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a c-fold change in X(t) = HbA;. (¢ > 0). Therefore, the estimated coefficient
8 =317 represent a 35.3% increase in the risk of developing nephropathy per 10%
higher value of the current mean HbA;. at any point in time (¢ = 1.1), or a 28.4%
decrease in risk per 10% lower HbA . (¢ = 0.9). Using the 95% confidence limits
for 3 yields 95% confidence limits for the risk reduction per 10% lower HbA;.. of
(16.2, 38.8%).

Among the measures of explained variation described in Section 9.4.8, only
the crude approximate measure R? , may be readily applied because the model
included time-dependent covariates. Based on the likelihoed ratio chi-square test,
the log of the current mean HbA . explains 100(1 — exp(—17.811/316)) = 5.48%
of the vanation in risk. In DCCT (1995), such measures were used to describe the
relative importance of different covariates, not as an absolute measure of explained
variation.

In the analyses of the total conventional group, stratified by primary and sec-
ondary cohort, and also adjusting for the baseline level of the log albumin excretion
rate, the estimated coefficient ﬁ = 2.834 cormresponds to 25.8% risk reduction per
10% lower HbA,., with similar risk reductions in the primary and secondary in-
tervention cohorts (DCCT, 1995). Nearly equivalent results were obtained in the
intensive treatment group, 3 = 2.639. Thus virtually all of the difference between
the treatment groups in the risk of developing microalbuminuria was attributable to
the differences in the level of glycemia as represented by the HbA ..

9.5 EVALUATION OF SAMPLE SIZE AND POWER

9.5.1 Exponential Survival

In general, a distribution-free test such as the Mantel-logrank test is used for the

analysis of survival (event-time) data from two groups. In principle, the power
j of any such test can be assessed against any particular alternative hypothesis with
hazard functions that differ in some way over time. It is substantially simpler,
however, to consider the power of such tests assuming some simple parametric
model. The Mantel-logrank test is the most commonly used test in this setting,
which is asymptotically fully efficient against a proportional hazards or Lehmann
alternative. The simplest parametric form of this model is the exponential model
with constant hazard rates A; and A, over time in each group.

Asymptotically, the sample estimate of the log hazard rate log(\ ) is distributed
as Mllog(}), E(D|X)"!]. Thus the power of the test depends on the expected
total number of events E(D|)) to be observed during the study. Here E(D|\) =
NE(6|A), where 4 is a binary variable representing observation of the event (§ = 1)
versus right censoring of the event time (6 = 0); and E(5|)) is the probability that
the event will be observed as a function of A and the total exposure of the cohort
(patient years of follow-up). The test statistic then is T = log(/\ //\2) Under Hy:
1 A1 = A2 = X and the statistic has expectation pg = log(\;/A2) = 0, while under
; Hy, py = [log(A1) — log(A2)]. As in Section 3.3.1, let ¢; refer to the expected
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sample fraction expected in the ith group (i = 1,2) where E(n;) = N(;. Then
the variance of the test statistic under the alternative hypothesis is
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and under the null hypothesis is
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The basic equation relating sample size N and power Z, _ ais
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where A = (11 + (22 analogously to (3.34) in the test for proportions.

Lachin (1981) and Lachin and Foulkes (1986) present a similar expression for the
case wherg the test statistic is the difference in estimated hazard rates, 1" = /\1 - /\2
Freedman (1982) shows that these expressions can also be derived from the null
and alternative distributions of the Mantel-logrank statistic. As cited by Lachin
and Foulkes (1986), computations of sample size and power using the difference
in hazards are conservative relative to those using the log hazard ratio in that the
former yields larger required sample sizes, lower computed power for the same
values of Ay and Ag. As the difference in hazards approaches zero, the difference
in the two methods also approaches zero. In some respects the use of the difference
in hazards would be preferred because, in fact, the Mantel-Haenszel (logrank) test
statistic can be expressed as the weighted sum of the difference in the estimated
hazards between groups (see Section 9.6.3). Herein, however, we use the log hazard
ratio because generalizations also apply to the Cox PH model.

In the simplest case of a study with no censoring of event times, E(|A) =1
and the event times of all subjects are observed (N = D). In this case, the total
number of events D and power Z;_ g are obtained as the solutions to

Zl—a + Zl—ﬁ
VZIZ2 .

Thus the total number of events D required to provide power 1 — 3 to detect a
specified hazard ratio in a test at.level « is

_ (Zl—-a -+ Zl_p)2
G162 [log(A1/22))?

(George and Desu, 1974; Schoenfeld, 1981). Usually, however, there are censored
event times because of administrative curtailment of follow-up (administrative cen-
soring) or because of random losses to follow-up.

VD llog(\y) — log(Ag)| = (9.115)

(9.116)
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To allow for administrative censoring, let T's designate the maximum total length
of study. In the simplest case, each subject is followed for Ts years of exposure and
E(6]A) = 1~ e *Ts. Typically, however, patients enter a study during a period of
recruitment of Ty years and are then followed for a maximum total duration of Ts
years (T's > Tr) so that the first patient entered is followed for Ts years and the
last patient for Ts — T years. In a study with uniform entry over the recruitment
mnterval of T years and with no random losses to follow-up, it is readily shown
(see Problem 9.1.5) that

E(S|\) = [1 - (9.117)

ATg
(Lachin, 1981). Substitution into (9.114) and solving for N yields the sample size
needed to provide power 1 — § in a test at level o to detect a given hazard ratio,
say N ().

Rubenstein, Gail and Santner (1981) and Lachin and Foulkes (1986) present
generalizations that allow for randomly censored observations because of loss to
follow-up. Let +y; be an indicator variable that denotes loss to follow-up at random
during the study prior to the planned end at Ts. If we assume that times of loss
are exponentially distributed with constant hazard rate 7 over time, then for a study
with uniform entry the probability of the event is

e~ MTs~Tr) _ e—)\Ts}
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and the probability of loss to follow-up is
E(y|A,m) = -}E(5|/\,n) (9.119)

(see Problem 9.1.6). When 7; = 1, for the two groups, then the equation relating
sample size and power is obtained by substituting E(6|A,7) in (9.114) evaluated
at A, Ay, and A. When 7, # 7, then the probability of the event in each group
under Ho will differ. In this case, the general equation in (5.114) is modified to
employ the term

Zl—a
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In the more general case, where losses to follow-up may not be exponentially

distributed, Lachin and Foulkes (1986) show that the sample size with losses that
follow any distribution G(t) can be obtained approximately as

E@1N)
E[8|AG@))

(9.120)

N[AG@E)] = NV (9.121)

where E 6|\, G(t)] is the probability of an event during the study. Thus random
losses to follow-up, whatever their distribution, that result in a 10% reduction in
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the probability of the event being observed require that the sample size needed with
no losses to follow-up, N (1)), be increased by 11.1%.

For cases where the exponential model is known not to apply, Lakatos (1988)
describes the assessment sample size based on the power function of a weighted
Mantel-Haenszel test against an arbitrarily specified alternative hypothesis. In this
procedure one specifies the hazard rates in the control and experimental groups
over intervals of time along with other projected features of the study, such as
the proportion censored or lost to follow-up within each interval. This allows the
assessment of power under any alternative, including cases where the hazards may
not be proportional, or may even cross, and where the pattern of random censoring
is uneven over time and may differ between groups. Wallenstein and Wittes (1993)
also describe the power of the Mantel-logrank test in an analysis where the hazards
need not be constant nor proportional over time, although the Lakatos procedure is
more general.

9.5.2 Cox’s Proportional Hazards Model

As with the logistic regression model, the power function of a test for the vector of
coefficients in the Cox PH model is a function of the joint distribution of the vector
of covariates among those with the event and those not at each event time, which
are unknown. However, one can assess the power of a Wald or score test in a PH

model that is stratified by other factors. Under an exponential model, Lachin and .

Foulkes (1986) describe the relationship between sample size and power for a test
of the difference in hazards for two groups that is stratified by other factors. Since
the logrank test is the score test in a Cox PH model, these methods also apply,
approximately, to a test of the difference between groups in a Cox PH model with
other binary covariates that define a set of strata.

Schoenfeld (1983) showed that the probability of events in each of two groups
under the assumption of constant proportional hazards over strata can be obtained
if one has information on the survival function over time in the control group. Let
E(6) denote the resulting probability of an event in the total sample. Then the
sample size required to provide power 1 — 3 in a test at level a to detect a given
hazard ratio (RR) is provided as N = D/E(6), where D is the total number of
events required from (9.116) substituting RR for A\;/A;. Many, such as Palta and
Amini (1985), describe generalizations of this approach.

Example 9.10  Lupus Nephritis: A Study

Lewis, Hunsicker, Lan, et al. (1992) describe the results of a clinical trial of
plasmapheresis (plasma filtration and exchange) plus standard immunosuppressive
therapy versus standard therapy alone in the treatment of severe lupus nephritis. The
sample size for this study was based on two previous studies in which the survival
function was log-linear with constant hazard approximately A = 0.3 yielding median
survival of 2.31 years. Since lupus is a rare disease, recruitment was expected to be
difficult. Thus initial calculations determined the sample size required to provide
90% power to detect either a 40 or 50% risk reduction (relative hazards of 0.6 and
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