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Spatial Analyses of Periodontal Data Using Conditionally

Autoregressive Priors Having Two Types of Neighbor Relations

Abstract

Attachment loss data are used to measure the current state of a patient’s periodontal disease and
can be analyzed using a conditionally autoregressive (CAR) prior distribution, which smooths fitted
values toward neighboring values. However, in this setting it is desirable to have more than one type
of neighbor relation in the spatial structure, so the different types of neighbor relations can induce
different degrees of smoothing. For example, we may wish to allow smoothing of neighbor pairs
bridging the gap between teeth to be different from smoothing of pairs that do not bridge such gaps.
Adequately modeling the spatial structure of these data may improve monitoring of periodontal
disease progrssion. This paper develops a two-neighbor-relation CAR model to handle this situation
and presents associated theory to help explain the sometimes unusual posterior distributions of the
parameters controlling the different types of smoothing. The posterior of the smoothing parameters
often has long upper tails or multiple modes, and its shape can change dramatically depending on
the spatial structure and true values of the parameters. We show that the prior distribution on these
parameters has a marked effect on the posterior of both the means and the smoothing parameters;
in some cases, the conventional Gamma(0.01,0.01) prior almost completely overrides the data. Our
analysis of attachment loss data also suggests that the spatial structure itself may vary between

individuals.

Key Words: Conditional autoregressive prior; Gaussian Markov random field; identification; neigh-

bor relations; periodontal data.



1 Introduction

Bayesian analyses of areal data often use a conditionally autoregressive (CAR) distribution,
popularized for Bayesian disease mapping by Besag et al. (1991) and defined as follows. In a map
with n regions, suppose each region has an unknown quantity of interest 8;,2 = 1,2,...,n, and that
the map’s spatial structure is described by a lattice of neighbor relations among regions. The CAR

model with Ly norm (also called a Gaussian Markov random field model) has improper density
wOlr) x - rexp (2608 (1

where the positive parameter 7 controls smoothing induced by this prior, larger values smoothing
more than smaller; GG is the number of “islands” (disconnected groups of regions) in the spatial
structure (Hodges et al., 2003); 8 = (6;,...,6,)'; and @ is n X n with non-diagonal entries ¢;; = —1
if ¢ and j are neighbors and 0 otherwise, and diagonal entries ¢;; equal to the number of region i’s
neighbors. This is an n-variate normal kernel specified by its precision matrix 7¢) instead of its
covariance.

It can be desirable to have two or more types of neighbor relations in the spatial structure, with
the I*" type having its own 7; so the different neighbor-relation types can induce different degrees
of smoothing. For example, in an agricultural field trial, the fertilities of a grid of plots might be
smoother in one grid direction than in the other; in spatio-temporal data, 7y might smooth spatially
while 75 smooths over time. Besag and Higdon (1999) introduced CAR priors with two types of
neighbor relations, modeling a rectangular grid of plots with different smoothing parameters for
row and column neighbors, parameterized as S\ and (1 — )A. They also extended the model to
adjust for edge effects and to analyze data from multiple experiments.

Such models are also natural for analyzing a common measure of periodontal disease status,



attachment loss, which is the extent of a tooth’s root (in millimeters) that is no longer attached to
surrounding bone by periodontal ligament. Attachment loss is used to assess the cumulative damage
to a patient’s periodontium and to see if treatment halts disease progression. (Many texts, e.g.,
Darby and Walsh 1995, describe periodontal measurement.) Figure 1 shows the six sites on each
tooth where attachment loss is usually measured. In this spatial lattice, 8; is the true attachment
loss at site z. A full-mouth set of measurements has up to 168 measurements per subject with at
least two islands (one per jaw); missing teeth can create more islands. The subject whose data are
plotted in Figure 9 is missing tooth number 2 on the left side of the maxilla (upper jaw), resulting
in three islands. Calibration studies commonly show that a single attachment loss measurement
has an error with a standard deviation of roughly 0.75 to 1 mm. Figure 9 shows a severe case of
periodontal disease, so measurement error with a 1 mm standard deviation is substantial.

Attachment loss measurements are spatially correlated, but their correlation may not be simply
a function of distance. Figure 1 identifies four types of neighbor pairs, labeled I-IV. Previous studies
(e.g., Sterne et al. 1988, Gunsolley et al. 1994, Roberts 1999) suggest that the four neighbor types
may have different correlations. Thus, appropriate statistical modeling of these data may require
different degrees of smoothing for different types of neighbor pairs.

This paper considers models with two types. As possible models for attachment loss, we consider
four neighborhood structures (“grids”) defined in Table 1. The first grid (INR) allows only one
type of neighbor pair and has just one smoothing parameter, ;. Grid A distinguishes neighbor
pairs entirely on either the buccal (cheek) or lingual (tongue) sides of the teeth (types I and II)
from other neighbor pairs. Grid B distinguishes neighbors bridging the gap between teeth, the
“interproximal region” (types II, III, and IV) from type I neighbors. Finally, Grid C distinguishes
type II neighbor pairs from the other types.

Spatial analyses of periodontal data can potentially serve several purposes. In research, it can



Table 1: Neighbor pairs controlled by each smoothing parameter for each grid. Figure 1 defines
the types.

Grid ‘ Typel Typell Typelll TypelV

One type of neighbors 1INR 71 T1 71 71
Sides vs interproximal A T T T2 T2
Interproximal vs direct only B 71 T2 T2 T2
Type I vs others C T2 (51 T2 T2

be desirable to take periodontal measurements at only a subset of sites. For example, the National
Health and Nutrition Examination Survey III (NHANES III) measured only two sites per tooth
on a randomly-selected half-mouth (Drury et al., 1996). Different spatial structures may imply
different sampling schemes. Also, different spatial structures are consistent with different etiologies
of attachment loss. Compared to the INR model, grids A and B imply a special role for inter-
proximal regions; compared to each other, they imply different effects for different interproximal
sites. Clinically, measurement error is relatively large. Practitioners in effect do t-tests at each
site to determine if an apparent change is real, and commonly a site’s measured attachment loss
must change by at least 2 mm to be deemed a true change. It should be possible to exploit the
spatial correlation of attachment loss measurements to mitigate the effects of measurement error
and improve sensitivity.

This paper presents the first analyses of periodontal data using spatial methods. The data come
from an industry-sponsored randomized clinical trial of an anti-inflammatory gel (with three differ-
ent drug concentrations versus placebo versus no gel) conducted at the University of Minnesota’s
Dental School. The original analysis used whole-mouth average of clinical measures (including
attachment loss) or averages of subsets of sites defined by baseline disease status. These classical,
non-spatial analyses found no treatment effect (Shievitz 1997).

We explore the case of observables with additive Gaussian errors having mean zero and precision



Te, a reasonable model of attachment loss. Our analyses were initially hampered by substantial
technical problems, such as MCMC autocorrelations near one for the precision parameters, requiring
us to more carefully consider identification in these models. Section 2 derives the marginal posterior
density of (rq,72), for 1, = 7/7., | = 1,2, while Sections 3 and 4 examine identification of the r;.
Section 5 applies these insights to periodontal data from three patients. The spatial structure of
the data appears to vary considerably among patients, though grids with two neighbor relations
are clearly superior to the 1INR grid for some patients. The choice of grid can have noteworthy
effect on 8’s posterior. Section 5 also shows that for some spatial structures, increasing sample
size has little effect on identification. Section 6 considers the effect of (r1,r2)’s prior, and Section

7 concludes. Overly technical results are relegated to an appendix.

2 CAR with two types of neighbor relations

A CAR prior with two types of neighbor relation can be written, extending (1), as

P(0|7'177'2) x 0(7'177'2)1/2 exXp (‘%0/{7'1@1 + 7'2@2}0) ) (2)

where @; and 7; respectively describe and control smoothing of type [ neighbor pairs, and ¢(7y, 73)
is the product of the positive eigenvalues of 71 Q1 + Q)2 (see below). We assume a pair of regions
are neighbors of at most one type. (J; has rank n — G}, GG; being the number of islands in neighbor

[*" neighborhood structure is not null. If G is

type I’s spatial structure; assume G; < n, i.e., the
the number of islands in the combined spatial structure, G} > G.
Appendix Section A.1 derives the following results. For any ¢); and @5, there is a nonsingular

B such that Q1 = B’D1B and Q2 = B'D,yB, where D; is diagonal with n — G} positive diagonal

entries and G zero entries (Newcomb, 1961). Call D;’s diagonal elements d;; and without loss of



generality assume the last G diagonal elements of both D; are zero. Then

n—G
1
p(@]r1, 72) H (Tidy; + T2d2j)1/2 exp <—§0l{7’1Q1 + 7'2@2}0) . (3)
J=1

Let y; be region i’s observation, and let y;|0;, 7. be independent normal with mean 6; and

precision 7.. Then given y = (y1, ..., ¥»)’, the unknowns have joint posterior
n—G
PO, 7,71, Taly) o p(re, 1, )7 T (madaj + 7ady)'? (4)
i=1

X exp (5 {n(y - 0Y(y - 6) + 6(riQ1 + 720200} ).

where p(1., 71, 72) is the prior for (7., 7, 72).
Next, reparameterize to r; = 7;/7. and integrate @ and 7. out of (4), leaving the marginal
posterior of the smoothing parameters (ry,73). If the 7s have independent gamma priors, i.e.,

P(7es 71, 72) X [lkegen 2y T+ exp(—1xbg) for ay,, by, > 0, the marginal posterior is

n—G
p(r1, raly) o H (ridij + radoj) 2|, 4+ 71Q1 + 1@ TV 2 g2 RS (5)

i=1

where R, = b +7r1by +1r2by +{y'y -y (I +7m1Q1+720Q2) 'y} /2and a = (n—G)/2+a.+ay +ay. If
instead the prior is p(7e, 71, 72) o 72 L exp(—7.b.)p(r1, 72), the marginal posterior takes the more

general form

p(r1,maly) o< p(ri,72) H (ridy; + Tzdzj)1/2|fn +r1Q1 + 7‘2Q2|_1/2R*_a7 (6)

where R, = b, + %{y’y ~y' (I, +711Q1+72Q2) 'y} and @ = (n—I)/2 + a.. We might also consider

a further transformation to (z1, z9), for z; = log(r;), to spread out p(ry, raly)’s mass, which tends
? ? g ? p p ? y ?



to concentrate on small vy and ry. This parameterization allows Gaussian or ¢ priors, which more

naturally capture vague prior information and allow z; and z; to be correlated a priori.

3 Exploring identification of (71, ) by inspecting p(7, 7|0)

The conditional density of the smoothing parameters (71, 72) can be re-expressed to highlight
identification issues. As in (3), assume a non-singular B such that @1 = B'D1B and Q3 = B'Dy B,

Dy and Dj being diagonal. For 8* = B, p(y, 72|0") x

n—G
1
(07|71, 2)p(71, 2) X H [(du‘ﬁ + d2j7'2)1/2 eXP(—§9]*‘2{d1jT1 +dojma})| (71, 72)- (7)

i=1

Combine terms with identical (dy;,ds;), label the M distinct pairs (dy;,ds;) as sq,...,spr for s; =
(514,52;), and let j belong to the set S; if (dy;,ds;) = s;. Denoting v; = s1;7 + 272, (74, 72) has

conditional density

M .
p(71, T2|07) [H 727'%/2 exXp (—% Z 922)] (71, T2), (8)
=1

keSs;

where m; is 9;’s cardinality. Thus, 71 and 72 enter p(7y,73]0), and hence p(7y, 72|y), only through
the prior p(my,72) and the M linear combinations {v;}. The conditional densities p(rq,72|6") and
p(z1, 22|0™) are also functions of (71, 7r2) or (21, 2z2) respectively only through the prior and M linear
functions of (r1,72) or (€™, e*); we omit details.

The i*" term of the product in (8) is constant for (71, 7) satisfying sy;7 4 82,72 = ¢ for ¢ > 0,
so individual terms in the product do not identify 7 and 75. Rather, identification arises from
multiplying terms with different ratios si;/sg;. If there are two or more distinct ratios sy;/s9;, 71

and 7, are identified. This holds provided each pair of regions are neighbors of at most one type



and neither neighborhood structure is null, as assumed; see Appendix A.2.

Each term ’yfni/z eXP(_%%EkeSi 65%) has the form of a gamma density with variate 7; =
5171 + S52:72, mode m;/ 3y 652, and an infinite set of modal (71,72) satisfying s1;71 + sgim2 =
m;/ Zkesi 022. Terms with sy; # 0 and s9; # 0 give non-identified modal lines 7 = —7y1;/89; +
m; /82 Y res, 6%, Only the intercepts of these lines depend on 6; the slopes, —s1;/s9;, do not.

FEach term in (8) can be deemed a free term or a mized term depending on (sq;, s9;). We define
the i'" term to be a free term for 1 if sy; = 0 and s1; # 0, and vice versa for 7,. A free term for
71 is a function of 71 only, taking the form of a gamma density with variate 7. Mized terms have
both s1; # 0 and sg; # 0. Free terms are important because, as Sections 4 and 5 show, they greatly
enhance identification. As noted, Gy dy; are zero, Gy dy; are zero, and G pairs (dy;, dy;) are (0,0),
so 71 has G9 — (G free terms and 79 has G4 — (G free terms.

If all terms are free terms, 7 and 7 are conditionally independent a posteriori if they are
independent a priori. This happens if, for example, the data consist of two islands, each with its
own 7;. Mixed terms tend to induce negative correlation between 71 and 7 or between r; and rg,
conditional on 6. Specifically, a quadratic approximation to log p(m,72|0) gives corr(7y,m2|0) =
~A12/V/A11Ayy, where Ay, = Z;V:_IG %. Similarly, corr(rq,72|0) ~ —T12/v/T11022
where 'y, = ZN_G Aty These approximate correlations are never positive, but the

=1 (d1JT1+d2JT2)2

marginal posterior correlation corr(rq,r2|y) can be (Section 4.1 gives an example).

4 Exploring p(ri,7:|y) and p(z1, 22]y)

No tidy expression like (8) is available for p(7y, 3]y) except in special cases. Of course, as
each m; increases, p(7y, 72|y ) should more closely resemble p(7y,73]0) for the true 8. An MCMC

algorithm draws from p(m, 2|7, 0,y) = p(71,72]0); as @ varies between iterations, the intercepts



of the non-identified lines, and hence p(71,72|@)’s shape, change with 8. Still, the (s1;,s2;) help
explain p(71, 72|y).

To explore (11, 72)’s identifiability, we consider three regular neighborhood structures that shed
light on more complex structures like the periodontal grids. The first is a rectangular grid with
column and row neighbor relations, which we call a BH grid (Figure 2a), referring to Besag and
Higdon (1999). The grid can be spatial; it can also be a simple space-time smoother, each column
representing the system at one time, so smoothing of row neighbors corresponds to smoothing over
time. Multiple islands of this type might arise from different experiments or locations. This model
has many free terms for 7y and 79, which are well-identified.

In the second regular structure, each neighbor relation forms a connected graph (Figure 2b).
This leaves no free terms for 71 or 79, even with multiple islands of this structure, and 7 and 7
are only weakly identified. We call this the no-free-terms grid.

The third regular structure has two offset rows with one neighbor relation for horizontal neigh-
bors in the same row and a second neighbor relation for diagonal neighbors in different rows (Figure
2c). This gives one free term per island for the diagonal smoothing parameter 7 but none for 7,
indicating a single free term’s effect. We call this the horizontal/diagonal grid.

Equation (8) and simulated data from these structures give insight into the effects of free and
mixed terms on identification of (7, 7). For each structure, we consider datasets with about 200
observations, generated using 7. = 1. A Gamma(0.01,0.01) prior (mean 1, variance 100) was used
for 7., r1, and 73, as suggested by Best et al. (1999), and the corresponding log Gamma(0.01,0.01)
for z; and z3. As will become clear, the prior on (71, 72) or (z1,22) is very important. With each
contour plot of p(ry, 72|y) or p(z1, 22|y ), we present a graph of the M lines of unidentifiability, e.g.,

the set of (21, z2) satisfying s1;€™ + 596" = 51,6 + s9;€™,0 = 1,..., M for the true (21, z2).



4.1 BH Grid

Let 74 and 7 control smoothing of row and column neighbors respectively. Consider the grid

in Figure 2a with two rows and two columns. This CAR prior has, a priori, precision

r -1 0 10 -1 0
S rm)=nQi4nQ=n | LV 0 010 =10
0o 0 1 -1 -1 0 1 0
0o 0 -1 1 0 -1 0
A convenient diagonalizing matrix B is

1 -1 1 -1 (01 + 03) — (62 + 04)

1 -1 -1 1 (6 — 03) — (03 — 64)

1 1 1 01+ 0;+ 65+ 64

Thus BY~! B’, 0*’s precision matrix, is proportional to a diagonal matrix with diagonal entries 7,
Ty, T1+72, and 0.

The first element of 8" is the difference between column totals, proportional to the column main
effect. Its precision depends only on 71, giving a free term for 71. Similarly, 8’s second element
is proportional to the row main effect, giving a free term for 7. The third element is like the
interaction in a two-way analysis of variance (ANOVA) and gives a mixed term. Finally, > 6, has
precision zero, which is always true for a CAR prior.

For general BH grids, the counts of free and mixed terms equal the counts of degrees of freedom
in the analogous two-way ANOVA: ¢ columns and r rows give ¢ — 1 free terms for 7, r — 1 free
terms for 73, and (¢ — 1)(r — 1) mixed terms. Multi-island structures combine by adding numbers
of free and mixed terms across islands. Here, as for all spatial structures considered in this paper,

a free term in 7; arises from the difference between two groups of regions such that all neighbor



relations between a region in one group and a region in the other group are of type [.

Figure 3b shows the contour plot of logp(rq,r2|y) for a simulated data set on a BH grid,
generated with r1 = ro = 1 and twelve 4 X 4 islands, for 192 total observations. Figure 3a shows
the non-identified lines evaluated at the true (rq,73). Each line has m; = 12 (one per island) except
the vertical and horizontal lines, corresponding to the free terms in vy and ry respectively, which
have m; = 36 (three per island).

The smoothing parameters are reasonably well-identified, as each of the 12 islands gives three
free terms for each r;. Figure 3b suggests a positive correlation of (r1,72)|y, near the mode at
least. As noted, rq and ry are generally negatively correlated given (0, 7.), but as (8, 7.) varies, the
intercepts of the non-identified lines vary, giving in this case a marginal correlation of 0.02.

To illustrate further, we generated 20,000 samples from (71, 72)’s marginal posterior (Figure 4).
Conditional on each MCMC iteration’s 8, we computed the centroid of all intersections of pairs of
non-identified lines, to indicate the center of (71, 732)’s conditional density. A plot of the centroids
is visually indistinguishable from Figure 4. That is, (r1,72) has high precision given (8, 7.), but its
conditional location varies greatly between iterations (recall that the intercepts of the non-identified
lines depend on @ while the slopes do not). Figure 4’s horizontal axis shows a boxplot of the 20,000
x-intercepts of the non-identified line corresponding to r{’s free terms; the vertical axis has an
analogous boxplot for ro. Although m; = 36 for r{’s and ry’s free terms, these lines vary a great
deal between iterations. In Figure 3b, the conditional distribution of ry given any ry resembles this
boxplot, suggesting that the free terms provide most of the information about r{, and similarly for
3.

Figure 3 shows that p(rq,r2|y) is highly skewed with most of its mass near zero. Transforming
to z; = log(r;) distributes this mass over the real line, giving a more symmetric posterior with

“bicycle seat” contours (Figure 5).
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4.2 No-Free-Terms Neighborhood Structure

This structure (Figure 2b) has no free terms for 71 or m3; that is, in a given no-free-terms island,
both neighbor relations define connected graphs. It is like the BH grid but with diagonal neighbor
pairs added. The data for Figure 6 were generated with 7. = 1, 11 = 73 = 10 (21 = 2, = 2.3) and
two 10 x 10 islands, giving 200 total observations. Figure 6b’s most striking feature is the surface’s
flatness along the elbow-shaped curve e*! 4+ e*2 = €23 4 23 (i.e., 114+ 73 = 10410, the true rq +r2).
This is the non-identified curve for the term in p(z1, 23/0) with s1; = 1 and s; = 1, evaluated at the
true (z1,22). In Figure 6a, this curve is roughly in the middle of the M curves, which are distinct
but have similar shapes. Thus, the data provide some information about e* + e*2 (i.e., 11 + 732),
but very little about z; and zy individually.

For z; < 0 (little smoothing of type 1 neighbors) the data are informative about z; and the
posterior has a well-defined peak near z; = 3. For these small z;, smoothing of type 1 neighbors is
negligible, so pairs of type 2 neighbors are only affected by z;, allowing the data to rule out extreme
z9. But for large z; (much smoothing of type 1 neighbors), the data say little about z; because
large z; forces all type 2 neighbors to have similar #;. Thus, for large z1, the posterior rules out
only large 2z, which would smooth more than indicated by z1, while the posterior is quite flat for

zg < 2. That is, a large z; precludes differentiating between smaller z,.

4.3 Horizontal /Diagonal Grid

To examine the effect of a few free terms, consider the structure in Figure 2¢c. Neighbor relation
1 (71, r1, z1) smooths diagonal neighbor pairs with one neighbor in each row, while neighbor
relation 2 (713, r2, z2) smooths horizontal neighbor pairs in the same row. The difference between
the two row sums has precision depending only on 7 (i.e., 71, z1), giving one free term per island

for 71. The horizontal smoothing parameter 7 has no free terms. Figures 7 and 8 give curves of

11



non-identifiability and contour plots of log p(z1, z2|y) for two datasets generated with different true
(#1,22). Each dataset had two islands, each with two rows of length 50, for 200 total observations
and two free terms total for z;.

Figure 7’s data had true z; = 2.3 and 23 = —4.6, i.e., smoothing substantially for diagonal
neighbors (z1) and little for horizontal neighbors (23). As for the no-free-terms data (Figure 6),
p(21,22]y) has most of its mass along e*t + 2 = €23 + ¢=46. For large 21, diagonal neighbors are
very similar; because they form a connected graph, horizontal neighbors are forced to be similar
regardless of z3. Thus, for large z1, the data cannot differentiate small z; so the posterior is flat
for small zo. The data are informative about z; through the difference between the two row sums,
that is, through z,’s free term. Hence z; near the true value have high posterior density, giving
golf-club-shaped contours.

By contrast, Figure 8’s data had z; = —4.6 and z; = 2.3, i.e., little smoothing of diagonal
neighbors (z1). The posterior now has a very different shape and the z; are well-identified. Figure
8 shows posterior mass on the curve for which e* 4+ €*2 equals its true value, including an unusual
“arm” of probability to the right of the main peak. Unlike the no-free-terms case with the same
true (21, z2) (Figure 6), this arm is over 30 log units below the peak. For the no-free-terms model
zo was well-identified for small z; but not large z;. For the diagonal/horizontal grid, z;’s two free
terms center the posterior mass around the true z; and because z; is small, the data rule out both

extremes for z;.

5 Analysis of Periodontal Data

This section analyzes attachment losses from three representative subjects in a recent industry-

sponsered periodontal clinical trial (initially described and analyzed by Shievitz 1997). The subjects

12



Table 2: Posterior summaries of 843 and 68; for site #43’s neighbors, for subject 1. “Type” is the
site’s neighbor type relative to site #43.

Posterior mean (SD) Posterior correlation with 643
Site | Type | ;| Grid A Grid B Grid C 1INR Grid A Grid B Grid C 1INR
3 I | 4 | 3.34(.55) 3.46(.51) 3.58(.61) 3.39(.61)| 035 099  0.65 0.67
4 IV | 5 | 3.38(.56) 3.46(.51) 3.63(.60) 3.52(.65)| 0.37  0.99  0.66  0.69
42 I 3 | 2.76(.56) 3.09(.62) 3.10(.63) 3.10(.60) | 0.73 0.37 0.38 0.47
43 5 | 2.88(.61) 3.46(.51) 3.48(.56) 3.45(.63)| - . . .
44 | I |3 |274(.60) 3.45(.52) 3.38(.56) 3.19(.54) | 0.82 098 081  0.58

are first analyzed separately, then together assuming common 7., 7, and 7. For 7., we used a
gamma prior with a. = b. = 0.01; for z; and 2z, independent Unif(-15,15) priors. For each subject
and candidate grid, structured MCMC (Sargent et al., 2000) with blocks € and (¢, 21, 22) was used
to make 30,000 posterior draws. Convergence was assessed by comparing summaries of the (z1, 22)

draws to contour plots of the exact posterior of (21, 22) given by Equation (6).

5.1 Data Analysis

Figure 9 plots Subject 1’s data y (symbols) and posterior mean for 8 (solid lines) for each grid.
The grid noticeably affects 8’s posterior mean: Grids B, C and 1NR give similar posterior means,
but often differ from Grid A by over 0.5 mm. For Grid A, draws of z; are generally larger than
draws of z; (Figure 10a); here 2z controls smoothing of type I and II neighbor pairs, which form
long strips of sites along the buccal and lingual sides of the islands. Large z; and small z, smooth
substantially within these long strips but not between them. Grids B, C and 1NR smooth more
between these strips, and z; tends to be less than z; (Figures 10b,c,d).

The grid also affects @’s posterior covariance. Table 2 gives posterior summaries for subject
1 for site #43 and its four neighbors. Only for Grid A is 843 highly correlated with 849, its type

I neighbor, which has smaller posterior standard deviation for Grid A than for the other grids.
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For Grid B, neighbor pairs controlled by z; (types II, III, and IV) have correlation near 1 and
nearly identical means and standard deviations, consistent with Figure 10b, where posterior mass
concentrates on large z; and moderate z;. The large correlations give these 6; relatively small
standard deviations. The covariances under Grid C and INR are similar except for type II pairs,
which have larger correlation under Grid C because they have their own smoothing parameter 2.
Otherwise, however, z; for Grid C has marginal posterior much like z for INR (Figures 10c,d).

We compared the four grids using the deviance information criterion (DIC') of Speigelhalter
et al. (2002). Defining D(0,7.,21,2) = —2log f(y|0,7.,21,2), DIC = D + pp where D =
E(D(0,7.,21,2)|y) and pp = D — D(E(0, 1., 21, 22|y)), the expectations being taken with respect
to the joint posterior. D and pp measure fit and complexity, respectively; models with smaller
DIC are favored.

Table 3 gives DIC and pp for each subject and grid. A different grid minimizes DIC for each
subject. Fach model has 165 or 171 parameters (3 precisions plus 162 6; for subject 1 or 168 6; for
the others) but the effective model size pp is much smaller. Grid C minimizes DIC for subject 1,
but the one-neighbor-relation model (1NR) has smaller DIC and larger pp than grids A and B: the
second smoothing parameter helps only if it makes the model fit the data better, as for Grid C. For
subject 2, pp is very small: 8 is smoothed almost to a constant vector. Each grid permits this fit,
so the DIC's are very similar. Finally for subject 3, Grids A, B, and C fit the data similarly, each
having DIC markedly superior to INR’s despite larger pp. Comparing subjects 1 and 3, it is clear
that adding the second smoothing parameter can increase or decrease effective model complexity
(pp) relative to the INR model.

If the three subjects’ precisions are independent a priori, DIC for the fit including all three
subjects is the sum of their individual DICs. Table 3 gives these DICs (“3 subjects combined;

different precisions”). Grid C fits best in this average sense and all three grids with two neighbor
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Table 3: DIC for the various models

Subject 1 Subject 2 Subject 3 3 subjects combined 3 subjects combined
different precisions common precision
Grid | DIC  pp | DIC pp | DIC pp | DIC D | DIC D
INR | 269.4 32.8 | 156.3 5.0 | 231.3 27.4 | 657.0 65.2 689.8 67.9
A 278.5 27.5 | 155.3 7.4 | 2129 36.2 | 646.7 71.1 684.6 73.1
B 272.4  28.9 | 156.2 4.0 | 211.3 37.3 | 639.9 70.2 678.1 69.5
C 264.6 36.8 | 155.8 3.2 | 214.5 36.9 | 634.9 76.9 659.7 95.8

relations outperform 1NR, mainly because of subject 3.

Many of these fits have flat, unusually shaped posteriors for (21, z2), shown in Figure 10 for
subject 1. For Grids A and B, p(z1, 22|y)’s contours (Figure 10a,b) are L-shaped with long tails ex-
tending to large z; or z3. For Grid C (Figure 10c), z; is well-identified but there is little information
about z7. These odd posteriors are considered further in Section 5.2.

To see whether spatial structure varies between sub jects, the three subjects’ data were combined
in one fit assuming common precision parameters (7., z21,232). Table 3’s final two columns (“3
subjects combined; common precisions”) give DIC and pp for this analysis. For each grid, DIC
strongly favors different precisions for each subject, not surprising considering the pp for the single-
subject fits. As in the analysis with different precisions, this analysis favors Grid C and 1NR fits
worst.

Figure 11 gives contour plots of the posteriors from analyzing all three subjects assuming com-
mon precisions. Compared to Figure 10, the contours are steeper, but the general shapes are
unchanged. Figure 11a’s most striking feature is the two modes. The three subjects’ individual
posterior medians for z; are —1.75, 0.08 and 6.09, conflicting information which, in this case, gives
a bimodal posterior. More modes may be possible with a larger group of subjects.

Even when all three subjects are combined to give a fairly large dataset (498 observations),
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Table 4: Free-term counts for each periodontal grid, with 3 subjects and common precisions

Grid ‘ n I I I,  Free Terms for zy Free Terms for zo Mixed Terms
A 498 7 14 256 249 7 235
B 498 7 266 256 249 159 83
C 498 7 346 7 0 339 152

z1 and zy are poorly identified. However, the primary focus of this type of analysis is usually
0, and even when z; and z; are not identified, MCMC analysis of @ can be valid. Analysis of
free and mixed terms helps understand and anticipate poor identification and computing methods
can adapted accordingly. For example, informative priors could be given to parameters that are
expected to be poorly-identified, or MCMC methods could be developed that more efficiently sample

from L-shaped joint distributions.

5.2 Analysis of Periodontal Grids

This section uses the insights from Section 4 to interpret Figures 10 and 11. The shape of
(21, 22)’s posterior seems largely determined by free terms. For each grid with two neighbor rela-
tions, there are long upper tails at specific z; and 29 arising from the free terms, e.g., at z; & 2 and
zg & =2 for Grid A. The long upper tails may reflect positive skewness in the distribution of the
free terms’ intercepts, as for the BH grid (Figure 4). Table 4 gives counts of free and mixed terms
for the three grids with two neighbor relations. Because subject 1 is missing a tooth and subjects
2 and 3 are not, their spatial structures differ and so do their {d;;} and contributions of free and
mixed terms.

Grid A has many free terms for z;, few for 29, and many mixed terms. The disparity in free
terms implies better identification of z; than z,. Figure 11a shows that only z; between 0 and 5

have log density within 5 log units of the peak, while 2z, ranging from -4 to 15 satisfy this criterion.
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The many mixed terms induce some curvature of the L-shaped contours near the intersection of
the lines of mass along z; = 2 and 2z &~ —2.

Grid B has many free terms for both z; and z;, more than a comparably sized BH grid, and
far fewer mixed terms than Grid A. Again, z; has more free terms than z,, so the density is larger
along z ~ 1 than along z; ~ 1 (Figure 11b). The relative paucity of mixed terms means little
curvature in the L-shape of (21, 22)’s posterior (Figure 11b).

As for the horizontal/diagonal grid (Section 4.3), Grid C’s neighbor pairs controlled by 2z, (I,
III and IV) form a connected graph on each island, so z; has no free terms. Figure 11c shows that
z2’s 339 free terms make it well-identified with mean near zero, while z; is not well-identified, and
the golf-club shape from the horizontal/diagonal grid is faintly recognizable for z; < 5 (although

oriented differently).

6 Effect of the Prior Distribution

Now consider Figure 12, showing the prior’s effect on p(r1, r2]y) for the no-free-terms grid and
the same simulated data used in Figure 6 (Section 4.2). Figure 12a shows (71, 72)’s log marginal
likelihood, which is extremely flat, ranging only 0.5 log units over most of the graph’s domain. This
is not unexpected: with no free terms, identification is poor. The likelihood is quite small near the
origin and appears to have a single maximum favoring considerable smoothing for neighbor relation
1 (m,71,21).

With such a flat likelihood, the prior has great influence. Figure 12b is the contour plot of
p(r1,72]y) using Figure 12a’s likelihood and independent Gamma(0.01,0.01) priors for r; and rs.
This prior puts almost all its mass near the axes and is fairly flat for large vy and r5. The posterior

thus has large mass near each axis but the likelihood forces the posterior to be small near the origin,
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giving a mode near each axis.

Figure 6 shows the contours of p(z1, z2]y) for the same data and priors (i.e., log gamma priors
for z; and z3). This posterior appears unimodal, though still quite flat. For many examples in this
paper, p(r1,72]y) had two modes while p(z1, z2|y) appeared to have one.

We have used two priors for z; and zp: log Gamma(0.01,0.01) for the regular structures in
Section 4 and Uniform(-15,15) for the attachment loss data in Section 5. For the latter, (21, 22)’s
marginal posteriors have long upper tails along lines corresponding to the free terms. The BH grid
(Section 4.1) also has many free terms for z; and z; but p(z1, 22|y) had no upper tails (Figure 5).
This is the prior’s effect. The log Gamma(0.01,0.01) prior used in Section 4.1 places little weight on
z1 or 2 larger than 5 and eliminates the likelihood’s tails. A log gamma prior has the same effect
on the attachment loss analyses. Figure 13b is the contour plot for subject 1 for Grid B and log
gamma, priors for z; and z,; compare it to Figure 10b, which used uniform priors. The log gamma
priors largely override the likelihood and the density is small for z; or z3 above 5, preventing fits
with extremely large amounts of smoothing.

The choice of prior can also noticeably affect the fit with respect to 8. Figure 13a shows the
differences between posterior means of the lingual and buccal sides of subject 1’s small maxillary
island under Grid B. With the uniform prior, 23 is large (smoothing a lot), ranging from 0 to 15
a posteriori, so neighbors at the mesial or distal sites (D or M) of the same tooth (i.e., type III
neighbor pairs controlled by zz) are smoothed together and their difference is nearly zero. But
with the log gamma prior, z; is forced to be smaller and these neighbor pairs differ by as much as
0.31 mm. These results seem to indicate that the Gamma(0.01,0.01) and corresponding log gamma
prior are anything but non-informative or diffuse, casting doubt on their utility as reference priors

for problems like this.
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7 Discussion

In our periodontal data analysis, DIC sometimes favored models with two neighbor relations
despite their increased complexity. Specifically, adding the second neighbor relation had a note-
worthy effect on the marginal posteriors of individual 6; for two of the patients (subjects 1 and
3). However, the spatial structure appeared to vary considerably even among these three subjects,
who were haphazardly selected from the study population.

The smoothing parameters r; = 7;/7. and 2z = log(r;) are identified except in trivial cases,
but identification can be poor depending on the spatial structure and the true r; or z;. Free terms
greatly enhance identification. For the models considered here, free terms arose from prior contrasts
in @ with precision depending on only one r; or z;. Generally, r; or z; with no free terms are poorly
identified even by moderately large samples, especially if neighbor pairs of the other type are highly
smoothed. This may cause computing problems such as poor MCMC convergence, which is obvious
from contour plots like Figure 10a. MCMC algorithms exploiting the free-term structure may give
better performance.

For CAR models with two neighbor relations, the prior on the smoothing parameters is very
important. Bimodal posteriors for (r1,73) arose from independent Gamma(0.01,0.01) priors, while
log gamma priors for (z1, z2) precluded large values of these parameters and forced less smoothing on
0 than uniform priors. Among other things, this consideration weighs against using the conventional
Gamma(e, €) as a reference prior.

The connection between free terms and identification can be extended to a variety of models.
Work in progress is examining other richly-parameterized models with three unknown precisions,
including crossed random-effect models and dynamic linear models. A general treatment of three-

precision models may be possible.
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Appendix

A.1 The CAR Prior with Two Neighbor Relations

Newcomb (1961) showed how to construct a nonsingular B such that ()1 = B’D1B and )2 =

b

B'Dy B, where D is diagonal with n — () positive diagonal entries and G zero entries. Thus (2)’s
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exponent can be written as —%O’B’{ﬁDl + 19 D2} BO. B is orthogonal only if Q1Q2 is symmetric
(Graybill 1983, Theorem 12.2.12). Also, B is not unique, but apart from permuting rows or
columns, any B can be obtained from any other B by pre-multiplying by a diagonal matrix with
positive diagonal entries. As will become clear, any such change, or any permutation of B’s rows
or columns, has no noteworthy effect.

For a given B, define D;’s diagonal elements as dj; > 0,/ = 1,2 and j = 1,...,n. (The dj;
depend on B; we suppress this for simplicity.) For exactly G values of j, di; = dg; = 0. To see
this, set 7y = 79, turning the problem back into a CAR prior with one type of neighbor relation;
Dy + Dy has exactly GG zero diagonal entries, and the result follows. Without loss of generality,
define B so D;’s last (& diagonal entries are zero and dy; +dy; > 0for j=1,...,n - G.

Following Hodges et al. (2003), define 8" = B and partition 8* as ' = (85,05 ), where 67
has length n — G and 63 has length . Then (2)’s exponent is —%Ofdiag{ﬁdlj + 1ody; 107, diag{v;}
being a diagonal matrix with {r;} on the diagonal in the order j = 1,...,n — G. This exponent is

the kernel of a proper multivariate normal density for 87, which has multiplier

n—G
H (Tldlj —|— ngzj)1/2. (11)

i=1

For j with both d;; positive, the jt" term’s contribution to the multiplier is determined by the ratio
dy;/dy;, because dy; > 0 can be factored out and disappears in the proportionality constant. For
J with only one d;; positive, that dj; can likewise be factored out. Thus the proper version of this

CAR prior is unique even though B is not.
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A.2 Proof that z; and z; are identified in non-trivial cases

If di;/dy; = ¢ for j = 1,...,n— G, then Dy = ¢D,, which implies @)1 = ¢Q2. Since off-diagonal
elements of (J; are 0 or —1, either ¢ = 1 and Q1 = )2, so each neighbor pair is a pair of both types,
or ¢ = 0 and (), is the zero matrix, i.e., its neighborhood structure is null. Both possibilities were

ruled out by assumption, so there are at least two distinct dy;/ds;.
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Figure 1: Neighbor pairs in a three-tooth periodontal grid. Bold-face squares represent teeth,
small circles represent sites where attachment loss is measured, Roman numerals represent types
of neighbor pairs, and Arabic numerals index measurement sites.
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Figure 2: Neighbor relations (NR) for the regular grids in Section 4.
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Figure 3: Posterior of (rq,rg) for BH grid
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Figure 4: Scatterplot of draws from (71, r2)’s posterior. Box plots show the modal non-identified
lines for the free terms in 7y (horizontal axis) and 7 (vertical axis). The true (r1,7r2) = (1,1).

r2 2

1

Figure 5: Posterior of (2, z3) for BH grid
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Figure 7: Posterior of (21, z2) for the horizontal /diagonal grid
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Figure 8: Posterior of (21, z2) for the horizontal /diagonal grid
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Figure 9: Data and posterior means of 8; for subject 1. “Maxillary” and “Mandibular” refer to

upper and lower jaws respectively, while “buccal” and “lingual” refer to the cheek and the tongue
sides of the teeth, respectively.
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Figure 10: Posterior contour plots for subject 1. Panels (a), (b), and (c): Log marginal posterior
of (21, 22) for grids A, B, and C. Panel (d): Log marginal posterior of z for INR grid
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Figure 11: Log posterior of (21, 22) combining all 3 subjects assuming common (7, 21, 22)
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Figure 12: Marginal likelihood and posterior of (71, r2) for the no-free-terms grid.
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Figure 13: Subject 1, Grid B, comparing uniform and log gamma priors for z; and z,.
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