid
line would pass through the cloud of triangles, not through its middle, because the
vertical scale is logarithmic, but a bit below its surface, as it does for j about 200 to
400.

Model 1 fits these v̂2
j poorly. The signal component’s fit creates a peak that is

larger than v̂2
j , j = 1, . . . ,8, which are shown as solid triangles in Figure 17.5’s right

panel. The respiration component’s fit creates a peak for j around 50-80, which is
also too high. Further, the v̂2

j show peaks at about 140 and arguably 210, which the
fit cannot capature. Thus Model 1’s fit is a compromise: the variances for signal and
respiration, ŝ

2
ss and ŝ

2
sr, are pulled up by v̂2

j for j about 10-30 and ŝ

2
sr is also pulled

by the peaks in the v̂2
j at about 140 and 210. These latter two peaks correspond to

frequencies about 2 and 3 times respiration’s nominal frequency, i.e., its second and
third harmonics; below I call them respiration’s “echo” peaks.

The mystery component was added to Model 1 to capture variation with frequen-
cies between those of the signal and respiration components, i.e., to help fit v̂2

j for
j about 5-30. Figure 17.6 shows the results. (Recall that the v̂2

j , a jk, and canonical
predictors are not identical for Models 1 and 2, though they are quite similar.) The
fitted values again have three peaks but now arising, from left to right, from mystery,
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Figure 17.6: Optical-imaging data, Model 2: v̂2
j (triangles) and fitted values (line)

from maximizing the approximate restricted likelihood. The vertical scale is loga-
rithmic. The left panel shows all j, the right panel shows j = 1, . . . ,80, with dashed,
dotted, and dash-dot lines for the signal, mystery, and respiration parts of the fit,
respectively.

respiration, and heartbeat. Figure 17.6’s right panel shows that the contribution of
signal to this fit is negligible (it is barely visible in the panel’s lower left corner).
The peak arising from respiration, for j about 70, now fits better because the mystery
component fits smaller j. Overall, however, this fit is still poor. The mystery compo-
nent creates a peak in the fitted values where the v̂2

j have no corresponding peak, and
the two “echo” peaks for j around 140 and 210 are still ignored.

The signal component is effectively reduced to its linear fixed effects because
with the mystery component included in the model, the first few j are very influential
for ŝ

2
ss, and v̂2

1 (the solid triangle in Figure 17.6) is quite small. The influence of this
and other v̂2

j can be seen in Figure 17.7, which shows scaled residuals and one-step
approximate changes in the variance estimates from omitting individual v̂2

j , computed
as in Chapter 16. Although v̂2

1 has a small scaled residual, it is extremely influential:
removing v̂2

1 makes ŝ

2
sm much smaller and ŝ

2
ss and ŝ

2
sr much larger.

The two “echo” peaks, v̂2
j for j around 140 and 210, are also influential: removing

v̂2
j in either of these peaks, but especially around j = 140, reduces ŝ

2
sm and increases

ŝ

2
sr. This is odd but true: In Figure 17.6’s right panel, mystery’s contribution to the

fit (shown as a dotted line) actually exceeds respiration’s contribution (shown as a
dash-dot line) for j larger than about 70. That is, mystery’s variance s

2
sm is inflated to

capture part of the “echo” peaks, even though respiration’s a jr are large for j closer
to the “echo” peaks than are mystery’s a jm.

(The heartbeat component is off in its own world, driven by j around 400-500
and unaffected by the foregoing.)
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Figure 17.7: Optical imaging data, Model 2: Scaled residuals (top panel) and ap-
proximate changes in each variance estimate (next five panels) from deleting each
individual v̂2

j . In all plots, the horizontal axis is j.

It appears that lack of fit to signal and respiration forces mystery’s s

2
sm upward

to “fix” the bad fit, which in turn pushes down s

2
ss and s

2
sr and produces the idiotic

smoothed signal. The foregoing suggests two possible solutions: Add second and
third harmonics for respiration to capture the two “echo” peaks, or omit v̂2

1. Regard-
ing the latter, in Chapter 16 we could do that simply by moving a column from the
random-effect design matrix to the fixed-effect design matrix, but we cannot do the
same for this DLM because v̂2

1 is defined only for the approximate restricted like-
lihood and has no corresponding column in any exact model’s design matrix. We
can however do something that has almost the same effect: replace the signal com-
ponent’s locally linear model with a locally quadratic model. With this model, the
signal component has three columns in the fixed-effect design matrix X, for an in-
tercept and linear and quadratic terms, and the canonical predictor for j = 1 is now
roughly cubic instead of quadratic. Thus Model 2’s troublesome v̂2

1 goes away.
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Figure 17.8: Optical-imaging data, Model 2 changed to include a locally-quadratic
model for signal and three harmonics for respiration: v̂2

j (triangles) and fitted values
(line) from maximizing the approximate restricted likelihood. The vertical scale is
logarithmic; the left panel shows all j, while the right panel shows j = 1, . . . ,210.
Right panel: dashed, dotted, and dash-dot lines are the signal, mystery, and respira-
tion parts of the fit, respectively.

It turns out that changing Model 2 in either of these ways individually, or both
ways together, produces the desired result. For Model 1 (with either or both of these
changes), the fitted signal still has the low-frequency junk that motivated Model 2,
but Model 2 (as modified) now gives a sensible signal fit. Figure 17.8 shows the v̂2

j
and the fit for Model 2 with both changes. A plot analogous to Figure 17.7 (which I
haven’t included) shows that the fitted s

2
ss is sensitive to v̂2

1 and v̂2
2 but now mystery

and respiration are much less so. In Figure 17.8, this new fit still has a peak arising
from the mystery component that doesn’t fit anything in the v̂2

j , but at least it’s smaller
than for earlier models. Also, while this model fits the peaks around j = 140 and 210
better than earlier models, it is too high around j = 210.

Alas, now I must complicate this happy ending by pointing out two things I’ve
been sweeping under the rug.2 First, as a student asked me, does this make sense
as a way to do data analysis? You could ask the same question about regression
diagnostics, but it is a reasonable question. This section’s purpose was to understand
why these DLMs fit the way they do, in particular how lack of fit affects variance
estimates. It pursued that purpose by devising diagnostics to explore lack of fit in the
variance part of the model and suggest models that fit better. Although I arguably
manipulated the analysis to a pre-determined conclusion, I am comfortable with that
because a plot of this data series plainly shows the general shape the smoothed signal
must have. I agree however that mimicking what I’ve done would be problematic as a

2Much of the following is based on work done with Ellie Duffy after the book was published.
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general principle, especially if the object was to extract a small signal. At this point,
though, we are so desperate for tools that the gain in general understanding seems
worth that bit of discomfort.

The other problem I’ve been concealing is that these DLMs are extremely fussy
to fit. For this and several other series from Michael Lavine’s dataset, my research
assistant Ellie Duffy and I used the dlm package in R (Petris 2010) to maximize
the exact likelihood, then tried to maximize the exact restricted likelihood using our
own (naı̈ve) code, then tried to maximize the approximate restricted likelihood. In all
these analyses, we parameterized the model using log variances, which seems nec-
essary because the variances range over several orders of magnitude. However, this
makes it impossible to get a zero variance estimate and it seems clear that the error
variance should be estimated at zero and, for some models, so should the signal vari-
ance. The exact likelihood and restricted likelihood and the approximate restricted
likelihood are very flat with respect to logs of variances that probably should have
zero estimates. For some of these data series, the approximate restricted likelihood
appears to have many local maxima; so far, we have not found more than two local
maxima for the likelihood or exact restricted likelihood. For some models, however,
we have been unable to maximize the exact restricted likelihood.

The original version of this section compared the exact and approximate re-
stricted likelihoods for Model 2 applied to Michael Lavine’s series 1 (the only series
for which I have presented results). The agreement between these two functions was,
in light of later experience, remarkably good: both functions had two local maxima,
occurring for very similar values of the five variances, and having very similar func-
tion values. The fitted values shown above used the (apparently) global maximum of
the approximate restricted likelihood but would have been nearly identical using the
maximum of the exact restricted likelihood. This is not always the case with other
series; I was outlandishly lucky with my first example.

Perhaps the moral of the story is that this model is too complex for a data series
of length 650. This points to a related puzzle: why is the error variance always zero?
In all the models I’ve fit to this series, with many starting values, I have only rarely
found even a secondary maximum at which s

2
e was not effectively zero. It appears

this DLM differs from Chapter 16’s two-variance models in that for all j, some non-
error component competes with error to explain v̂2

j , i.e., no range of j is distinctively
informative about s

2
e . Based on Figure 17.3, I hypothesize that the heartbeat com-

ponent competes with error because heartbeat’s a jh > 1 for large j, unlike the other
components’ a jk. In a variant of Model 2 omitting the heartbeat component, error
absorbed variation previously captured by heartbeat, while the rest of the model’s fit
was essentially unchanged. If the data series were much longer, the a jk for all com-
ponents would become small enough for the largest j so that those v̂2

j would provide
information about s

2
e . Nothing, however, can alleviate the confounding of signal and

mystery: signal’s fit is necessarily sensitive to the first few v̂2
j .


