Lecture 16
 PubH 7407: Analysis of Categorical Data Spring 2011

Haitao Chu, M.D., Ph.D.

University of Minnesota

More on log-linear models...

On model building:

- Brown's tests of association (not discussed) give large models to start backwards elimination from. BMDP implements these.
- Another approach is to try backward elimination from models with all higher k-way interactions (e.g. 3-way).
- G^{2} is model deviance, the drop in $-2 \log \mathcal{L}$ from reduced model to saturated model; Agresti uses G^{2} for model building.

9.3.1: Model Diagnostics

Let's consider $I \times J \times K$ tables for illustration. The ideas immediately generalize.
A table has observed cell counts $n_{i j k}$ and predicted under the model $n \hat{\pi}_{i j k}$ where $\pi_{i j k}$ is given by, e.g.,

$$
\log \left(n \pi_{i j k}\right)=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z},
$$

for model $[X Y][X Z]$. The $i j k^{t h}$ raw residual is $n_{i j k}-n \hat{\pi}_{i j k}$. A standardized version based on Poisson sampling is given by

$$
e_{i j k}=\frac{n_{i j k}-n \hat{\pi}_{i j k}}{\sqrt{n \hat{\pi}_{i j k}}}
$$

The standardized Pearson residual is $r_{i j k}=e_{i j k} / \sqrt{1-\hat{h}_{i j k}}$. One can find cells for which $\left|r_{i j k}\right|>3$ and flag them as being ill-fit, or simply compare the raw counts $n_{i j k}$ to the fitted values $n \hat{\pi}_{i j k}$.
proc genmod order=data; class type chol bp; model count $=$ type|chol type $\mid \mathrm{bp} /$ dist $=$ poi link $=\log r$;

Observation Statistics

	Raw	Pearson	Deviance	Std Residual Residual Residual	Std Pearson	Lidual Relihood
Obsesidual						

The StReschi have the $r_{i j k}$. All are within $\left|r_{i j k}\right|<3$.

- An association graph plots each factor as a vertex and connects factors according to interaction terms in the log-linear model.
- Recall the the example that looked at personality type P, blood pressure B, and cholesterol C. We found the model $[P C][P B]$ fit. This has association graph:

- The two variables C and B are separated by P. All paths from C to B go through P. This implies that $C \perp B \mid P$.

From page 360: Suppose that a model for a multiway table partitions variables into three mutually exclusive subsets A, B, and C such that B separates A and C. After collapsing the table over the variables in C, parameters relating to variables in A and parameters relating A to B are unchanged. Also: $A \perp C \mid B$. Alligator food example: the model [GLS][SF][LF] fit the data. Then $A=\{G\}, C=\{F\}$ and $B=\{L, S\}$ from the association graph:

We can collapse the table over gender and examine associations among F, L, S without worrying about Simpson's paradox (recall we dropped gender from the model with food as the outcome). Also: $F \perp G \mid L, S$. Example: Table 9.1 (p. 362). Five factors: M, C, A, G, R. Model with all 103 -factor interactions fits well with $G^{2}=5.3$ on $6 d f$ p-value is 0.5 . Reduced model with all 102 -factor interactions also fits well with $G^{2}=15.3$ on $16 d f$ and p-value is 0.5 (again).

```
data drug;
input g r a c m count @@;
datalines ;
0111140501110268
011011301100218
0101110101017
01001101000117
1111145311110228
111012811100201
1101111101017
11001111000133
00111230011023
\(00101 \quad 20010019\)
\(00011 \quad 000010\)
\(00001 \quad 00000012\)
10111301011019
\(10101 \quad 11010018\)
100111100108
1000101000017
```

proc genmod; class g r a c m;
model count $=\mathrm{g}|\mathrm{r}| \mathrm{ag}|\mathrm{r}| \mathrm{c} \mathrm{g}|\mathrm{r}| \mathrm{m} \mathrm{g}|\mathrm{a}| \mathrm{c} \mathrm{g}|\mathrm{a}| \mathrm{m} \mathrm{g}|\mathrm{c}| \mathrm{m} \mathrm{r}|\mathrm{a}| \mathrm{c} \quad \mathrm{r}|\mathrm{a}| \mathrm{m} \mathrm{r}|\mathrm{c}| \mathrm{m} \mathrm{a}|\mathrm{c}| \mathrm{m}$ / link = log dist=poi type3;
proc genmod;
class g r a c m;
model count $=\mathrm{g}|\mathrm{r} \mathrm{g}| \mathrm{a} \mathrm{g}|\mathrm{c} \mathrm{g}| \mathrm{m}$ r|a r|c r|m a|c a|m c|m
/ link = log dist=poi type3;

LR Statistics For Type 3 Analysis

Source	Chi-		
g	DF	Square	Pr $>$ ChiSq
r	1	5.98	0.0144
g*r	1	828.44	$<.0001$
a	1	0.84	0.3597
g*a	1	378.56	$<.0001$
c	1	3.38	0.0661
g*c	1	20.19	$<.0001$
m	1	0.98	0.3230
g*m	1	248.74	$<.0001$
r*a	1	9.82	0.0017
$* *$	1	4.98	0.0256
r*m	1	0.44	0.5056
$\mathrm{a} * \mathrm{c}$	1	3.59	0.0582
$\mathrm{a} * \mathrm{~m}$	1	185.86	$<.0001$
$\mathrm{c} * \mathrm{~m}$	1	91.62	$<.0001$
	1	498.13	$<.0001$

We can remove $[R C]$. Then [GR]. Then [GC]. (Not shown).
proc genmod;
class g r a c m;
model count=g|ag|m r|ar|m a|c a|m c|m / link=log dist=poi type3;

Source	Chi-		
g	Square		

The final model is $[G A][G M][R A][R M][A C][A M][C M]$. This model has $G^{2}=17.54$ on $19 d f$ for a p-value of 0.55 .

The association graph looks like:

- We see that $C \perp G \perp R \mid M, A$. For example, cigarette use is independent of gender given marijuana and alcohol use.
- What if we accept that $r * m$ is not needed above $(p=0.083)$? Then race is connected to G, M, and C only through alcohol. We would have $R \perp(G, M, C) \mid A$, i.e. $R \perp G|A, \quad R \perp M| A$, and $R \perp C \mid A$.

8.2.3: $I \times J \times K$ table interpretation for $[X Y][X Z][Y Z]$

For $1 \leq i \leq I-1$ and $1 \leq j \leq J-1$ define

$$
\theta_{i j(k)}=\frac{\pi_{i, j, k} \pi_{i+1, j+1, k}}{\pi_{i, j+1, k} \pi_{i+1, j, k}}=\frac{\left[\frac{P(Y=j, X=i \mid Z=k)}{P(Y=j+1, X=i \mid Z=k)}\right]}{\left[\frac{P(Y=j, X=i+1 \mid Z=k)}{P(Y=j+1, X=i+1 \mid Z=k)}\right]}
$$

There are $(I-1)(J-1)$ local odds ratios at each level of $Z=k$. This completely determines the dependence structure among $X, Y \mid Z=k$. For model $[X Y][X Z][Y Z]$ we have

$$
\log n \pi_{i j k}=\lambda+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z} .
$$

This implies

$$
\log \theta_{i j(k)}=\lambda_{i, j}^{X Y}+\lambda_{i+1, j+1}^{X Y}-\lambda_{i, j+1}^{X Y}-\lambda_{i+1, j}^{X Y} .
$$

So $\theta_{i j(1)}=\theta_{i j(2)}=\cdots=\theta_{i j(K)}$ for all i and j, the model of homogeneous association.
Similarly, $[X Y][X Z][Y Z]$ implies $\theta_{(1) j k}=\theta_{(2) j k}=\cdots=\theta_{(I) j k}$ for all j and k, and $\theta_{i(1) k}=\theta_{i(2) k}=\cdots=\theta_{i(J) k}$ for all i and k. This is the difference between $[X Y][X Z][Y Z]$ and the saturated model $[X Y Z]$ in which there is no homogeneous association.

Section 8.5.3: $[X Y][X Z][Y Z]$ and logistic regression

Now let's say Y is the outcome and is dichotomous. Then

$$
\begin{aligned}
& \log \frac{P(Y=1 \mid X=i, Z=k)}{P(Y=2 \mid X=i, Z=k)}=\log \frac{P(Y=1, X=i, Z=k)}{P(Y=2, X=i, Z=k)} \\
= & \log n \pi_{i 1 k}-\log n \pi_{i 2 k} \\
= & {\left[\lambda+\lambda_{i}^{X}+\lambda_{1}^{Y}+\lambda_{k}^{Z}+\lambda_{i 1}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{1 k}^{Y Z}\right] } \\
& -\left[\lambda+\lambda_{i}^{X}+\lambda_{2}^{Y}+\lambda_{k}^{Z}+\lambda_{i 2}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{2 k}^{Y Z}\right] \\
= & {\left[\lambda_{1}^{Y}-\lambda_{2}^{Y}\right]+\left[\lambda_{i 1}^{X Y}-\lambda_{i 2}^{X Y}\right]+\left[\lambda_{1 k}^{Y Z}-\lambda_{2 k}^{Y Z}\right] } \\
\equiv & \beta_{0}+\beta_{i}^{X}+\beta_{k}^{Z},
\end{aligned}
$$

which corresponds to an additive logistic regression model.

- If all's we care about is how (X, Z) relates to outcome Y, then logistic regression model is okay.
- If we are concerned with dependence structure among (X, Y, Z), then log-linear modeling is appropriate.
- Table 8.11 gives the equivalent logistic regression model to several log-linear models:

$$
\begin{array}{ll}
\text { log-linear model } & \text { logit model with outcome } Y \\
\hline[Y][X Z] & \text { logit } P(Y=1)=\alpha \\
{[X Y][X Z]} & \text { logit } P(Y=1)=\beta_{i}^{X} \\
{[Y Z][X Z]} & \text { logit } P(Y=1)=\beta_{k}^{Z} \\
{[X Y][X Z][Y Z]} & \text { logit } P(Y=1)=\beta_{i}^{X}+\beta_{k}^{Z} \\
{[X Y Z]} & \text { logit } P(Y=1)=\beta_{i}^{X}+\beta_{k}^{Z}+\beta_{i k}^{X Z}
\end{array}
$$

- Question: where are $[X][Y][Z], \quad[X][Y Z], \quad[Z][X Y]$, and $[X Y][Y Z]$?

More on 'collapsibility'

Recall "personality type" data, which had three factors: P, C, and B. We decided $[P C][P B]$ fit the data.

- Fitting $[P C][P B]$ yields $\lambda_{11}^{P C}=-0.2176$ and $\lambda_{11}^{P B}=-0.2409$.
- Fitting $[P C]$, i.e. collapsing over blood pressure, yields $\lambda_{11}^{P C}=-0.2176$ (same as above).
- Fitting $[P B]$, i.e. collapsing over cholesterol, yields $\lambda_{11}^{P B}=-0.2409$ (same as above).
- In model $[P C][P B]$ we have

$$
\theta_{11(k)}=\frac{P(P=1, C=1 \mid B=k) P(P=2, C=2 \mid B=k)}{P(P=1, C=2 \mid B=k) P(P=2, C=1 \mid B=k)} .
$$

- In terms of the log-linear model parameters,

$$
\log \theta_{11(k)}=\left[\lambda_{11}^{P C}+\lambda_{1 k}^{P B}\right]+\left[\lambda_{22}^{P C}+\lambda_{2 k}^{P B}\right]-\left[\lambda_{12}^{P C}+\lambda_{1 k}^{P B}\right]-\left[\lambda_{21}^{P C}+\lambda_{2 k}^{P B}\right]=\lambda_{11}^{P C},
$$

which is independent of k !

- This is because $\lambda_{12}^{P C}=\lambda_{21}^{P C}=\lambda_{22}^{P C}=0$ for identifiability.
- So $\hat{\theta}_{11(k)}=e^{-0.2176}=0.80$. The odds of having normal cholesterol is reduced 20% for personality type A (within each level of blood pressure).
- Collapsing over blood pressure yielding model $[P C]$ gives $\theta_{11}=\lambda_{11}^{P C}$ from the reduced model, which has exactly the same outcome $\hat{\theta}_{11}=0.80$.
- As required by the collapsibility theorem, the marginal and conditional interpretations are the same. No information is lost by collapsing the table.

Seat belt example revisited

The final model was $[G L B][L B I][G I]$. Can we say anything succinctly here? Let's see how the gender/injury odds ratio changes with levels of location and belt use. Define

$$
\theta_{11(k l)}=\frac{P(G=1, I=1 \mid L=k, B=I) P(G=2, I=2 \mid L=k, B=I)}{P(G=1, I=2 \mid L=k, B=I) P(G=2, I=1 \mid L=k, B=I)} .
$$

In terms of log-linear model parameters,

$$
\begin{aligned}
\log \theta_{11(k l)}= & {\left[\lambda_{11 I}^{G L B}+\lambda_{1 k l}^{I L B}+\lambda_{11}^{G I}\right]+\left[\lambda_{21 I}^{G L B}+\lambda_{2 k l}^{I L B}+\lambda_{22}^{G I}\right] } \\
& -\left[\lambda_{11 I}^{G L B}+\lambda_{2 k l}^{I L B}+\lambda_{12}^{G I}\right]-\left[\lambda_{21 I}^{G L B}+\lambda_{1 k l}^{I L B}+\lambda_{21}^{G I}\right] \\
= & \lambda_{11}^{G I},
\end{aligned}
$$

independent of $L=k$ and $B=I$, the model of homogeneous association.

What is the association graph for [GLB][LBI][GI]?

- From the output (last set of slides), $\hat{\theta}_{11(\mathrm{kl})}=e^{-0.5459}=0.58$. The odds of not being injured for females is 0.58 times the odds for males within each (B, L) strata.
- Fitting the table collapsed over B and L, i.e. fitting [GI], we obtain the marginal odds ratio $\hat{\theta}_{11}=e^{-0.4128}=0.66$.
- The marginal interpretation is not the same (but not that different!) as the conditional interpretation. The conditions of the collapsibility theorem are not satisfied here, and so the interpretation changes upon collapsing the table.

