Lecture 15
 PubH 7407: Analysis of Categorical Data Spring 2011

Haitao Chu, M.D., Ph.D.

University of Minnesota

A log-linear model is a Poisson model with ANOVA structure for the log-means of counts in a contingency table.

- We start with $I \times J$ tables and then consider multiway, e.g. $I \times J \times K \times L$ tables.
- Useful to determine conditional dependence relationships between variables.
- Can be generalized to non-categorical predictors.
- No one categorical variable is the outcome.

Let $n_{i j}$ be the counts in an $I \times J$ contingency table.

	$Y=1$	$Y=2$	\cdots	$Y=J$
$X=1$	n_{11}	n_{12}	\cdots	$n_{i J}$
$X=2$	n_{21}	n_{22}	\cdots	$n_{2 J}$
\vdots	\vdots	\vdots	\ddots	\vdots
$X=I$	$n_{I 1}$	$n_{I 2}$	\cdots	$n_{I J}$

The random, total number in the table is $n_{++}=\sum_{i=1}^{l} \sum_{j=1}^{J} n_{i j}$. We assume that each cell in the table is independent Poisson,

$$
n_{i j} \stackrel{i n d}{\sim} \text { Poisson }\left(\mu_{i j}\right)
$$

Different parameterizations for $\mu_{i j}$ lead to different distributions for (X, Y). The $\mu_{11}, \mu_{12}, \ldots, \mu_{I J}$ are the rates at which the (X, Y) fall into the cross-classified categories.

- Consider the simplest possible case: $X=1$ with rate μ_{1} and $X=2$ with rate μ_{2}. So X_{1}, \ldots, X_{n} are collected where $X_{i} \in\{1,2\}$. At any fixed time we can distribute the counts $n_{1}=\sum_{i=1}^{n} I\left\{X_{i}=1\right\}$ and $n_{2}=\sum_{i=1}^{n} I\left\{X_{i}=2\right\}$. So $n_{1} \sim \operatorname{Pois}\left(\mu_{1}\right) \perp n_{2} \sim \operatorname{Pois}\left(\mu_{2}\right)$.
- Conditional on $n,\left(n_{1}, n_{2}\right) \sim \operatorname{mult}\left(n,\left(p_{1}, p_{2}\right)\right)$ where $\left(p_{1}, p_{2}\right)=\left(\frac{\mu_{1}}{\mu_{1}+\mu_{2}}, \frac{\mu_{2}}{\mu_{1}+\mu_{2}}\right)$. Equivalently, $n_{1} \sim \operatorname{bin}\left(n, \frac{\mu_{1}}{\mu_{1}+\mu_{2}}\right)$.
- Note that given $n,\left(\mu_{1}, \mu_{2}\right)=(1,2)$ gives the same conditional distribution as $\left(\mu_{1}, \mu_{2}\right)=(100,200)$. The second set of rates simply implies that, e.g., $n=500$ is arrived at more quickly.
- The Poisson sampling version has two parameters: μ_{1} / μ_{2}, the relative rate at which $X=1$ versus $X=2$, and $\mu_{1}+\mu_{2}$, how fast data are coming in.
- The multinomial version has only one parameter $p_{1}=\mu_{1} /\left(\mu_{1}+\mu_{2}\right)$ and conditions on a total number collected n.

Some details

- Let (X, Y) be a pair of nominal or ordinal outcomes with $X \in\{1, \ldots, I\}$ and $Y \in\{1, \ldots, J\}$. We will collect n such pairs iid from the population: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- Let $n_{i j}=\sum_{k=1}^{n} I\left\{X_{k}=i, Y_{k}=j\right\}$ be the number of pairs $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ that fall into the $i^{\text {th }}$ category of X and the $j^{\text {th }}$ category of Y.
- We assume that data are collected over time and that the $n_{i j}$ are independent Poisson random variables with means $\mu_{i j}$. At any time we can stop the collection process and have a snapshot of the contingency table at that time. For example, if $n=n_{++}=1000$ people are sampled and cross-classified, we have a snapshot after $n=1000$ individuals are sampled.

We know $\left\{n_{i j}\right\}$ is distributed as $I \times J$ independent Poisson variables. But if we stop collecting data when $n_{++}=n$, what is the distribution? Recall that the sum of independent Poisson random variables is also Poisson with a rate that is the sum of the individual rates. So $n \sim \operatorname{Pois}\left(\sum_{i, j} \mu_{i j}\right)$.

$$
\begin{aligned}
p\left(n_{11}, \ldots, n_{I J} \mid n_{++}=n\right) & =\frac{p\left(n_{11}, \ldots, n_{I J}\right) l\left\{n_{++}=n\right\}}{P\left(n_{++}=n\right)} \\
& =\frac{I\left\{n_{++}=n\right\} \prod_{i, j} \frac{e^{-\mu_{i j} \mu_{i j}}}{n_{i j}!^{i j}}}{\frac{e^{-\sum_{i j} \mu_{i j}\left[\sum_{i j} \mu_{i j}\right]^{\sum_{i, j} n_{i j}}}}{\left[\sum_{i j} n_{i j}\right]!}} \\
& =\binom{n}{n_{11} \cdots n_{I J}} \prod_{i, j}\left[\frac{\mu_{i j}}{\mu_{++}}\right]^{n_{i j}} .
\end{aligned}
$$

- This pmf, subject to $n_{++}=n$, is a multinomial distribution with parameters n and $\mathbf{p}=\left(\mu_{11} / \mu_{++}, \ldots, \mu_{I J} / \mu_{++}\right)$.
- Put another way, Poisson sampling is equivalent to multinomial sampling where at any time such that $n_{++}=n$, $\pi_{i j}=P(X=i, Y=j)=\mu_{i j} / \mu_{++}$.
- Thus, fitting a Poisson model for the $\left(\mu_{11}, \ldots, \mu_{I J}\right)$ conditional on $n_{++}=n$ is the same as fitting the multinomial.
- We will fit log-linear models using the Poisson distribution in PROC GENMOD.
- The independence model (Section 4.3.6, p. 132; Section 8.1.1, pp. 314-315) stipulates

$$
\log \mu_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}
$$

- For identifiability, we must place restrictions on the parameters, e.g. $\lambda_{I}^{X}=\lambda_{J}^{Y}=0$. Then there are $(I-1)+(J-1)+1=I+J-1$ parameters to estimate: $\left(\lambda_{1}^{X}, \ldots, \lambda_{I-1}^{X}, \lambda_{1}^{Y}, \ldots, \lambda_{J-1}^{Y}, \lambda\right)$.
- Note that conditional on n, we have multinomial sampling and $\mu_{i j}=e^{\lambda} e^{\lambda_{i}^{X}} e^{\lambda_{j}^{Y}}=n \pi_{i+} \pi_{+j}$. That is, the intercept term λ adjusts the overall mean μ_{++}in the Poisson model and is a function of n as well as the other model parameters. However, it is not true that $e^{\lambda}=n$, $e^{\lambda_{i}^{X}}=\pi_{i+}$ and $e^{\lambda_{j}^{Y}}=\pi_{+j}$.

In fact, we know that $n_{++} \sim$ Poisson $\left(\mu_{++}\right)$and that the MLE of this is $\hat{\mu}_{++}=n_{++}=n$. So we must have

$$
n=\sum_{i=1}^{I} \sum_{j=1}^{J} e^{\hat{\lambda}} e^{\hat{\lambda}_{i}^{X}} e^{\hat{\lambda}_{j}^{Y}} .
$$

So,

$$
\hat{\lambda}=\log n-\log \sum_{i=1}^{\prime} \sum_{j=1}^{J} e^{\hat{\lambda}_{i}^{X}+\hat{\lambda}_{j}^{Y}} .
$$

Under multinomial sampling (conditional on $n_{++}=n$) the number of parameters $\left(\lambda_{1}^{X}, \ldots, \lambda_{I-1}^{X}, \lambda_{1}^{Y}, \ldots, \lambda_{J-1}^{Y}\right)$ drops by 1 , because λ is known, to $(I-1)+(J-1)$. Conditional on n, the model satisfies $\pi_{i j}=\pi_{i+} \pi_{+j}$.

There are 5 hierarchical models

Model	Interpretation
$\log \mu_{i j}=\lambda$	$X \perp Y, \pi_{i j}=\pi$
$\log \mu_{i j}=\lambda+\lambda_{i}^{X}$	$X \perp Y, \pi_{i j}=\pi_{i}$
$\log \mu_{i j}=\lambda+\lambda_{j}^{Y}$	$X \perp Y, \pi_{i j}=\pi_{j}$
$\log \mu_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}$	$X \perp Y, \pi_{i j}=\pi_{i+} \pi_{+j}$
$\log \mu_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}$	$X \not \perp Y$

We are typically only interested in the last two, as a means to test $H_{0}: X \perp Y$ versus $H_{1}: X \not \perp Y$. This boils down to testing $H_{0}: \lambda_{i j}^{X Y}=0$ in the full interaction model.

The interaction model is given by

$$
\log \mu_{i j}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}
$$

where $\lambda_{l}^{X}=0, \lambda_{J}^{Y}=0$, and $\lambda_{i j}^{X Y}=\lambda_{l j}^{X Y}=0$ for $i=1, \ldots, l$ and $j=1, \ldots, J$. So there are $(I-1)+(J-1)+(I-1)(J-1)=I J-1$ parameters to estimate in the multinomial interaction model, one for each cell.

- The LRT for independence from Chapter 3 is equivalent to testing the additive (most flexible independence model) to the interaction model in the Poisson GLM framework.
- The difference in parameters is

$$
(I-1)+(J-1)+(I-1)(J-1)-[(I-1)+(J-1)]=(I-1)(J-1)
$$

as we found before.

Let's examine 2×2 table first. Assume $X \in\{1,2\}$ and $Y \in\{1,2\}$, so the table has 4 cells:

	$Y=1$	$Y=2$
$X=1$	n_{11}	n_{12}
$X=2$	n_{21}	n_{22}

Assume multinomial sampling so

$$
\mathbf{n}=\left(n_{11}, n_{12}, n_{21}, n_{22}\right) \sim \operatorname{mult}\left\{n, \mathbf{p}=\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)\right\} .
$$

We write this $\left\{n_{i j}\right\} \sim \operatorname{mult}\left(n,\left\{\pi_{i j}\right\}\right)$ for short.
Let's examine the additive model for this table in some detail...

The additive model for $E\left(n_{i j}\right)=n \pi_{i j}$ is

$$
\log \left(n \pi_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{X} .
$$

We set $\lambda_{2}^{X}=\lambda_{2}^{Y}=0$ for identifiability. Then the cell means are

	$Y=1$	$Y=2$
$X=1$	$e^{\lambda+\lambda_{1}^{X}+\lambda_{1}^{Y}}$	$e^{\lambda+\lambda_{1}^{X}}$
$X=2$	$e^{\lambda+\lambda_{1}^{Y}}$	e^{λ}

Under multinomial sampling λ is redundant and known through

$$
\frac{e^{\lambda+\lambda_{1}^{X}+\lambda_{1}^{Y}}}{n}+\frac{e^{\lambda+\lambda_{1}^{X}}}{n}+\frac{e^{\lambda+\lambda_{1}^{Y}}}{n}+\frac{e^{\lambda}}{n}=1
$$

That is

$$
\lambda=\log n-\log \left\{e^{\lambda_{1}^{X}+\lambda_{1}^{Y}}+e^{\lambda_{1}^{X}}+e^{\lambda_{1}^{Y}}+1\right\} .
$$

Under the additive model,

$$
\begin{aligned}
\theta & =\frac{P(Y=2 \mid X=2) / P(Y=1 \mid X=2)}{P(Y=2 \mid X=1) / P(Y=1 \mid X=1)} \\
& =\frac{P(Y=2, X=2) / P(Y=1, X=2)}{P(Y=2, X=1) / P(Y=1, X=1)} \\
& =\frac{e^{\lambda} / e^{\lambda+\lambda_{1}^{Y}}}{e^{\lambda+\lambda_{1}^{X}} / e^{\lambda+\lambda_{1}^{X}+\lambda_{1}^{Y}}}=1 .
\end{aligned}
$$

This proves $X \perp Y$.
There are only two parameters in the model: λ_{1}^{X} and λ_{1}^{Y} to estimate three free probabilities in $\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)$.

Under the interaction model we have

$$
\log \left(n \pi_{i j}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{X}+\lambda_{i j}^{X Y}
$$

where $\lambda_{12}^{X Y}=\lambda_{22}^{X Y}=\lambda_{21}^{X Y}=0$. This adds one more non-zero parameter to the model $\lambda_{11}^{X Y}$ for a total of three. There are only three degrees of freedom in the table for $\left(n_{11}, n_{12}, n_{21}, n_{22}\right)$ and thus the model is saturated; three parameters $\lambda_{1}^{X}, \lambda_{1}^{Y}, \lambda_{11}^{X Y}$ to estimate three free probabilities in $\left(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}\right)$. Then

$$
\begin{aligned}
\theta & =\frac{P(Y=2, X=2) / P(Y=1, X=2)}{P(Y=2, X=1) / P(Y=1, X=1)} \\
& =\frac{e^{\lambda} / e^{\lambda+\lambda_{1}^{Y}}}{e^{\lambda+\lambda_{1}^{X}} / e^{\lambda+\lambda_{1}^{X}+\lambda_{1}^{Y}+\lambda_{11}^{X Y}}}=e^{\lambda_{11}^{X Y}} .
\end{aligned}
$$

The interaction term is a simple function of the odds ratio. We see that $X \perp Y$ iff $\lambda_{11}^{X Y}=0$ (i.e., iff $\lambda_{i j}^{X Y}=0$ for all i, j).

Subtable of Table 2.1 (p. 37):

	Fatal	Nonfatal
Placebo	18	171
Aspirin	5	99

SAS code:
data table;
input Treat\$ Outcome\$ count @@; datalines;

```
    1118121712152299
```

proc format;
value \$tc '1'='Placebo' '2'=' Aspirin ';
value \$oc '1'=' Fatal' '2'='Nonfatal ';
proc freq order=data; weight count;
format Treat \$tc. Outcome \$oc.;
tables Treat*Outcome / norow nocol nopercent expected;
exact chisq or;
proc genmod order=data; class Treat Outcome;
model count $=$ Treat Outcome Treat*Outcome /type3 dist=poi link=log; run;

Output:

Pearson Chi-Square Test	
Chi-Square	2.0627
DF	1
Asymptotic $\mathrm{Pr}>$ ChiSq	0.1509
Exact Pr>= ChiSq	0.1782
Odds Ratio (Case-Control	Study)
Odds Ratio	2.0842
Asymptotic Conf Limits	
95\% Lower Conf Limit	0.7506
95\% Upper Conf Limit	5.7872
Exact Conf Limits	
95\% Lower Conf Limit	0.7151
95\% Upper Conf Limit	7.3897
Sample Size $=293$	

GENMOD output:

Analysis Of Parameter Estimates

Parameter			DF	Estimate	Error	Limits		Square	$\mathrm{Pr}>\mathrm{ChiSq}$
Intercept			1	4.5951	0.1005	4.3981	4.7921	2090.40	$<.0001$
Treat	1		1	0.5465	0.1263	0.2990	0.7941	18.73	<. 0001
Treat	2		0	0.0000	0.0000	0.0000	0.0000		
Outcome	1		1	-2.9857	0.4584	-3.8841	-2.0873	42.43	<. 0001
Outcome	2		0	0.0000	0.0000	0.0000	0.0000		
Treat*Outcome	1	1	1	0.7344	0.5211	-0.2869	1.7557	1.99	0.1587
Treat*Outcome	1	2	0	0.0000	0.0000	0.0000	0.0000		
Treat*Outcome	2	1	0	0.0000	0.0000	0.0000	0.0000		
Treat*Outcome	2	2	0	0.0000	0.0000	0.0000	0.0000		

As promised, $e^{0.7344}=2.0842$ with $\mathrm{Cl}\left(e^{-0.2869}, e^{1.7557}\right)$
$=(0.7506,5.7875)$. We also obtain the p-value for the Wald test of $H_{0}: \lambda_{11}^{X Y}=0$ in the saturated model, 0.1587 , slightly different than the Pearson or LRT tests obtained from PROC FREQ.

Now let us look at an example of $\mathrm{I} \times \mathrm{J}$ table. From Chapter 2 in Christensen (1997) we have a sample of $n=52$ males with ages from 11 to 30 with knee operations via arthroscopic surgery. They are cross-classified according to $X=1,2,3$ for injury type (twisted knee, direct blow, or both) and $Y=1,2,3$ for surgical result (excellent, good, or fair-to-poor).

$n_{i j}$	Excellent	Good	Fair to poor	Totals
Twisted knee	21	11	4	36
Direct blow	3	2	2	7
Both types	7	1	1	9
Totals	31	14	7	$n=52$

with theoretical probabilities:

$\pi_{i j}$	Excellent	Good	Fair to poor	Totals
Twisted knee	π_{11}	π_{12}	π_{13}	π_{1+}
Direct blow	π_{21}	π_{22}	π_{23}	π_{2+}
Both types	π_{31}	π_{32}	π_{33}	π_{3+}
Totals	π_{+1}	π_{+2}	π_{+3}	$\pi_{++}=1$

SAS code:
data table;
input Injury\$ Result\$ count @@;
datalines ;
11211211134213222232317321331
;
proc format;
value \$ic '1'='twisted ' '2'=' direct blow' '3'='both';
value \$rc ' 1 '=' excellent ' ' 2 '='good' '3'=' fair -to-poor';
proc freq order=data; weight count;
format Injury \$ic. Result \$rc.;
tables Injury*Result / chisq;
proc genmod order=data; class Injury Result; model count $=$ Injury Result $/$ dist $=$ poi link $=$ log;

Output from PROC FREQ:

Injury	Result			
Frequency Percent	excellen t	good	$\left\lvert\, \begin{aligned} & \text { fair-to }-\mid \\ & \mid \text { poor } \end{aligned}\right.$	Total
twisted	21	11	4	36
	40.38	21.15	7.69	69.23
direct blow	3	2	2	7
	5.77	3.85	3.85	13.46
both	7	1	1	9
	13.46	1.92	1.92	17.31
Total	31	14	7	52
	59.62	26.92	13.46	100.00

Statistics for Table of Injury by Result

Statistic	DF	Value	Prob	
Chi-Square		4	3.2288	0.5203
Likelihood Ratio Chi-Square	4	3.1732	0.5293	

Output from PROC GENMOD:

Comments:

- Pearson and LRT test statistics and $d f$ for independence from PROC FREQ are the same as the GOF tests of the additive model versus the saturated interaction model from PROC GENMOD fitting the Poisson models.
- $P\left(\chi_{4}^{2}>3.1732\right)=0.5293$; compare to PROC FREQ.
- $\hat{\lambda}=0.1919=\log 52-\log \sum_{i=1}^{3} \sum_{j=1}^{3} e^{\hat{\lambda}_{i}^{X}+\hat{\lambda}_{j}^{Y}}$ from the last 6 rows of the SAS GENMOD Analysis of Parameter Estimates.
- We accept that $X \perp Y$, i.e. that $\pi_{i j}=\pi_{i+} \pi_{+j}$.
- Testing whether we can drop either Result or Injury from the model signficantly increases the difference in -2 times the log-likelihood (on $2 d f$ for either test) and we reject the simpler models.

Now Let us move on to three-way $I \times J \times K$ tables. We have n individuals cross-classified on three variables (X, Y, Z). Let $n_{i j k}$ be the number out of $n=n_{+++}$that are classified $X=i, Y=j$, and $Z=k$. We assume $n_{i j k} \stackrel{i n d}{\sim}$ Pois $\left(\mu_{i j k}\right)$ and take a snapshot of the contingency table at $n=n_{+++}$, so conditionally the counts are multinomial.
As before, including ANOVA parameters for the log-mean in the Poisson model will force certain types of dependence among (X, Y, Z). The saturated model is

$$
\log \mu_{i j k}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}+\lambda_{i j k}^{X Y Z},
$$

with the usual constraints on the parameters so the model is identifiable. There are $I J K-1$ free parameters in the model to estimate $I J K-1$ free probabilities in the table. Shorthand: $[X Y Z]$.

1. $X \perp Y \perp Z$ or $[X][Y][Z]$

The additive model is

$$
\log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z} .
$$

The additive model implies complete independence:

$$
P(X=i, Y=j, Z=k)=P(X=i) P(Y=j) P(Z=k)
$$

i.e.

$$
\pi_{i j k}=\pi_{i++} \pi_{+j+} \pi_{++k}
$$

The shorthand for this model is $[X][Y][Z]$.
A test of the additive model versus the saturated model tests $H_{0}: X \perp Y \perp Z$.
However, there are a number of models (7 total) between the additive (mutual independence) model and the saturated model, each implying a unique dependency structure among (X, Y, Z).
2. $[X Y][Z]$, 3. $[X Z][Y]$, or 4. $[Y Z][X]$

There are three ways that one variable can be independent of the remaining two: $(X, Y) \perp Z,(X, Z) \perp Y$, or $(Y, Z) \perp X$. These have shorthand $[X Y][Z],[X Z][Y]$, or $[Y Z][X]$ respectively. These models imply $\pi_{i j k}=\pi_{i j+} \pi_{++k}, \pi_{i j k}=\pi_{i+k} \pi_{+j+}$, or $\pi_{i j k}=\pi_{+j k} \pi_{i++}$ and have log-linear model representation:

$$
\begin{aligned}
& \log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y} \\
& \log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}
\end{aligned}
$$

or

$$
\log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{j k}^{Y Z}
$$

[$X Y][Z]$ implies $P(X=i, Y=j, Z=k)=P(X=i, Y=j) P(Z=k)$, etc.

5. $[X Z][Y Z]$, 6. $[X Y][Z Y]$, or 7. $[Y X][Z X]$

There are three ways that two variables can be independent conditional on the other one: $X \perp Y|Z, X \perp Z| Y$, or $Y \perp Z \mid X$. These have shorthand $[X Z][Y Z],[X Y][Z Y]$, or $[Y X][Z X]$ respectively. These models imply $P(X=i, Y=j \mid Z=k)=P(X=i \mid Z=k) P(Y=j \mid Z=k)$, $P(X=i, Z=k \mid Y=j)=P(X=i \mid Y=j) P(Z=k \mid Y=j)$, or $P(Y=j, Z=k \mid X=i)=P(Y=j \mid X=i) P(Z=k j \mid X=i)$ and have log-linear model representation:

$$
\begin{aligned}
& \log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}, \\
& \log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z},
\end{aligned}
$$

or

$$
\log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z} .
$$

Note that the shorthand summarizes the highest-order interactions included in the model as well as the dependence structure. This leaves two last models:
8. $[X Y][X Z][Y Z]$ given by

$$
\log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z},
$$

and the saturated model
9. $[X Y Z]$ given by

$$
\log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{j k}^{Y Z}+\lambda_{i k}^{X Z}+\lambda_{i j k}^{X Y Z} .
$$

Both of these imply rather complex dependency structures. Please see pp. 321-322. Models 1-7 yield simplified dependency structure for (X, Y, Z) and are preferred if one or more fit.

Choosing among log-linear models is an art.

- Many contingency tables will have many, sometimes mostly, empty or near-empty cells. The asymptotics involved in testing reduced models relative to the saturated model are then tenuous at best.
- Testing reduced models to (non-saturated) higher-order interaction models is a bit safer. Browns tests of association are a useful tool to find higher-order models from which to start from. See paper posted on course website if interested.
- An ad hoc but useful approach is to find models that minimize the AIC and check "winning" model fit through a residual analysis. That's what we will do here.

Example: $n=2121$ individuals during a $4 \frac{1}{2}$ year study on cardiovascular disease risk factors. They are cross-classified below according to personality type A (e.g. workaholics) or B (e.g. relaxed graduate students), cholesterol level normal or high, and diastolic blood pressure normal or high. Lets call these factors P, C, and B.

		Diastolic blood pressure	
Personality	Cholesterol	Normal	High
A	Normal	716	79
	High	207	25
B	Normal	819	67
	High	186	22

```
SAS code:
data drugs;
input type chol bp count @@;
datalines;
111716 112 79
121207 122 25
211819 2 12 67
221186 2 2 2 22
proc genmod order=data; class type chol bp;
    model count = type|chol|bp / dist = poi link=log type3;
```


With output

$$
\text { LR Statistics For Type } 3 \text { Analysis }
$$

Source	Chi- Square		
type	Pr $>$ ChiSq		
chol	1	0.56	0.4544
type $*$ chol	1	238.24	$<.0001$
bp	1	0.33	0.5642
type $*$ bp	1	1109.42	$<.0001$
chol*bp	1	0.82	0.3665
type*chol*bp	1	1.62	0.2029
	1	0.61	0.4336

There are plenty of observations in each cell and a test of the saturated model versus $[P C][P B][C B]$ should be approximately valid. Here we reject that the 3-way interaction is necessary to model dependence and accept the model $[P C][P B][C B]$. Let's refit this model via model count $=$ type|chol type|bp chol|bp / dist=poi link=log type3;

Source	DF	Square	Pr $>$ ChiSq
type	1	1.35	0.2458
chol	1	241.43	$<.0001$
type $*$ chol	1	3.95	0.0469
bp	1	1114.32	$<.0001$
type $*$ bp	1	2.37	0.1240
chol $*$ bp	1	1.45	0.2286

We can further drop [CB] and so we fit model count = typelchol typelbp / dist=poi link=log type3;

	Chi- Source		
DF	Square	Pr $>$ ChiSq	
type	1	1.46	0.2269
chol	1	772.43	$<.0001$
type $*$ chol	1	4.12	0.0423
bp	1	1645.33	$<.0001$
type $*$ bp	1	2.54	0.1111

The p-value for dropping $[P B]$ is 0.11 , a bit too close to 0.05 for comfort. I'll stop here and accept the model $[P C][P B]$. We accept that given personality type A or B, cholesterol level is independent of blood pressure in this study population. Put another way, personality type has all the information about blood pressure in it; nothing is to be gained from knowing the cholesterol level. In fact, we can collapse the table over cholesterol level if we want to estimate the relationship between blood pressure and personality, without worrying about Simpson's paradox.

If we had accepted we could drop $[P B]$ from the model, then the final model would be $[P C][B]$, blood pressure is independent of the other two, a much stronger assertion.

Higher order tables

All of these ideas generalize to higher order tables. A particular (hierarchical) log-linear model corresponds to a dependence structure among factors in the table. The shorthand for the association involves the highest order interactions needed for reasonable fit in the model. For example, say we have factors A, B, C, D and the following model fits:

$$
\log \left(n \pi_{i j k l}\right)=\lambda+\lambda_{i}^{A}+\lambda_{j}^{B}+\lambda_{k}^{C}+\lambda_{l}^{D}+\lambda_{j k}^{B D}+\lambda_{k l}^{C D} .
$$

The shorthand is $[A][B D][C D] . A$ is independent of the other three and $B \perp C \mid D$.

8.4.2: Seat belt example (pp. 327-329)

$n=68694$ passengers in autos and light trucks involved in accidents in Maine in 1991.

			Injury	
Gender	Location	Seat belt	No	Yes
Female	Urban	No	7287	996
		Yes	11587	759
	Rural	No	3246	973
Male		Urban	No	6134
		75381	812	
		Yes	10969	380
	Rural	No	6123	1084
		Yes	6693	513

Fitting the model with all four 3-way interactions yields a p-value for [GBI] of 0.84. Replacing this term with [GB][GI][BI] yields

| Source | DF | Chi- |
| :--- | ---: | ---: | ---: |
| Square | | |$\quad \operatorname{Pr}>$ ChiSq

So we replace [GLI] with [GL][GI][LI] and obtain:

| Source | DF | Chi- |
| :--- | ---: | ---: | ---: |
| Square | | |$\quad \operatorname{Pr}>$ ChiSq

- The deviance from this model is 3.59 on $3 d f$ yielding a p-value of 0.31 . The model is $[L B I][G L B][G I]$. This model has no simple conditional independence interpretation, but rather is interpretable in terms of odds ratios; we'll explore this later.
- This approach to model selection uses backwards elimination from a fairly complex model. The model with all four 3-way interactions is just one degree of freedom away from the saturated model. We will discuss methods for assessing fit next time, namely residuals. We will also discuss association graphs.

Let's reexamine the alligator food preference data. Call the factors F, S, L, and G for food, size, lake, and gender. The model with all 43 -way interactions crashes the program (separation occurs). A bit of model building yields the following:

LR Statistics For Type 3 Analysis

	Chi- Source		
DF	Square	Pr $>$ ChiSq	
lake	3	2.88	0.4105
gender	1	9.88	0.0017
lake $*$ gender	3	17.72	0.0005
size	1	2.80	0.0945
lake*size	3	4.14	0.2465
gender*size	1	23.85	$<.0001$
lake $*$ gender*size	3	27.02	$<.0001$
food	4	85.71	$<.0001$
lake $*$ food	12	49.13	$<.0001$
size $*$ food	4	21.09	0.0003

This gives the model [GLS][SF][LF] and the interpretation $G \perp F \mid L, S$. Males and females eat similarly within a lake and size category.

