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Some Uses of Permutation Tests and the Bootstrap in
Craniofacial Research

(PI) The next presentation will be by Jim Hodges,

University of Minnesota. Jim is a biostatisti-
cian and is Director of the Biostatistical Core
of the Minnesota Oral Health Clinical Research
Center.He will present Some Uses of Permuta-
tion Tests and the Bootstrap in Craniofacial
Research

(HD)This talk is a friendly rejoinder to the talk

Melissa Begg gave a year ago. Her talk was
about analyzing binary outcomes in periodontal
trials, where the outcomes for teeth within a
mouth are correlated. There was nothing wrong
with her talk; the problem I had with it was that
she was comparing six different methods for a
fairly specific problem, and I have a mathema-
tician’s memory, which is to say hardly any,
and I can’t remember different methods for
specific problems. I’m not much of a mathema-
tician either, so I got stiffed on both ends of that,
I would think.

I’m hoping to convince you that permutation
tests provide a general approach you can use on
many different problems, including Melissa’s,
and you don’t have to remember specific tests.
Briefly , I will start out by convincing you that
you have already seen a permutation test called
Fisher’s exact test. Then I will have a brief
theological interlude so Larry [Laster] doesn’t
have a stroke. I will show you a couple of
examples, then address the practical question of
how many random permutations you need to
use, and then I’]l conclude.

This test's theory is somewhat opaque

* The null distribution fixes the margins (135 R, 65 O; 100
M, 100 W) and treats sex and hand as independent:

Right-handed Other Total

Men X 100 - X 100
Women 135 - X X ~35 100
Total 135 65 200

so X has a hypergeometric distribution:

[135)[ 65J
Pr(X = x) = —= zz)go:x 35<x <100
(100

two-sided P: Pr{ all x's with Pr(X = x) £ Pr(X = 75) ]

You've seen a permutation test before:
Fisher's exact test

* Fisher's exact test is commonly used for data like this
artificial dataset:

Right-handed Other Total

Men 75 25 100
Women 60 40 100
Total 135 65 200

Two-tailed Fisher's exact test gives P = 0.03414

Figure 1

Figure 2

Here (Figure 1) is a typical data set you might
insert into Fisher’s exact test. I made up these
data, so don’t go tell your spouse about this one.
The issue here is: Is gender related to handed-
ness, right-handed vs. other. In this "study" we
have 100 men and 100 women in the sample,
and men are more likely to be right-handed. If
you compute the two-tailed Fisher exact test
you get a P-value of 0.034 plus some more
decimal places.

The theory behind Fisher’s exact test is opaque
as usually presented (Figure 2). In this test, you
condition on the margins of the table and then
derive the distribution of the test statistic as if
there is in fact no relationship between gender
and handedness. Conditioning on the margins
means you fix that there are 100 men and 100
women and you fix that for men and women
together there are 135 right-handed and 65
other-handed people. Fixing these margins
leaves only one free value in the table; without
loss of generality, I use the upper left cell of the
table as the free value and call it X. Because of
the marginal restrictions, X can only take val-
ues between 35 and 100, and under the null
distribution of no relationship X has a hyper-
geometric distribution, as in Figure 2. You
might, at this point, go to a text book to get some
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A permutation-test interpretation is
more intuitive

* Suppose (under the null) that Men and Women don't
differ in the fraction that are right-handed

« Then our 2 x 2 table shouldn't look "much different” if
we randomly shuffle the 200 sex labels "M and "W"
* The actual data:

Sex: MM. .  _MMM. ..M WW.. . WWW...W
Hand: RR ~RQO o BRR RQQ Q
75 25 60 40

* The data with the sex labels randomly shuffled:

Sex: WM. . . WWM. .. W MW. .. MWM...
Hand: RR RQO Q9 RR ROO
75 25 60 40

el 4

¢ The 2 x 2 table after shuffling the labels

i Right-handed Other Total
Men 68 32 100

The permutation test is based on such
shuffles (permutations)

» The exact permutation test:

200
-~ Enumerate all (100] sex-label permutations

- For each permutation, form the 2 x 2 table to give X
for that table

- Count the fraction of permutations giving tables
more extreme than the observed X of 75.

* If each permutation is equally likely, this yields the
hypergeometric distribution for X, Fisher's exact test.
e An arbitrarily accurate approximation:
- Do this N times:
* Randomly permute the sex-labels
* Form the 2 x 2 table and record X

- Count the fraction of random permutations giving

Women 67 33 100
Total 135 65 200
Figure 3

intuition about the hypergeometric distribution
and you’ll find some song and dance about
pulling balls out of urns. This has no intuitive
content for me at all.

The permutation test interpretation is more in-
tuitive (Figure 3) and now I’ll tell you about it.
Under the null hypothesis that men and women
do not differ in the fractions that are right-
handed, our two-by-two table shouldn’t look
much different if we randomly shuffle the 200
gender labels. To be more specific about that,
here is the actual fake data in the middle of
Figure 3. I have 100 men labeled by M and 100
women labeled by W and for each subject right-
handedness is labeled by R and other-handed-
ness by O. As in the two-by-two table, the men
have 75 Rs and 25 Os, and the women have 60
Rs and 40 Os. In Fisher’s exact test, you hold
constant the numbers of Ms and Ws and the
numbers of Rs and Os. I represented that here
by showing, in the data with the sex labels
randomly shuffled, that we still have 75 Rs and
25 Os, and 60 Rs and 40 Os, and because we
just permuted (shuffled) the sex labels, we still
have 100 Ms and 100 Ws. The only thing that’s
being changed from the actual (fake) data and
the data with shuffled sex labels is where the
100 Ms and the 100 Ws are relative to the Rs
and Os.

tables more extreme than the observed X of 75.

Figure 4

Having shuffled the Ms and Ws, we can now
construct the two-by-two table for the shuffled
data; it is at the bottom of Figure 3. In the
shuffled dataset, we have deliberately de-
stroyed whatever relationship there might be in
these data between handedness and gender;
this is what a draw from the null distribution
might look like. ‘

The permutation test is based on such shuffles
or permutations (Figure 4). An exact permuta-
tion test would enumerate all 200-choose-100
ways of permuting the sex labels, and for each
such permutation would extract X, the number
of right-handed men. If you add the assumption
that each permutation is equally likely, X has
the hypergeometric distribution shown in Fig-
ure 2, and the P-value for Fisher’s exact test
could be obtained by counting the permutations
giving more extreme values of X than the ob-
served X of 75. 1 find this a more intuitive
derivation of Fisher’s test because it directly
involves the relationship between handedness
and gender. The problem with doing the exact
permutation test is that there are 10 permuta-
tions, so in this case you wouldn’t actually do
it. However, you can approximate the exact test
arbitrarily well by using N random permuta-
tions of the sex labels. That is, N times you
randomly permute the sex labels, and form the
two-by-two table from the pseudo data and
record the number of right-handed males. Then
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Here's how this approximation works
for our fake dataset

* Fisher's exact test gives P = 0.03414
* 10,000 random permutations give P = 0.0330
* 100,000 random permutations give P = 0.03485

* (In this case, we could have just used a normal
approximation)

Figure 5
you count the fraction of random permutations

giving tables more extreme than the observed
75, and that gives you a P-value approximating
the exact one.

I computed this approximation for my artificial
example (Figure 5); the first 10,000 random
permutations gave a P of 0.0330, and 100,000
random permutations gave P = 0.03485, both
quite close to the exact value. Figure 6 plots the
exact distribution of X as well as the approxi-
mations based on 10,000 and 100,000 random
permutations, and a normal approximation with
the same mean and variance as X has in the
100,000 random permutations. As you can see,
the exact and approximate distributions are
very close to the normal distribution.

Now for the theological interlude (Figure 7).
As with anything else in statistics, the test sta-
tistic and P-value are just functions of the data,
and their interpretation is a separate matter.
There are three different interpretations of per-
mutation tests, and it’s a legitimate metaphor to
call them Orthodox, Conservative and Reform,

Theological Interlude:
What do these tests mean?

* Permutation tests have different interpretations
depending on your rationale for the permutations
¢ Orthodox (randomization tests):

- rationale is an explicit randomization

¢ Conservative (Fisher, Pitman, others):

- rationale is a defensible probability model not
specified bv a randomization
* Reform (Freedman and Lane, JBES 1983, 292-298):
- no probabilistic interpretation

- "locate the given dataset within the spectrum of
other datasets derived from [it] by an appropriate
class of transformations”

Comparing the hypergeometric to the permutation distribution

frequency
0.04 0.08 0.08 0.10 0.12

0.02

0.0

x

Figure 6

Figure 7

or maybe Reconstructionist, referring to the
different tendencies in Judaism. The oldest in-
terpretation arises in a randomized trial. If you
have done a randomized trial or a randomized
selection of a survey sample, then the rationale
for using random permutations arises from the
randomization itself. The permutation test just
simulates the randomization in the actual study
while forcing the simulated study to conform to
the null hypothesis.

If you are a hard-core randomization person, the
test I have shown you is not merely a test but is
the test, the only legitimate one. The second
interpretation, the Conservative interpretation,
arises in cases in which you don’t have an
explicit randomization but you do have a highly
defensible probability model. For example,
Fisher used a lot of probability models arising
from genetic theory. These are strongly moti-
vated models and they can provide a rationale
for a permutation test that does not arise from a
randomization. Of course, those of the Ortho-
dox persuasion don’t accept this, and thirty
years ago if you wanted to see statisticians
scream at each other, you could make it happen
by putting people of these two persuasions in
the same room.

Now, there are instances in which neither the
randomization rationale nor the defensible
probability model are available, but some peo-
ple want to use permutation tests in those cases
anyway. David Freedman and David Lane have
provided such an interpretation in the Journal
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Example 1: Periodontal treatment trial
{Sutdhibhisal MS thesis}

« Randomized trial of new therapy vs. scaling/planing
» Outcome: Change in need for surgery after 12 months

* Sample size: control 26 subjects, active 27 subjects

« Results in the control group (counts in cells are teeth):

at 12 months
don't need need

don't need 400 26
need 147 143

Total: 716

* Results in the active group:

at 12 months

don't need need
don't need 382 5
at BL
need 174 158
Total: 719
Figure 8

of Business and Economic Statistics article
noted on Figure 7. They rationalize the permu-
tation test as being a way to "locate the given
dataset within the spectrum of other datasets
derived from [it] by an appropriate class of
transformations." That’s nearly uninterpretable
out of context; The article is actually not bad.

Now I will show you two examples (Figure 8).
The first is from a periodontal treatment trial, a
data set we analyzed as part of the masters
thesis of one of our periodontal residents,
Sanutm Sutdhibhisal. The data come from a
randomized trial of a new therapy versus scal-
ing/planing. Forgive me if I’m vague about the
nature of the study, but these data haven’t been
published yet. The outcome is the change in the
need for surgery after twelve months of ther-
apy.

There were 53 total subjects, 26 in the control
group and 27 receiving active therapy. The two
tables in Figure 8 show you the results. The
counts are teeth; this was a highly dentulous
subject population and the average number of
teeth per subject was just under 28. In the
control group there were, at baseline, 426 teeth
that did not need surgery (400 + 26), while 290
teeth did need surgery (147 + 143). Twelve
months later, 169 teeth still needed surgery (26
+ 143). So 147 teeth improved: they needed
surgery at baseline but not at the 12 month
follow-up. Also, 26 teeth got worse: they didn’t
need surgery at baseline but did at the 12 month

Problem: Teeth are correlated
Solution: Permutation test
* Permutation test: For N = 1000
- Permute the treatment labels on the 53 subjects
- Construct two new 2 x 2 tables
~ Compute and save this test statistic:

improved, - worse, improved. - worsec
N active teeth N control teeth

* We compared the fraction of improving teeth minus
the fraction of deteriorating teeth

¢ Result:
— Test statistic is 0.066 (SE 0.51)
- Permutation P = 0.21

~ The distribution looks normal under the null

Figure 9
follow-up. In the active group, the table is laid
out the same way; 174 teeth improved and 5
teeth got worse. It looks like the subjects did
better in the active group. But that’s why stat-
isticians are hired, to turn apparent successes
into failures.

The problem here (Figure 9) is that the teeth
within are mouth are, or may be, correlated. The
solution is a permutation test. For N = 1,000
random permutations, we permuted the treat-
ment labels among the 53 subjects. This is just
like the earlier example of Fisher’s exact test:
each of the 53 subjects is labeled control or
active; we permute those labels and create a
pseudo data set of the same form as the original,
but in which we’ve broken the relationship in
the actual data between treatment and outcome.
You could use any test statistic; we used the one
in the figure because it had some intuitive value,
comparing the two groups according to the net
number of improved teeth as a fraction of the
total number of people in the group.

We observed a test statistic of 0.066; the stand-
ard error associated with it, under the null, is
0.051, and the permutation-test P-value is 0.21.
So as promised, I succeeded in making the
result go away.

For 1,000 random permutations, Figure 10
(page 5) is a QQ plot (normal quantile plot) of
the 1,000 test statistics. In a QQ plot, if the
points fall on a straight line, you can argue that
the data look like a sample from a normal
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values of surgery statistic
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Figure 10
distribution. As you can see, this distribution
looks pretty normal, a little short-tailed down
in the lower tail.

(Figure 11) Note that I didn’t have to worry
about the structure or strength of the within-
mouth correlation; whatever it is, I use exactly
the same test. The structure and strength of the
correlation does affect the result, of course; the
greater the correlation within mouth, the less
information you get from all the extra teeth.
Second, you can use any test statistic you want.
We picked this one because it was easy and was
readily interpretable. Obviously the power of
the test depends on which statistic you use.
Finally, the computing is a piece of cake. For
each permutation you permute 53 treatment
labels; for each subject you have a two-by-two
table, so after permuting the labels and you just

Example 2: Clinical performance of
porcelain veneers in new applications

* Magne P, Perroud R, Hodges ]S, Belser UC, "Clinical
performance of novel-design porcelain veneers for the
recovery of coronal volume and length”. Int. ). Perio.
Rest. Dent., 20(5):441-457, 2000

* Observational study: 48 veneers in 16 patients
~ Tooth types: 25X-1, 14 X-2,7 X-3, 2 X-4
- Teeth/patient ranged from 1 to 7, median 2
- Restorations were 3 to 7 years old, average 4.5
¢ Outcome: marginal adaptation
- 4 locations per tooth: 3 facial, 1 palatal
- assessed as no defect vs. minor defect

— 185 locations with no defect, 7 with minor defect

* Interest: Relation of outcome to several predictors

Comments on Example 1

* The structure and strength of within-mouth correlation
doesn't affect the test (though it affects the resujt)

* You can use any test statistic
~ This one seemed made intuitive sense

- The power depends on the choice of statistic
¢ Computing is easy
- Permute 53 treatment labels

~ Add 26 (control) and 27 (treatment) 2 x 2 tables

Figure 11

Figure 12
add up 26 and 27 two-by-two tables to get tables
in the form of the actual data.

The second example (Figure 12) is more com-
plicated and, referring to my theological inter-
lude, it is not Kosher for Passover, that is,
there’s no randomization to justify the random
permutations. This study measured the clinical
performance of porcelain veneers in new appli-
cations. By "new applications", | mean applica-
tions in which there is substantial tooth loss,
that is, the veneer does more than just replace
damaged enamel, for example. This work has
been published; the citation is on the figure.
The study was an observational study of the
first 16 patients treated in this manner in the
first author’s practice. There were 48 teeth to-
tal; 25 of the teeth were central incisors, 14 were
lateral incisors, and so on. The number of teeth
per patient varied considerably; one patient had
7 teeth, 3 patients had one tooth and the median
was two teeth per patient. The restorations were
3 to 7 years old. The outcome that I will discuss
here is the marginal adaptation of the restora-
tion. I will apologize right now that I can’t
discuss marginal adaptation intelligently; I’m
not a dentist, much less a prosthodontist. If you
have any dental questions, there are a couple of
dentists here. Marginal adaptation was assessed
at 4 locations per tooth, 3 on the facial side and
1 on the palatal side, and was assessed as "no
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This analysis faces several problems
* Small sample (few events)
-~ GEE won't work

* Two levels of clustering
- teeth clustered within subjects
~ locations clustered within teeth

* Unbalanced clustering of teeth within subjects

* Some predictors are discrete, some are continuous

i th

Figure 13

defect" or "minor defect”. So with 48 teeth and
four locations per tooth, that’s 192 assessments.
Of those 192, 7 had a minor defect. The interest
here is the relation of this outcome to several
predictors, such as restoration age and other
things.

This analysis presents several difficulties (Fig-
ure 13). It has a small sample in the sense there
are very few events, only 7 minor defects. Thus,
generalized estimating equations (GEE) won’t
work, because they rely on large-sample ap-
proximations. Indeed, with so few events, GEE
algorithms will usually not even converge. We
also have two levels of clustering: teeth clus-
tered within subjects and locations clustered
within teeth. We have unbalanced clustering of
teeth within subjects, fairly substantial imbal-
ance. Finally, some of our predictors are dis-
crete and some are continuous. Permutation
tests take care of all of these problems: I can use
one type of test for everything. As you will see,
though, I do have to do a little bit of thinking
for each test.

I could show you examples of tests at each of
the three levels, that is, at the patient, tooth and
location levels. I will just show you two or one
depending on how late I am.

(PD) You are fine.
(HD) In the first test I’ll show you (Figure 14) the

predictor is the location on the tooth. That is,
we are interested in whether the four locations
differed in their chance of having a defect. The
data are in the table just above the middle of the
figure. In the mesial facial location, out of 48

Location-level predictor: Location

¢ The data:

P facial------— >

mesial  mid distal palatal Total
no
defect 46 48 47 44 185
minor
defect 2 0 1 4 7
Total 48 48 48 48 192

* Permutation test: For N = 1000
- Permute the location labels separately for each tooth
- Construct the above table for the pseudo-data

— Test statistic: Pearson's chi-sauared

¢ Results:
%2 statistic  Usual P Permutation P
Full table 5.19, 3 df 0.16 0.24
Palatal vs. 4.00,1 df 0.045 0.076
facial
Figure 14

teeth, 46 had no defect and 2 had a minor defect.
Mid-facial and distal facial had 0 and 1 defects
respectively, while palatal had 4. Thus, the
palatal location may be worse than the others.

In our permutation test, we did the following
for each of 1,000 random permutations. First,
permute the location labels within each tooth.
You don’t permute teeth within mouth and you
don’t make permutations across subjects be-
cause those permutations would have no effect
at all on the pseudo data and wouldn’t affect the
results of the test. By permuting the location
label separately for each tooth, you break the
relationship in the actual data between tooth
location and marginal adaptation, while pre-
serving the aggregate result for each tooth and
the correlation of the teeth within a mouth.

Having done the permutation, you construct the
above table for the pseudo data and compute the
test statistic. I used Pearson’s 2 statistic. If you
do this test on the full table (see "Results" at the
bottom of the figure), with all four locations,
the y2=15.19 on 3 degrees of freedom, the usual
P-value is 0.16, and the permutation test P is
0.24. The null distribution produced by this
permutation test emphatically does not look
like a normal distribution: it took only nine
distinct values, of which five were 5.19 or
larger. Naturally, my co-author asked, what if
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Tooth-level predictor: location of
opposing tooth contact

* The data:
opposing tooth contact
enamel margin  ceramic Total
no defect 67 35 83 185
minor
defect 1 5 1 7
Total 68 40 84 192

* Permutation test: For N = 1000

- For 13 patients with > 1 tooth, permute contact label
separately for each patient

- For 3 patients with 1 tooth, permute contact labels
among the 3 patients

~ Test statistic: Pearson's chi-sauare

James Hodges, Page 7

Comments on Example 2

* New tests aren't needed for this 3-level problem
- Subjects with only one tooth present a complication
for tooth-level predictors

* The null distribution is not a large-sample
approximation

* These permutation tests are not rationalized by a
randomization

* Permutation P-values are not necessarily larger than
the "usual” P-values

- Example (not shown): incisal edge span, a tooth-level
predictor

~ Especially in small samples, the null permutation
distribution can be very lumpy

* Results:
X2 statistic Usual P Permutation P
11.28 on 2 df 0.0035 0.046
Figure 15

we combined the three facial sites and just
compared facial to palatal? If you do the usual
test, you have a temptation into sin here with a
P-value of 0.045, but if you do the permutation
test you are rescued, because the P-value comes
out to be greater than 0.05. Once again, the
statistician has made the result go away. Again,
the null distribution was highly non-normal,
with probability on only six values, two of
which were 4.00 or larger.

Now (Figure 15) consider a predictor at the
tooth level. For each tooth restored, you can
identify where it contacted the opposing tooth:
was it on the enamel, the margin, or the ce-
ramic? The table near the top of thefigure shows
the data relevant to that issue. We still have 192
locations at which marginal adaptation was as-
sessed, four per tooth. For restored teeth where
the opposing tooth contact was on the enamel,
there was one minor defect out of 68 sites (17
teeth); where the contact was on the margin,
there were five minor defects out of 40 sites (10
teeth); and where the contact was on the ce-
ramic, there was one minor defect out of 84 sites
(21 teeth).

For the permutation test, we again did 1,000
random permutations, but we have a new com-
plication here. We want to break the relation-
ship between a tooth-specific measure (location

Figure 16

of opposing tooth contact) and the result, mar-
ginal adaptation. So the natural thing to do is to
permute teeth within patients, that is, to do a
different permutation for each patient. How-
ever, three of the patients only had a single
tooth, so there’s nothing to permute. Thus, for
the three patients that had a single tooth, we
permuted the contact labels among those three
patients. This permutation scheme breaks the
relationship in the actual data between where
the contact is on the tooth and what the results
were for that tooth, while maintaining all of the
other correlation structure in the data. Again,
we used Pearson’s chi-squared statistic, with
two degrees of freedom, with the result shown
in the Figure. The usual P-value is 0.0035,
which makes people salivate, but here I was
unable to be successful; they got a significant
result from the permutation test (P = 0.046). 1
guess I will get kicked out of the statistician’s
union for that. For this permutation test, the null
distribution took 24 distinct values, of which
five were at least as large as the observed chi-
squared statistic.

Some comments on this example (Figure 16).
This is athree-level example, so we had to think
up different permutation schemes for the differ-
ent levels, but we didn’t need to find or think
up an entirely new test. We also had the com-
plication (for the tooth level predictor) that
some subjects had only a single tooth, but that
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How many random permutations
should you use? N = 1000, except . ..

* The random permutations yield a dataset that allows
you to estimate the true P-value.

* This table shows 95% confidence intervals for some
permutation-test P-values and Ns.

Perm test  Approximate 95% CI for true P
P-value N =1,000 N = 100,000
0.50 0.47 to 0.53

025 0.22t00.28

0.10 0.08 t0 0.12

0.05 0.036t00.064  0.0486 to 0.0514
0.01 0.0035 to 0.017

0.001 0t00.003

« But for our exaggerated reverence for P = 0.05, N = 1000
would work fine for all true P values.

s If the permutation P-value is close to 0.05 and the
audience is hung up on the 0.05 threshold, increase N
until the 95% CI for P excludes 0.05

Conclusions
« [ use permutation tests with increasing frequency:
- They're always available (so far)

-~ Journals buy them (2 successes in 2 attempts)
» They're generally palatable to purists

~ You don't have to remember a lot of different tests
* You do have to pick a permutation scheme

— They don't rely on asymptotic approximations

- You can use your favorite test statistic

~ Computation is often simple
» It's always simple for small datasets BUT

* You have to write your own code

Figure 17

was no big deal. Second, you don’t get anything
that looks like a chi-squared null distribution
for any of these analyses: for some of the per-
mutation tests I did, the probability in the per-
mutation distribution lives on only five values
of the test statistic. This is not surprising, be-
cause there were few events. So the advantage
of the permutation test is that it gives a null
distribution that is not a large-sample approxi-
mation. There was no randomization, and I
can’t rationalize by a randomization or a prob-
ability model, so we have to rely on the Freed-
man-Lane rationale. Finally, in another test 1
didn’t show you the permutation P-value, in
spite of the clustering, was actually smaller than
the usual P-value. This can happen because the
null permutation distribution is so discrete and
lumpy in small examples. Thus, you can’t do
the usual test and assume the permutation test
will give you a bigger P-value, a strategy which
would save a lot of trouble if it worked.

Finally, for a practical issue (Figure 17): how
many random permutations should you use? 1
used 1,000 for all of the examples, and of course
I should justify that. The key thing to under-
stand is that when you are computing the per-
mutation P-value, you’re in effect asking how
many pseudo datasets gave test statistics as
large as or larger than the one actually observed.
So you are estimating the P value by creating a
dataset of test statistics drawn from the null.

Figure 18

(LA) Would your unique applications here prohibit

you from using things like Stat Exact, which
does the permutation test.

(HD) Let me get back to that later. This is exactly

the problem of computing a confidence interval
for the proportion in a binomial distribution.
Thus, if you have an observed permutation-test
P-value, it is quite straightforward to get an
approximate 95% confidence interval for the
true P-value. Figure 17 shows those confidence
intervals for several permutation-test P-values
for N = 1,000. So if you did 1,000 permutations
and observed a P-value of 0.25, then with 95%
confidence the true P-value is between 0.22 and
0.28. In this case, 1,000 random permutations
is plenty: anywhere in that interval (and sub-
stantially below it) you get the same substantive
result, not significant. That’s true for every
permutation test P-value in this table except for
0.05 or anything close to it: if your permutation
test P-value is 0.05, then the actual value could
readily be as small as 0.036 or as large as 0.064.
If you use 100,000 permutations instead of
1,000, you have better resolution and usually
will avoid this quandary.

Now, this 95% confidence interval of 0.036 to
0.064 doesn’t bother me. I interpret any P-value
in that interval to mean the same thing, that is,
that you have a borderline result. But journal
editors don’t think that way, because they’re in
the business of suppressing hanky-panky. So if




you are in a situation where the P-value is close
to 0.05 and the audience is hung up on the 0.05
threshold, then you need to use a bigger N until
the 95% confidence interval excludes 0.05.

My conclusion (Figure 18) is that I find myself
using permutation tests more often; I’ve done it
in other problems as well as the examples. I use
it in preference to the bootstrap. If you are
interested in this issue, | can talk to you about
itat lunch. If you have a problem where you are
interested in doing a permutation test, I will be
happy to discuss that with you also.

Next, journals do buy permutation tests: I have
tried twice and been accepted twice. A big
advantage for me is that I don’t have to remem-
ber a lot of different tests, although I do have to
work something out for each application,
namely the permutation scheme. These tests do
not rely on asymptotic approximations. The
computation is often simple.

I have a confession to make about the first
example I showed you. I have a high workload
and I should spend more time thinking. Because
I'don’t, I didn’t actually use the simple calcula-
tion I showed you in Figure 10, but rather
permuted labels on the entire data set instead of
Just the labels on 28 two-by-two tables. Subject
to Larry’s comment, you do have to write your
own code. I am probably the least computer-lit-
erate PhD statistician in my age cohort, and I
can do it, so it can’t be too hard. That’s all |
have to say on this. Can we have lights up?

(applause)
(PD Questions.

(HD) Larry [Laster] asked, can you do this in StatX-
act? I don’tknow; do we have anybody here that
knows a lot about StatXact?

(LA)I do.

(KI) In most of the applications that you showed,
the sample sizes were large enough that StatX-
act will default to the asymptotic result. In the
new version, I don’t think that’s true. You have
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more flexibility to specify that you want the
exact computation. It might take a while,
though.

(HD) It’s important to keep in mind when the as-
ymptotic approximation works well. In my sec-
ond example, I had 7 events out of 192
possibilities. The relevant number for deter-
mining whether I have a "large" sample is 7, not
192. Does StatXact allow you to condition in
the way I have in that example?

(LA) You might have to do some reformulating to
get ready for StatXact. But in most cases, not
all, it might save you a lot of time. You won’t
have to write any code.

(HD) You have to write the StatXact code.

(LA) It’s almost nothing. StatXact is simple. There
is no code.

(KI) For a continuous outcome, it might be more
complicated. My question to you as a fellow
permutation lover, is that we can do all of these
permutation tests but we can pick any statistic
we want. The theory will hold whatever is done.
But you alluded to it earlier, the power for these
tests will not be the same for all statistics. My
question is, how do we intelligently pick a test
statistic to summarize the data the most mean-
ingful way?

(HD) I don’t have anything intelligent to say about
that except what I said earlier, namely that I
have come to prefer continuous over discrete
test statistics. Now, I know what Larry will say
-- I sat next to him in dinner last night -- so I
will anticipate him. In large samples, in simple
cases the permutation test is equivalent to the
t-test which is known to be the uniform uni-
formly most powerful etc, etc.

(LA) And similar to distribution-free.

(HD) I guess don’t have anything useful to tell you
on that. I just try to stick to popular statistics.

(PL) It is time for lunch.
(The luncheon recess is taken)






