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Chapter 8 & 9

More on log-linear models...

On model building:

Brown’s tests of association (not discussed) give large models to start
backwards elimination from. BMDP implements these.

Another approach is to try backward elimination from models with all
higher k-way interactions (e.g. 3-way).

G 2 is model deviance, the drop in −2 logL from reduced model to
saturated model; Agresti uses G 2 for model building.
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Chapter 8 & 9

9.3.1: Model Diagnostics

Let’s consider I × J × K tables for illustration. The ideas immediately
generalize.
A table has observed cell counts nijk and predicted under the model nπ̂ijk
where πijk is given by, e.g.,

log(nπijk) = λ+ λXi + λYj + λZk + λXYij + λXZik ,

for model [XY ][XZ ]. The ijkth raw residual is nijk − nπ̂ijk . A standardized
version based on Poisson sampling is given by

eijk =
nijk − nπ̂ijk√

nπ̂ijk
.
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Chapter 8 & 9

The standardized Pearson residual is rijk = eijk/
√

1− ĥijk . One can find

cells for which |rijk | > 3 and flag them as being ill-fit, or simply compare
the raw counts nijk to the fitted values nπ̂ijk .

proc genmod order=data; class type chol bp;
model count = type|chol type |bp / dist =poi link=log r;

Obse r va t i on S t a t i s t i c s

Std Std
Raw Pearson Dev iance Dev iance Pearson L i k e l i h o o d

Obse r va t i on Re s i d u a l R e s i d u a l R e s i d u a l R e s i d u a l R e s i d u a l R e s i d u a l
1 1 .5063291 0.0563535 0.0563337 0.3724586 0.3725894 0.3725864
2 −1.506329 −0.167882 −0.16841 −0.37376 −0.372589 −0.372827
3 −1.506329 −0.104318 −0.104444 −0.373039 −0.372589 −0.372625
4 1.5063291 0.3107738 0.3075386 0.3687106 0.3725894 0.3698952
5 5.0786106 0.1780138 0.1778292 1.4298604 1.431345 1.4313221
6 −5.078611 −0.598194 −0.605433 −1.448667 −1.431345 −1.434386
7 −5.078611 −0.3674 −0.369046 −1.437757 −1.431345 −1.431768
8 5.0786106 1.2346018 1.179489 1.3674495 1.431345 1.3840886

The StReschi have the rijk . All are within |rijk | < 3.

H. Chu (UM) Categorical Data Analysis 4 / 21



Chapter 8 & 9 9.1 Association graphs and collapsing tables

An association graph plots each factor as a vertex and connects
factors according to interaction terms in the log-linear model.

Recall the the example that looked at personality type P, blood
pressure B, and cholesterol C . We found the model [PC ][PB] fit.
This has association graph:

The two variables C and B are separated by P. All paths from C to
B go through P. This implies that C ⊥ B|P.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

From page 360: Suppose that a model for a multiway table partitions
variables into three mutually exclusive subsets A, B, and C such
that B separates A and C . After collapsing the table over the
variables in C , parameters relating to variables in A and parameters
relating A to B are unchanged. Also: A ⊥ C |B.
Alligator food example: the model [GLS ][SF ][LF ] fit the data. Then
A = {G}, C = {F} and B = {L,S} from the association graph:
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

We can collapse the table over gender and examine associations among
F , L,S without worrying about Simpson’s paradox (recall we dropped
gender from the model with food as the outcome). Also: F ⊥ G |L,S .
Example: Table 9.1 (p. 362). Five factors: M, C , A, G , R.
Model with all 10 3-factor interactions fits well with G 2 = 5.3 on 6 df
p-value is 0.5. Reduced model with all 10 2-factor interactions also fits
well with G 2 = 15.3 on 16 df and p-value is 0.5 (again).
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

data drug;
input g r a c m count @@;
datalines ;
0 1 1 1 1 405 0 1 1 1 0 268
0 1 1 0 1 13 0 1 1 0 0 218
0 1 0 1 1 1 0 1 0 1 0 17
0 1 0 0 1 1 0 1 0 0 0 117
1 1 1 1 1 453 1 1 1 1 0 228
1 1 1 0 1 28 1 1 1 0 0 201
1 1 0 1 1 1 1 1 0 1 0 17
1 1 0 0 1 1 1 1 0 0 0 133
0 0 1 1 1 23 0 0 1 1 0 23
0 0 1 0 1 2 0 0 1 0 0 19
0 0 0 1 1 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0 0 12
1 0 1 1 1 30 1 0 1 1 0 19
1 0 1 0 1 1 1 0 1 0 0 18
1 0 0 1 1 1 1 0 0 1 0 8
1 0 0 0 1 0 1 0 0 0 0 17
;
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

proc genmod;
class g r a c m;
model count=g|r|a g|r |c g| r |m g|a|c g|a|m g|c|m r|a|c r |a|m r|c |m a|c|m
/ link =log dist=poi type3;

proc genmod;
class g r a c m;
model count=g|r g|a g|c g|m r|a r |c r |m a|c a|m c|m
/ link =log dist=poi type3;
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

LR S t a t i s t i c s For Type 3 An a l y s i s

Chi−
Source DF Square Pr > ChiSq
g 1 5 .98 0 .0144
r 1 828 .44 <.0001
g∗ r 1 0 .84 0 .3597
a 1 378 .56 <.0001
g∗a 1 3 .38 0 .0661
c 1 20 .19 <.0001
g∗c 1 0 .98 0 .3230
m 1 248.74 <.0001
g∗m 1 9.82 0 .0017
r∗a 1 4 .98 0 .0256
r∗c 1 0 .44 0 .5056
r∗m 1 3.59 0 .0582
a∗c 1 185 .86 <.0001
a∗m 1 91.62 <.0001
c∗m 1 498.13 <.0001

We can remove [RC ]. Then [GR]. Then [GC ]. (Not shown).
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

proc genmod;
class g r a c m;
model count=g|a g|m r|a r |m a|c a|m c|m / link=log dist=poi type3;

Chi−
Source DF Square Pr > ChiSq
g 1 6 .20 0 .0127
a 1 428 .92 <.0001
g∗a 1 5 .51 0 .0189
m 1 264.33 <.0001
g∗m 1 8.90 0 .0029
r 1 834 .63 <.0001
r∗a 1 4 .78 0 .0288
r∗m 1 2.99 0 .0836
c 1 25 .49 <.0001
a∗c 1 187 .38 <.0001
a∗m 1 92.05 <.0001
c∗m 1 497.00 <.0001

The final model is [GA][GM][RA][RM][AC ][AM][CM]. This model has
G 2 = 17.54 on 19 df for a p-value of 0.55.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

The association graph looks like:
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

We see that C ⊥ G ⊥ R|M,A. For example, cigarette use is
independent of gender given marijuana and alcohol use.

What if we accept that r*m is not needed above (p = 0.083)? Then
race is connected to G , M, and C only through alcohol. We would
have R ⊥ (G ,M,C )|A, i.e. R ⊥ G |A, R ⊥ M|A, and R ⊥ C |A.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

8.2.3: I × J × K table interpretation for [XY ][XZ ][YZ ]

For 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1 define

θij(k) =
πi ,j ,k πi+1,j+1,k

πi ,j+1,k πi+1,j ,k
=

[
P(Y=j ,X=i |Z=k)

P(Y=j+1,X=i |Z=k)

]
[

P(Y=j ,X=i+1|Z=k)
P(Y=j+1,X=i+1|Z=k)

] .
There are (I − 1)(J − 1) local odds ratios at each level of Z = k . This
completely determines the dependence structure among X ,Y |Z = k .
For model [XY ][XZ ][YZ ] we have

log nπijk = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk .
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

This implies

log θij(k) = λXYi ,j + λXYi+1,j+1 − λXYi ,j+1 − λXYi+1,j .

So θij(1) = θij(2) = · · · = θij(K) for all i and j , the model of homogeneous
association.
Similarly, [XY ][XZ ][YZ ] implies θ(1)jk = θ(2)jk = · · · = θ(I )jk for all j and
k , and θi(1)k = θi(2)k = · · · = θi(J)k for all i and k . This is the difference
between [XY ][XZ ][YZ ] and the saturated model [XYZ ] in which there is
no homogeneous association.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

Section 8.5.3: [XY ][XZ ][YZ ] and logistic regression

Now let’s say Y is the outcome and is dichotomous. Then

log
P(Y = 1|X = i ,Z = k)

P(Y = 2|X = i ,Z = k)
= log

P(Y = 1,X = i ,Z = k)

P(Y = 2,X = i ,Z = k)

= log nπi1k − log nπi2k

=
[
λ+ λXi + λY1 + λZk + λXYi1 + λXZik + λYZ1k

]
−
[
λ+ λXi + λY2 + λZk + λXYi2 + λXZik + λYZ2k

]
=

[
λY1 − λY2

]
+
[
λXYi1 − λXYi2

]
+

[
λYZ1k − λYZ2k

]
≡ β0 + βXi + βZk ,

which corresponds to an additive logistic regression model.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

If all’s we care about is how (X ,Z ) relates to outcome Y , then
logistic regression model is okay.

If we are concerned with dependence structure among (X ,Y ,Z ), then
log-linear modeling is appropriate.

Table 8.11 gives the equivalent logistic regression model to several
log-linear models:

log-linear model logit model with outcome Y

[Y ][XZ ] logit P(Y = 1) = α
[XY ][XZ ] logit P(Y = 1) = βXi
[YZ ][XZ ] logit P(Y = 1) = βZk
[XY ][XZ ][YZ ] logit P(Y = 1) = βXi + βZk
[XYZ ] logit P(Y = 1) = βXi + βZk + βXZik

Question: where are [X ][Y ][Z ], [X ][YZ ], [Z ][XY ], and [XY ][YZ ]?
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

More on ‘collapsibility’

Recall “personality type” data, which had three factors: P, C , and B. We
decided [PC ][PB] fit the data.

Fitting [PC ][PB] yields λPC11 = −0.2176 and λPB11 = −0.2409.

Fitting [PC ], i.e. collapsing over blood pressure, yields
λPC11 = −0.2176 (same as above).

Fitting [PB], i.e. collapsing over cholesterol, yields λPB11 = −0.2409
(same as above).

In model [PC ][PB] we have

θ11(k) =
P(P = 1,C = 1|B = k)P(P = 2,C = 2|B = k)

P(P = 1,C = 2|B = k)P(P = 2,C = 1|B = k)
.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

In terms of the log-linear model parameters,

log θ11(k) =
[
λPC11 + λPB1k

]
+

[
λPC22 + λPB2k

]
−

[
λPC12 + λPB1k

]
−

[
λPC21 + λPB2k

]
= λPC11 ,

which is independent of k!

This is because λPC12 = λPC21 = λPC22 = 0 for identifiability.

So θ̂11(k) = e−0.2176 = 0.80. The odds of having normal cholesterol is
reduced 20% for personality type A (within each level of blood
pressure).

Collapsing over blood pressure yielding model [PC ] gives θ11 = λPC11
from the reduced model, which has exactly the same outcome
θ̂11 = 0.80.

As required by the collapsibility theorem, the marginal and conditional
interpretations are the same. No information is lost by collapsing the
table.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

Seat belt example revisited

The final model was [GLB][LBI ][GI ]. Can we say anything succinctly here?
Let’s see how the gender/injury odds ratio changes with levels of location
and belt use. Define

θ11(kl) =
P(G = 1, I = 1|L = k,B = l)P(G = 2, I = 2|L = k ,B = l)

P(G = 1, I = 2|L = k,B = l)P(G = 2, I = 1|L = k ,B = l)
.

In terms of log-linear model parameters,

log θ11(kl) =
[
λGLB11l + λILB1kl + λGI11

]
+

[
λGLB21l + λILB2kl + λGI22

]
−
[
λGLB11l + λILB2kl + λGI12

]
−
[
λGLB21l + λILB1kl + λGI21

]
= λGI11 ,

independent of L = k and B = l , the model of homogeneous association.
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Chapter 8 & 9 9.1 Association graphs and collapsing tables

What is the association graph for [GLB][LBI ][GI ]?

From the output (last set of slides), θ̂11(kl) = e−0.5459 = 0.58. The
odds of not being injured for females is 0.58 times the odds for males
within each (B, L) strata.

Fitting the table collapsed over B and L, i.e. fitting [GI ], we obtain
the marginal odds ratio θ̂11 = e−0.4128 = 0.66.

The marginal interpretation is not the same (but not that different!)
as the conditional interpretation. The conditions of the collapsibility
theorem are not satisfied here, and so the interpretation changes upon
collapsing the table.
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