Lecture 16 PubH 7407: Analysis of Categorical Data Spring 2011

Haitao Chu, M.D., Ph.D.

University of Minnesota

H. Chu (UM)

э

글 🖌 🖌 글 🕨

More on log-linear models...

On model building:

- Brown's tests of association (not discussed) give large models to start backwards elimination from. BMDP implements these.
- Another approach is to try backward elimination from models with all higher *k*-way interactions (e.g. 3-way).
- G^2 is model deviance, the drop in $-2\log \mathcal{L}$ from reduced model to saturated model; Agresti uses G^2 for model building.

・ロト ・回ト ・ヨト ・ヨト

9.3.1: Model Diagnostics

Let's consider $I \times J \times K$ tables for illustration. The ideas immediately generalize.

A table has observed cell counts n_{ijk} and predicted under the model $n\hat{\pi}_{ijk}$ where π_{ijk} is given by, e.g.,

$$\log(n\pi_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ},$$

for model [XY][XZ]. The *ijk*th raw residual is $n_{ijk} - n\hat{\pi}_{ijk}$. A standardized version *based on Poisson sampling* is given by

$$e_{ijk} = rac{n_{ijk} - n \hat{\pi}_{ijk}}{\sqrt{n \hat{\pi}_{ijk}}}.$$

The standardized Pearson residual is $r_{ijk} = e_{ijk}/\sqrt{1 - \hat{h}_{ijk}}$. One can find cells for which $|r_{ijk}| > 3$ and flag them as being ill-fit, or simply compare the raw counts n_{ijk} to the fitted values $n\hat{\pi}_{ijk}$.

proc genmod order=data; class type chol bp; model count = type|chol type|bp / dist=poi link=log r;

Observation Statistics

				Std	Std	
	Raw	Pearson	Deviance	Deviance	Pearson	Likelihood
Observation	Residual	Residual	Residual	Residual	Residual	Residual
1	1.5063291	0.0563535	0.0563337	0.3724586	0.3725894	0.3725864
2	-1.506329	-0.167882	-0.16841	-0.37376	-0.372589	-0.372827
3	-1.506329	-0.104318	-0.104444	-0.373039	-0.372589	-0.372625
4	1.5063291	0.3107738	0.3075386	0.3687106	0.3725894	0.3698952
5	5.0786106	0.1780138	0.1778292	1.4298604	1.431345	1.4313221
6	-5.078611	-0.598194	-0.605433	-1.448667	-1.431345	-1.434386
7	-5.078611	-0.3674	-0.369046	-1.437757	-1.431345	-1.431768
8	5.0786106	1.2346018	1.179489	1.3674495	1.431345	1.3840886

The StReschi have the r_{ijk} . All are within $|r_{ijk}| < 3$.

- An association graph plots each factor as a vertex and connects factors according to interaction terms in the log-linear model.
- Recall the the example that looked at personality type *P*, blood pressure *B*, and cholesterol *C*. We found the model [*PC*][*PB*] fit. This has association graph:

• The two variables C and B are separated by P. All paths from C to B go through P. This implies that $C \perp B|P$.

From page 360: Suppose that a model for a multiway table partitions variables into three mutually exclusive subsets *A*, *B*, and *C* such that *B* separates *A* and *C*. After collapsing the table over the variables in *C*, parameters relating to variables in *A* and parameters relating *A* to *B* are unchanged. Also: $A \perp C | B$. Alligator food example: the model [GLS][SF][LF] fit the data. Then $A = \{G\}, C = \{F\}$ and $B = \{L, S\}$ from the association graph:

・ロト ・四ト ・ヨト ・ ヨト

We can collapse the table over gender and examine associations among F, L, S without worrying about Simpson's paradox (recall we dropped gender from the model with food as the outcome). Also: $F \perp G|L, S$. Example: Table 9.1 (p. 362). Five factors: M, C, A, G, R. Model with all 10 3-factor interactions fits well with $G^2 = 5.3$ on 6 df p-value is 0.5. Reduced model with all 10 2-factor interactions also fits well with $G^2 = 15.3$ on 16 df and p-value is 0.5 (again).

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
proc genmod;

class g r a c m;

model count=g|r|a g|r|c g|r|m g|a|c g|a|m g|c|m r|a|c r|a|m r|c|m a|c|m

/ link=log dist=poi type3;

proc genmod;

class g r a c m;

model count=g|r g|a g|c g|m r|a r|c r|m a|c a|m c|m

/ link=log dist=poi type3;
```

LR Statistics For Type 3 Analysis

		Chi-	
Source	DF	Square	$\Pr > ChiSq$
g	1	5.98	0.0144
r	1	828.44	<.0001
g∗r	1	0.84	0.3597
а	1	378.56	<.0001
g*a	1	3.38	0.0661
с	1	20.19	<.0001
g*c	1	0.98	0.3230
m	1	248.74	<.0001
g*m	1	9.82	0.0017
r*a	1	4.98	0.0256
r * c	1	0.44	0.5056
r ∗m	1	3.59	0.0582
a*c	1	185.86	<.0001
a *m	1	91.62	<.0001
c*m	1	498.13	<.0001

We can remove [RC]. Then [GR]. Then [GC]. (Not shown).

3

・ロン ・雪 と ・ ヨ と ・

```
proc genmod;
class g r a c m;
model count=g|a g|m r|a r|m a|c a|m c|m / link=log dist=poi type3;
```

		Chi—	
Source	DF	Square	$\Pr > ChiSq$
g	1	6.20	0.0127
a	1	428.92	<.0001
g*a	1	5.51	0.0189
m	1	264.33	<.0001
g∗m	1	8.90	0.0029
r	1	834.63	<.0001
r*a	1	4.78	0.0288
r ∗m	1	2.99	0.0836
с	1	25.49	<.0001
a*c	1	187.38	<.0001
a *m	1	92.05	<.0001
c*m	1	497.00	<.0001

The final model is [GA][GM][RA][RM][AC][AM][CM]. This model has $G^2 = 17.54$ on 19 df for a p-value of 0.55.

The association graph looks like:

< □ > < 同 >

注入 不注入

æ

- We see that $C \perp G \perp R | M, A$. For example, cigarette use is independent of gender given marijuana and alcohol use.
- What if we accept that r*m is not needed above (p = 0.083)? Then race is connected to G, M, and C only through alcohol. We would have $R \perp (G, M, C)|A$, i.e. $R \perp G|A$, $R \perp M|A$, and $R \perp C|A$.

8.2.3: $I \times J \times K$ table interpretation for [XY][XZ][YZ]

For $1 \leq i \leq I-1$ and $1 \leq j \leq J-1$ define

$$\theta_{ij(k)} = \frac{\pi_{i,j,k} \ \pi_{i+1,j+1,k}}{\pi_{i,j+1,k} \ \pi_{i+1,j,k}} = \frac{\left[\frac{P(Y=j,X=i|Z=k)}{P(Y=j+1,X=i|Z=k)}\right]}{\left[\frac{P(Y=j,X=i+1|Z=k)}{P(Y=j+1,X=i+1|Z=k)}\right]}.$$

There are (I - 1)(J - 1) local odds ratios at each level of Z = k. This completely determines the dependence structure among X, Y|Z = k. For model [XY][XZ][YZ] we have

$$\log n\pi_{ijk} = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{jk}^{YZ}.$$

This implies

$$\log \theta_{ij(k)} = \lambda_{i,j}^{XY} + \lambda_{i+1,j+1}^{XY} - \lambda_{i,j+1}^{XY} - \lambda_{i+1,j}^{XY}.$$

So $\theta_{ij(1)} = \theta_{ij(2)} = \cdots = \theta_{ij(K)}$ for all *i* and *j*, the model of homogeneous association.

Similarly, [XY][XZ][YZ] implies $\theta_{(1)jk} = \theta_{(2)jk} = \cdots = \theta_{(I)jk}$ for all *j* and *k*, and $\theta_{i(1)k} = \theta_{i(2)k} = \cdots = \theta_{i(J)k}$ for all *i* and *k*. This is the difference between [XY][XZ][YZ] and the saturated model [XYZ] in which there is no homogeneous association.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Section 8.5.3: [XY][XZ][YZ] and logistic regression

Now let's say Y is the outcome and is dichotomous. Then

$$\begin{split} \log \frac{P(Y = 1 | X = i, Z = k)}{P(Y = 2 | X = i, Z = k)} &= \log \frac{P(Y = 1, X = i, Z = k)}{P(Y = 2, X = i, Z = k)} \\ &= \log n\pi_{i1k} - \log n\pi_{i2k} \\ &= \left[\lambda + \lambda_i^X + \lambda_1^Y + \lambda_k^Z + \lambda_{i1}^{XY} + \lambda_{ik}^{XZ} + \lambda_{1k}^{YZ}\right] \\ &- \left[\lambda + \lambda_i^X + \lambda_2^Y + \lambda_k^Z + \lambda_{i2}^{XY} + \lambda_{ik}^{XZ} + \lambda_{2k}^{YZ}\right] \\ &= \left[\lambda_1^Y - \lambda_2^Y\right] + \left[\lambda_{i1}^{XY} - \lambda_{i2}^{XY}\right] + \left[\lambda_{1k}^{YZ} - \lambda_{2k}^{YZ}\right] \\ &\equiv \beta_0 + \beta_i^X + \beta_k^Z, \end{split}$$

which corresponds to an additive logistic regression model.

< ロ > < 同 > < 回 > < 回 > < □ > <

- If all's we care about is how (X, Z) relates to outcome Y, then logistic regression model is *okay*.
- If we are concerned with dependence structure among (*X*, *Y*, *Z*), then log-linear modeling is appropriate.
- Table 8.11 gives the equivalent logistic regression model to several log-linear models:

log-linear model	logit model with outcome Y
[Y][XZ]	logit $P(Y = 1) = \alpha$
[XY][XZ]	$\text{logit } P(Y=1) = \beta_i^X$
[YZ][XZ]	logit $P(Y = 1) = \beta_k^Z$
[XY][XZ][YZ]	logit $P(Y = 1) = \beta_i^X + \beta_k^Z$
[XYZ]	$\text{logit } P(Y=1) = \beta_i^X + \beta_k^Z + \beta_{ik}^{XZ}$

• Question: where are [X][Y][Z], [X][YZ], [Z][XY], and [XY][YZ]?

イロト 不得 とうせい かほとう ほ

More on 'collapsibility'

Recall "personality type" data, which had three factors: P, C, and B. We decided [PC][PB] fit the data.

- Fitting [PC][PB] yields $\lambda_{11}^{PC} = -0.2176$ and $\lambda_{11}^{PB} = -0.2409$.
- Fitting [PC], i.e. collapsing over blood pressure, yields $\lambda_{11}^{PC} = -0.2176$ (same as above).
- Fitting [*PB*], i.e. collapsing over cholesterol, yields $\lambda_{11}^{PB} = -0.2409$ (same as above).
- In model [PC][PB] we have

$$\theta_{11(k)} = \frac{P(P=1, C=1|B=k)P(P=2, C=2|B=k)}{P(P=1, C=2|B=k)P(P=2, C=1|B=k)}.$$

イロト 不得 とうせい かほとう ほ

• In terms of the log-linear model parameters,

$$\log \theta_{11(k)} = \left[\lambda_{11}^{PC} + \lambda_{1k}^{PB}\right] + \left[\lambda_{22}^{PC} + \lambda_{2k}^{PB}\right] - \left[\lambda_{12}^{PC} + \lambda_{1k}^{PB}\right] - \left[\lambda_{21}^{PC} + \lambda_{2k}^{PB}\right] = \lambda_{11}^{PC},$$

which is independent of k!

- This is because $\lambda_{12}^{PC}=\lambda_{21}^{PC}=\lambda_{22}^{PC}=0$ for identifiability.
- So $\hat{\theta}_{11(k)} = e^{-0.2176} = 0.80$. The odds of having normal cholesterol is reduced 20% for personality type A (within each level of blood pressure).
- Collapsing over blood pressure yielding model [PC] gives $\theta_{11} = \lambda_{11}^{PC}$ from the reduced model, which has exactly the same outcome $\hat{\theta}_{11} = 0.80$.
- As required by the collapsibility theorem, the marginal and conditional interpretations are the same. No information is lost by collapsing the table.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Seat belt example revisited

The final model was [*GLB*][*LBI*][*GI*]. Can we say *anything* succinctly here? Let's see how the gender/injury odds ratio changes with levels of location and belt use. Define

$$\theta_{11(kl)} = \frac{P(G=1, l=1|L=k, B=l)P(G=2, l=2|L=k, B=l)}{P(G=1, l=2|L=k, B=l)P(G=2, l=1|L=k, B=l)}.$$

In terms of log-linear model parameters,

$$\log \theta_{11(kl)} = \left[\lambda_{11l}^{GLB} + \lambda_{1kl}^{ILB} + \lambda_{11}^{Gl} \right] + \left[\lambda_{21l}^{GLB} + \lambda_{2kl}^{ILB} + \lambda_{22}^{Gl} \right] \\ - \left[\lambda_{11l}^{GLB} + \lambda_{2kl}^{ILB} + \lambda_{12}^{Gl} \right] - \left[\lambda_{21l}^{GLB} + \lambda_{1kl}^{ILB} + \lambda_{21}^{Gl} \right] \\ = \lambda_{11}^{Gl},$$

independent of L = k and B = l, the model of homogeneous association.

What is the association graph for [GLB][LBI][GI]?

- From the output (last set of slides), $\hat{\theta}_{11(kl)} = e^{-0.5459} = 0.58$. The odds of not being injured for females is 0.58 times the odds for males within each (B, L) strata.
- Fitting the table *collapsed over* B and L, i.e. fitting [GI], we obtain the *marginal* odds ratio $\hat{\theta}_{11} = e^{-0.4128} = 0.66$.
- The marginal interpretation is not the same (but not *that* different!) as the conditional interpretation. The conditions of the collapsibility theorem are not satisfied here, and so the interpretation changes upon collapsing the table.