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Chapter 8

A log-linear model is a Poisson model with ANOVA structure for the
log-means of counts in a contingency table.

We start with I × J tables and then consider multiway, e.g.
I × J × K × L tables.

Useful to determine conditional dependence relationships between
variables.

Can be generalized to non-categorical predictors.

No one categorical variable is the outcome.

H. Chu (UM) Categorical Data Analysis 2 / 42



Chapter 8 8.1 Two-way models

Let nij be the counts in an I × J contingency table.

Y = 1 Y = 2 · · · Y = J
X = 1 n11 n12 · · · niJ
X = 2 n21 n22 · · · n2J

...
...

...
. . .

...
X = I nI1 nI2 · · · nIJ

The random, total number in the table is n++ =
∑I

i=1

∑J
j=1 nij . We

assume that each cell in the table is independent Poisson,

nij
ind .∼ Poisson(µij).

Different parameterizations for µij lead to different distributions for (X ,Y ).
The µ11, µ12, . . . , µIJ are the rates at which the (X ,Y ) fall into the
cross-classified categories.
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Chapter 8 8.1 Two-way models

Consider the simplest possible case: X = 1 with rate µ1 and X = 2
with rate µ2. So X1, . . . ,Xn are collected where Xi ∈ {1, 2}. At any
fixed time we can distribute the counts n1 =

∑n
i=1 I{Xi = 1} and

n2 =
∑n

i=1 I{Xi = 2}. So n1 ∼ Pois(µ1) ⊥ n2 ∼ Pois(µ2).

Conditional on n, (n1, n2) ∼ mult(n, (p1, p2)) where

(p1, p2) =
(

µ1
µ1+µ2

, µ2
µ1+µ2

)
. Equivalently, n1 ∼ bin

(
n, µ1

µ1+µ2

)
.

Note that given n, (µ1, µ2) = (1, 2) gives the same conditional
distribution as (µ1, µ2) = (100, 200). The second set of rates simply
implies that, e.g., n = 500 is arrived at more quickly.

The Poisson sampling version has two parameters: µ1/µ2, the relative
rate at which X = 1 versus X = 2, and µ1 + µ2, how fast data are
coming in.

The multinomial version has only one parameter p1 = µ1/(µ1 + µ2)
and conditions on a total number collected n.
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Chapter 8 8.1 Two-way models

Some details

Let (X ,Y ) be a pair of nominal or ordinal outcomes with
X ∈ {1, . . . , I} and Y ∈ {1, . . . , J}. We will collect n such pairs iid
from the population: (X1,Y1), . . . , (Xn,Yn).

Let nij =
∑n

k=1 I{Xk = i ,Yk = j} be the number of pairs
{(X1,Y1), . . . , (Xn,Yn)} that fall into the i th category of X and the
j th category of Y .

We assume that data are collected over time and that the nij are
independent Poisson random variables with means µij . At any time
we can stop the collection process and have a snapshot of the
contingency table at that time. For example, if n = n++ = 1000
people are sampled and cross-classified, we have a snapshot after
n = 1000 individuals are sampled.
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Chapter 8 8.1 Two-way models

We know {nij} is distributed as I × J independent Poisson variables. But
if we stop collecting data when n++ = n, what is the distribution? Recall
that the sum of independent Poisson random variables is also Poisson with
a rate that is the sum of the individual rates. So n ∼ Pois(

∑
i ,j µij).

p(n11, . . . , nIJ |n++ = n) =
p(n11, . . . , nIJ)I{n++ = n}

P(n++ = n)

=
I{n++ = n}

∏
i ,j

e
−µij µ

nij
ij

nij !

e
−

∑
ij µij [

∑
ij µij ]

∑
i,j nij

[
∑

ij nij ]!

=

(
n

n11 · · · nIJ

)∏
i ,j

[
µij
µ++

]nij
.
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Chapter 8 8.1 Two-way models

This pmf, subject to n++ = n, is a multinomial distribution with
parameters n and p = (µ11/µ++, . . . , µIJ/µ++).

Put another way, Poisson sampling is equivalent to multinomial
sampling where at any time such that n++ = n,
πij = P(X = i ,Y = j) = µij/µ++.

Thus, fitting a Poisson model for the (µ11, . . . , µIJ) conditional on
n++ = n is the same as fitting the multinomial.

We will fit log-linear models using the Poisson distribution in PROC
GENMOD.
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Chapter 8 8.1 Two-way models

The independence model (Section 4.3.6, p. 132; Section 8.1.1, pp.
314-315) stipulates

logµij = λ+ λXi + λYj .

For identifiability, we must place restrictions on the parameters, e.g.
λXI = λYJ = 0. Then there are (I − 1) + (J − 1) + 1 = I + J − 1
parameters to estimate: (λX1 , . . . , λ

X
I−1, λ

Y
1 , . . . , λ

Y
J−1, λ).

Note that conditional on n, we have multinomial sampling and

µij = eλeλ
X
i eλ

Y
j = nπi+π+j . That is, the intercept term λ adjusts the

overall mean µ++ in the Poisson model and is a function of n as well
as the other model parameters. However, it is not true that eλ = n,

eλ
X
i = πi+ and eλ

Y
j = π+j .
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Chapter 8 8.1 Two-way models

In fact, we know that n++ ∼ Poisson(µ++) and that the MLE of this is
µ̂++ = n++ = n. So we must have

n =
I∑

i=1

J∑
j=1

eλ̂eλ̂
X
i eλ̂

Y
j .

So,

λ̂ = log n − log
I∑

i=1

J∑
j=1

eλ̂
X
i +λ̂

Y
j .

Under multinomial sampling (conditional on n++ = n) the number of
parameters (λX1 , . . . , λ

X
I−1, λ

Y
1 , . . . , λ

Y
J−1) drops by 1, because λ is known,

to (I − 1) + (J − 1). Conditional on n, the model satisfies πij = πi+π+j .
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Chapter 8 8.1 Two-way models

There are 5 hierarchical models

Model Interpretation
logµij = λ X ⊥ Y , πij = π
logµij = λ+ λXi X ⊥ Y , πij = πi
logµij = λ+ λYj X ⊥ Y , πij = πj
logµij = λ+ λXi + λYj X ⊥ Y , πij = πi+π+j

logµij = λ+ λXi + λYj + λXYij X 6⊥ Y

We are typically only interested in the last two, as a means to test
H0 : X ⊥ Y versus H1 : X 6⊥ Y . This boils down to testing H0 : λXYij = 0
in the full interaction model.
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Chapter 8 8.1 Two-way models

The interaction model is given by

logµij = λ+ λXi + λYj + λXYij ,

where λXI = 0, λYJ = 0, and λXYiJ = λXYIj = 0 for i = 1, . . . , I and
j = 1, . . . , J. So there are (I − 1) + (J − 1) + (I − 1)(J − 1) = IJ − 1
parameters to estimate in the multinomial interaction model, one for each
cell.
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Chapter 8 8.1 Two-way models

The LRT for independence from Chapter 3 is equivalent to testing the
additive (most flexible independence model) to the interaction model
in the Poisson GLM framework.

The difference in parameters is

(I − 1) + (J − 1) + (I − 1)(J − 1)− [(I − 1) + (J − 1)] = (I − 1)(J − 1)

as we found before.
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Chapter 8 8.1 Two-way models

Let’s examine 2 × 2 table first. Assume X ∈ {1, 2} and Y ∈ {1, 2}, so the
table has 4 cells:

Y = 1 Y = 2
X = 1 n11 n12
X = 2 n21 n22

Assume multinomial sampling so

n = (n11, n12, n21, n22) ∼ mult{n,p = (π11, π12, π21, π22)}.

We write this {nij} ∼ mult(n, {πij}) for short.
Let’s examine the additive model for this table in some detail...
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Chapter 8 8.1 Two-way models

The additive model for E (nij) = nπij is

log(nπij) = λ+ λXi + λXj .

We set λX2 = λY2 = 0 for identifiability. Then the cell means are

Y = 1 Y = 2

X = 1 eλ+λX
1 +λY

1 eλ+λX
1

X = 2 eλ+λY
1 eλ

Under multinomial sampling λ is redundant and known through

eλ+λ
X
1 +λ

Y
1

n
+

eλ+λ
X
1

n
+

eλ+λ
Y
1

n
+

eλ

n
= 1.

That is
λ = log n − log

{
eλ

X
1 +λ

Y
1 + eλ

X
1 + eλ

Y
1 + 1

}
.
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Chapter 8 8.1 Two-way models

Under the additive model,

θ =
P(Y = 2|X = 2)/P(Y = 1|X = 2)

P(Y = 2|X = 1)/P(Y = 1|X = 1)

=
P(Y = 2,X = 2)/P(Y = 1,X = 2)

P(Y = 2,X = 1)/P(Y = 1,X = 1)

=
eλ/eλ+λ

Y
1

eλ+λ
X
1 /eλ+λ

X
1 +λ

Y
1

= 1.

This proves X ⊥ Y .
There are only two parameters in the model: λX1 and λY1 to estimate three
free probabilities in (π11, π12, π21, π22).
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Chapter 8 8.1 Two-way models

Under the interaction model we have

log(nπij) = λ+ λXi + λXj + λXYij ,

where λXY12 = λXY22 = λXY21 = 0. This adds one more non-zero parameter to
the model λXY11 for a total of three. There are only three degrees of
freedom in the table for (n11, n12, n21, n22) and thus the model is
saturated; three parameters λX1 , λ

Y
1 , λ

XY
11 to estimate three free

probabilities in (π11, π12, π21, π22). Then

θ =
P(Y = 2,X = 2)/P(Y = 1,X = 2)

P(Y = 2,X = 1)/P(Y = 1,X = 1)

=
eλ/eλ+λ

Y
1

eλ+λ
X
1 /eλ+λ

X
1 +λ

Y
1 +λXY11

= eλ
XY
11 .

The interaction term is a simple function of the odds ratio. We see that
X ⊥ Y iff λXY11 = 0 (i.e., iff λXYij = 0 for all i , j).
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Chapter 8 8.1 Two-way models

Subtable of Table 2.1 (p. 37):

Fatal Nonfatal
Placebo 18 171
Aspirin 5 99

SAS code:

data table ;
input Treat$ Outcome$ count @@;
datalines ;
1 1 18 1 2 171 2 1 5 2 2 99

;
proc format;
value $tc ’1’=’Placebo’ ’2’=’ Aspirin ’;
value $oc ’1’=’ Fatal ’ ’2’=’Nonfatal ’;
proc freq order=data; weight count;
format Treat $tc . Outcome $oc.;

tables Treat∗Outcome / norow nocol nopercent expected;
exact chisq or ;

proc genmod order=data; class Treat Outcome;
model count = Treat Outcome Treat∗Outcome /type3 dist=poi link=log; run;
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Chapter 8 8.1 Two-way models

Output:

The FREQ Procedure

Table o f Treat by Outcome

Treat Outcome

Frequency |
Expected | Fa t a l | Non fa t a l | Tota l
−−−−−−−−−+−−−−−−−−+−−−−−−−−+
Placebo | 18 | 171 | 189

| 14 .836 | 174 .16 |
−−−−−−−−−+−−−−−−−−+−−−−−−−−+
As p i r i n | 5 | 99 | 104

| 8 .1638 | 95 .836 |
−−−−−−−−−+−−−−−−−−+−−−−−−−−+
Tota l 23 270 293

S t a t i s t i c s f o r Table o f Treat by Outcome

S t a t i s t i c DF Value Prob
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Chi−Square 1 2 .0627 0 .1509
L i k e l i h o o d Rat i o Chi−Square 1 2 .2173 0 .1365

H. Chu (UM) Categorical Data Analysis 18 / 42



Chapter 8 8.1 Two-way models

Pearson Chi−Square Test
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Chi−Square 2 .0627
DF 1
Asymptot ic Pr > ChiSq 0 .1509
Exact Pr >= ChiSq 0.1782

Odds Rat i o ( Case−Con t r o l Study )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Odds Rat i o 2 .0842

Asymptot ic Conf L im i t s
95% Lower Conf L im i t 0 .7506
95% Upper Conf L im i t 5 .7872

Exact Conf L im i t s
95% Lower Conf L im i t 0 .7151
95% Upper Conf L im i t 7 .3897

Sample S i z e = 293
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Chapter 8 8.1 Two-way models

GENMOD output:

Ana l y s i s Of Parameter E s t ima t e s

Standard Wald 95% Con f i d ence Chi−
Parameter DF Es t imate E r r o r L im i t s Square Pr > ChiSq
I n t e r c e p t 1 4 .5951 0 .1005 4 .3981 4 .7921 2090.40 <.0001
Treat 1 1 0 .5465 0 .1263 0 .2990 0 .7941 18 .73 <.0001
Treat 2 0 0 .0000 0 .0000 0 .0000 0 .0000 . .
Outcome 1 1 −2.9857 0 .4584 −3.8841 −2.0873 42 .43 <.0001
Outcome 2 0 0 .0000 0 .0000 0 .0000 0 .0000 . .
Treat∗Outcome 1 1 1 0 .7344 0 .5211 −0.2869 1 .7557 1 .99 0 .1587
Treat∗Outcome 1 2 0 0 .0000 0 .0000 0 .0000 0 .0000 . .
Treat∗Outcome 2 1 0 0 .0000 0 .0000 0 .0000 0 .0000 . .
Treat∗Outcome 2 2 0 0 .0000 0 .0000 0 .0000 0 .0000 . .

As promised, e0.7344 = 2.0842 with CI (e−0.2869, e1.7557)
= (0.7506, 5.7875). We also obtain the p-value for the Wald test of
H0 : λXY11 = 0 in the saturated model, 0.1587, slightly different than the
Pearson or LRT tests obtained from PROC FREQ.
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Chapter 8 8.1 Two-way models

Now let us look at an example of I × J table. From Chapter 2 in
Christensen (1997) we have a sample of n = 52 males with ages from 11 to
30 with knee operations via arthroscopic surgery. They are cross-classified
according to X = 1, 2, 3 for injury type (twisted knee, direct blow, or both)
and Y = 1, 2, 3 for surgical result (excellent, good, or fair-to-poor).

nij Excellent Good Fair to poor Totals
Twisted knee 21 11 4 36
Direct blow 3 2 2 7
Both types 7 1 1 9

Totals 31 14 7 n = 52
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Chapter 8 8.1 Two-way models

with theoretical probabilities:

πij Excellent Good Fair to poor Totals
Twisted knee π11 π12 π13 π1+
Direct blow π21 π22 π23 π2+
Both types π31 π32 π33 π3+

Totals π+1 π+2 π+3 π++ = 1
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Chapter 8 8.1 Two-way models

SAS code:

data table ;
input Injury$ Result$ count @@;
datalines ;

1 1 21 1 2 11 1 3 4 2 1 3 2 2 2 2 3 2 3 1 7 3 2 1 3 3 1
;
proc format;
value $ic ’1’=’ twisted ’ ’2’=’ direct blow’ ’3’=’both’;
value $rc ’1’=’ excellent ’ ’2’=’good’ ’3’=’ fair−to−poor’;
proc freq order=data; weight count;
format Injury $ic . Result $rc .;
tables Injury ∗Result / chisq ;

proc genmod order=data; class Injury Result ;
model count = Injury Result / dist =poi link=log;
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Chapter 8 8.1 Two-way models

Output from PROC FREQ:

I n j u r y Re s u l t

Frequency |
Percent | e x c e l l e n | good | f a i r−to−| Tota l

| t | | poor |
−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
tw i s t e d | 21 | 11 | 4 | 36

| 40 .38 | 21 .15 | 7 .69 | 69 .23
−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
d i r e c t blow | 3 | 2 | 2 | 7

| 5 .77 | 3 .85 | 3 .85 | 13 .46
−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
both | 7 | 1 | 1 | 9

| 13 .46 | 1 .92 | 1 .92 | 17 .31
−−−−−−−−−−−−+−−−−−−−−+−−−−−−−−+−−−−−−−−+
Tota l 31 14 7 52

59 .62 26 .92 13 .46 100 .00

S t a t i s t i c s f o r Table o f I n j u r y by Re s u l t

S t a t i s t i c DF Value Prob
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Chi−Square 4 3 .2288 0 .5203
L i k e l i h o o d Rat i o Chi−Square 4 3 .1732 0 .5293
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Chapter 8 8.1 Two-way models

Output from PROC GENMOD:

C r i t e r i a For A s s e s s i n g Goodness Of F i t
C r i t e r i o n DF Value Value /DF
Dev iance 4 3 .1732 0 .7933
Sca l ed Dev iance 4 3 .1732 0 .7933
Pearson Chi−Square 4 3 .2288 0 .8072
Sca l ed Pearson X2 4 3.2288 0 .8072
Log L i k e l i h o o d 61.9602

An a l y s i s Of Parameter E s t ima t e s
Standard Wald 95% Con f i d ence Chi−

Parameter DF Est imate E r r o r L im i t s Square Pr > ChiSq
I n t e r c e p t 1 0 .1919 0 .4845 −0.7577 1 .1415 0 .16 0 .6921
I n j u r y 1 1 1 .3863 0 .3727 0 .6559 2 .1167 13 .84 0 .0002
I n j u r y 2 1 −0.2513 0 .5040 −1.2390 0 .7364 0 .25 0 .6180
I n j u r y 3 0 0 .0000 0 .0000 0 .0000 0 .0000 . .
R e s u l t 1 1 1 .4881 0 .4185 0 .6679 2 .3083 12 .65 0 .0004
Re s u l t 2 1 0 .6931 0 .4629 −0.2141 1 .6004 2 .24 0 .1343
Re s u l t 3 0 0 .0000 0 .0000 0 .0000 0 .0000 . .

LR S t a t i s t i c s For Type 3 An a l y s i s
Chi−

Source DF Square Pr > ChiSq
I n j u r y 2 28 .13 <.0001
Re s u l t 2 17 .37 0 .0002
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Chapter 8 8.1 Two-way models

Comments:

Pearson and LRT test statistics and df for independence from PROC
FREQ are the same as the GOF tests of the additive model versus the
saturated interaction model from PROC GENMOD fitting the Poisson
models.

P(χ2
4 > 3.1732) = 0.5293; compare to PROC FREQ.

λ̂ = 0.1919 = log 52− log
∑3

i=1

∑3
j=1 e

λ̂Xi +λ̂
Y
j from the last 6 rows of

the SAS GENMOD Analysis of Parameter Estimates.

We accept that X ⊥ Y , i.e. that πij = πi+π+j .

Testing whether we can drop either Result or Injury from the model
signficantly increases the difference in −2 times the log-likelihood (on
2 df for either test) and we reject the simpler models.
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Chapter 8 8.2 Three-way I × J × K tables

Now Let us move on to three-way I × J × K tables. We have n individuals
cross-classified on three variables (X ,Y ,Z ). Let nijk be the number out of
n = n+++ that are classified X = i , Y = j , and Z = k . We assume

nijk
ind .∼ Pois(µijk) and take a snapshot of the contingency table at

n = n+++, so conditionally the counts are multinomial.
As before, including ANOVA parameters for the log-mean in the Poisson
model will force certain types of dependence among (X ,Y ,Z ). The
saturated model is

logµijk = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk + λXYZijk ,

with the usual constraints on the parameters so the model is identifiable.
There are IJK − 1 free parameters in the model to estimate IJK − 1 free
probabilities in the table. Shorthand: [XYZ ].
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Chapter 8 8.2 Three-way I × J × K tables

1. X ⊥ Y ⊥ Z or [X ][Y ][Z ]
The additive model is

log(nπijk) = λ+ λXi + λYj + λZk .

The additive model implies complete independence:

P(X = i ,Y = j ,Z = k) = P(X = i)P(Y = j)P(Z = k),

i.e.
πijk = πi++π+j+π++k .

The shorthand for this model is [X ][Y ][Z ].
A test of the additive model versus the saturated model tests
H0 : X ⊥ Y ⊥ Z .
However, there are a number of models (7 total) between the additive
(mutual independence) model and the saturated model, each implying a
unique dependency structure among (X ,Y ,Z ).
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Chapter 8 8.2 Three-way I × J × K tables

2. [XY ][Z ], 3. [XZ ][Y ], or 4. [YZ ][X ]
There are three ways that one variable can be independent of the
remaining two: (X ,Y ) ⊥ Z , (X ,Z ) ⊥ Y , or (Y ,Z ) ⊥ X . These have
shorthand [XY ][Z ], [XZ ][Y ], or [YZ ][X ] respectively. These models imply
πijk = πij+π++k , πijk = πi+kπ+j+, or πijk = π+jkπi++ and have log-linear
model representation:

log(nπijk) = λ+ λXi + λYj + λZk + λXYij ,

log(nπijk) = λ+ λXi + λYj + λZk + λXZik ,

or
log(nπijk) = λ+ λXi + λYj + λZk + λYZjk .

[XY ][Z ] implies P(X = i ,Y = j ,Z = k) = P(X = i ,Y = j)P(Z = k),
etc.
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Chapter 8 8.2 Three-way I × J × K tables

5. [XZ ][YZ ], 6. [XY ][ZY ], or 7. [YX ][ZX ]
There are three ways that two variables can be independent conditional on
the other one: X ⊥ Y |Z , X ⊥ Z |Y , or Y ⊥ Z |X . These have shorthand
[XZ ][YZ ], [XY ][ZY ], or [YX ][ZX ] respectively. These models imply
P(X = i ,Y = j |Z = k) = P(X = i |Z = k)P(Y = j |Z = k),
P(X = i ,Z = k|Y = j) = P(X = i |Y = j)P(Z = k|Y = j), or
P(Y = j ,Z = k|X = i) = P(Y = j |X = i)P(Z = kj |X = i) and have
log-linear model representation:

log(nπijk) = λ+ λXi + λYj + λZk + λXZik + λYZjk ,

log(nπijk) = λ+ λXi + λYj + λZk + λXYij + λYZjk ,

or
log(nπijk) = λ+ λXi + λYj + λZk + λXYij + λXZik .
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Chapter 8 8.2 Three-way I × J × K tables

Note that the shorthand summarizes the highest-order interactions
included in the model as well as the dependence structure. This leaves two
last models:
8. [XY ][XZ ][YZ ] given by

log(nπijk) = λ+ λXi + λYj + λZk + λXYij + λYZjk + λXZik ,

and the saturated model
9. [XYZ ] given by

log(nπijk) = λ+ λXi + λYj + λZk + λXYij + λYZjk + λXZik + λXYZijk .

Both of these imply rather complex dependency structures. Please see pp.
321-322. Models 1-7 yield simplified dependency structure for (X ,Y ,Z )
and are preferred if one or more fit.
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Chapter 8 8.2 Three-way I × J × K tables

Choosing among log-linear models is an art.

Many contingency tables will have many, sometimes mostly, empty or
near-empty cells. The asymptotics involved in testing reduced models
relative to the saturated model are then tenuous at best.

Testing reduced models to (non-saturated) higher-order interaction
models is a bit safer. Browns tests of association are a useful tool to
find higher-order models from which to start from. See paper posted
on course website if interested .

An ad hoc but useful approach is to find models that minimize the
AIC and check “winning” model fit through a residual analysis.
That’s what we will do here.
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Chapter 8 8.2 Three-way I × J × K tables

Example: n = 2121 individuals during a 41
2 year study on cardiovascular

disease risk factors. They are cross-classified below according to
personality type A (e.g. workaholics) or B (e.g. relaxed graduate
students), cholesterol level normal or high, and diastolic blood pressure
normal or high. Lets call these factors P, C , and B.

Diastolic blood pressure
Personality Cholesterol Normal High

A Normal 716 79
High 207 25

B Normal 819 67
High 186 22
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SAS code:

data drugs;
input type chol bp count @@;
datalines ;
1 1 1 716 1 1 2 79
1 2 1 207 1 2 2 25
2 1 1 819 2 1 2 67
2 2 1 186 2 2 2 22
;
proc genmod order=data; class type chol bp;
model count = type|chol|bp / dist =poi link=log type3;
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With output

LR S t a t i s t i c s For Type 3 An a l y s i s

Chi−
Source DF Square Pr > ChiSq
type 1 0 .56 0 .4544
cho l 1 238 .24 <.0001
type∗ cho l 1 0 .33 0 .5642
bp 1 1109.42 <.0001
type∗bp 1 0 .82 0 .3665
cho l∗bp 1 1 .62 0 .2029
type∗ cho l∗bp 1 0 .61 0 .4336
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There are plenty of observations in each cell and a test of the saturated
model versus [PC ][PB][CB] should be approximately valid. Here we reject
that the 3-way interaction is necessary to model dependence and accept
the model [PC ][PB][CB]. Let’s refit this model via model count =

type|chol type|bp chol|bp / dist=poi link=log type3;

Chi−
Source DF Square Pr > ChiSq
type 1 1 .35 0 .2458
cho l 1 241 .43 <.0001
type∗ cho l 1 3 .95 0 .0469
bp 1 1114.32 <.0001
type∗bp 1 2 .37 0 .1240
cho l∗bp 1 1 .45 0 .2286
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We can further drop [CB] and so we fit model count = type|chol

type|bp / dist=poi link=log type3;

Chi−
Source DF Square Pr > ChiSq
type 1 1 .46 0 .2269
cho l 1 772 .43 <.0001
type∗ cho l 1 4 .12 0 .0423
bp 1 1645.33 <.0001
type∗bp 1 2 .54 0 .1111

The p-value for dropping [PB] is 0.11, a bit too close to 0.05 for comfort.
I’ll stop here and accept the model [PC ][PB]. We accept that given
personality type A or B, cholesterol level is independent of blood pressure
in this study population. Put another way, personality type has all the
information about blood pressure in it; nothing is to be gained from
knowing the cholesterol level. In fact, we can collapse the table over
cholesterol level if we want to estimate the relationship between blood
pressure and personality, without worrying about Simpson’s paradox.
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If we had accepted we could drop [PB] from the model, then the final
model would be [PC ][B], blood pressure is independent of the other two, a
much stronger assertion.
Higher order tables
All of these ideas generalize to higher order tables. A particular
(hierarchical) log-linear model corresponds to a dependence structure
among factors in the table. The shorthand for the association involves the
highest order interactions needed for reasonable fit in the model. For
example, say we have factors A,B,C ,D and the following model fits:

log(nπijkl) = λ+ λAi + λBj + λCk + λDl + λBDjk + λCDkl .

The shorthand is [A][BD][CD]. A is independent of the other three and
B ⊥ C |D.
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8.4.2: Seat belt example (pp. 327-329)

n = 68694 passengers in autos and light trucks involved in accidents in
Maine in 1991.

Injury
Gender Location Seat belt No Yes
Female Urban No 7287 996

Yes 11587 759
Rural No 3246 973

Yes 6134 757
Male Urban No 10381 812

Yes 10969 380
Rural No 6123 1084

Yes 6693 513

Fitting the model with all four 3-way interactions yields a p-value for
[GBI ] of 0.84. Replacing this term with [GB][GI ][BI ] yields
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Chi−
Source DF Square Pr > ChiSq
g 1 1 .86 0 .1725
l 1 292 .60 <.0001
g∗ l 1 86 .24 <.0001
b 1 49 .79 <.0001
g∗b 1 864 .76 <.0001
l∗b 1 3 .78 0 .0519
g∗ l∗b 1 15 .19 <.0001
i 1 47313.0 <.0001
g∗ i 1 405 .58 <.0001
l∗ i 1 736 .58 <.0001
g∗ l∗ i 1 2 .22 0 .1358
b∗ i 1 898 .90 <.0001
l∗b∗ i 1 3 .12 0 .0772

So we replace [GLI ] with [GL][GI ][LI ] and obtain:
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Chi−
Source DF Square Pr > ChiSq
g 1 1 .51 0 .2186
l 1 309 .33 <.0001
g∗ l 1 181 .34 <.0001
b 1 49 .79 <.0001
g∗b 1 869 .47 <.0001
l∗b 1 3 .31 0 .0690
g∗ l∗b 1 17 .04 <.0001
i 1 47612.6 <.0001
l∗ i 1 735 .91 <.0001
g∗ i 1 404 .72 <.0001
b∗ i 1 900 .36 <.0001
l∗b∗ i 1 3 .87 0 .0491

The deviance from this model is 3.59 on 3 df yielding a p-value of
0.31. The model is [LBI ][GLB][GI ]. This model has no simple
conditional independence interpretation, but rather is interpretable in
terms of odds ratios; we’ll explore this later.

This approach to model selection uses backwards elimination from a
fairly complex model. The model with all four 3-way interactions is
just one degree of freedom away from the saturated model. We will
discuss methods for assessing fit next time, namely residuals. We will
also discuss association graphs.
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Let’s reexamine the alligator food preference data. Call the factors F , S ,
L, and G for food, size, lake, and gender. The model with all 4 3-way
interactions crashes the program (separation occurs). A bit of model
building yields the following:

LR S t a t i s t i c s For Type 3 An a l y s i s

Chi−
Source DF Square Pr > ChiSq
l a k e 3 2 .88 0 .4105
gender 1 9 .88 0 .0017
l a k e∗gender 3 17 .72 0 .0005
s i z e 1 2 .80 0 .0945
l a k e∗ s i z e 3 4 .14 0 .2465
gender∗ s i z e 1 23 .85 <.0001
l a k e∗gender∗ s i z e 3 27 .02 <.0001
food 4 85 .71 <.0001
l a k e∗ food 12 49 .13 <.0001
s i z e∗ food 4 21 .09 0 .0003

This gives the model [GLS ][SF ][LF ] and the interpretation G ⊥ F |L, S .
Males and females eat similarly within a lake and size category.
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