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Comparing Normal Means with Known Variance

Recall our set-up from last time
• Let X1,X2, . . . ,Xn be i .i .d . N

(
µx , σ

2
)

• Let Y1,Y2, . . . ,Yn be i .i .d . N
(
µy , σ

2
)

• σ2 known



Null hypothesis

Consider a two-sided test of

H0 : µx = µy vs. Ha : µx 6= µy



Fixed-sample test

• Collect n subjects in each group
• Test null hypothesis using the following test statistic

Zn =
X̄n − Ȳn√

2∗σ2

n

• Under the null, Zn ∼ N (0,1)

• Reject if |Zn| > Z1−α/2

• Results in type-1 error rate of α



Group Sequential Design

• Consider a group sequential design with K stopping times
• Define Zk analogously to Zn where Zk uses all observations at

the kth stopping time
• For now, assume that stopping time are equally spaced

throughout the trial
• That is, the sample size at the kth stopping time is k

K n



Definitions

Generalize definitions from previous lectures to K stopping times
• δ = µx − µy

• δ̂k = X̄k − Ȳk

• Ik = k
K

n
2∗σ2

• Zk = δ̂k
√

Ik



Sequential

For K stopping times, the sequence of test statistics (Z1, . . . ,ZK )
follows a multivariate normal distribution with
• E [Zk ] = δ

√
Ik for k = 1, . . . ,K .

• Var [Zk ] = 1 for k = 1, . . . ,K .
• Cov [Zk1 ,Zk2 ] =

√
Zk1/Ik2 for 1 ≤ k1 ≤ k2 ≤ K .



A General Stopping Rule

• Define critical values ck for k = 1, . . . ,K
• For k = 1, . . . ,K − 1

• If |Zk | > ck , stop and reject H0

• otherwise, continue to group k + 1
• For k = K

• If |ZK | > cK , stop and reject H0

• otherwise, stop and fail to reject H0



Example

Let K = 4
• |Z1| < c1, continue to group 2
• |Z2| < c2, continue to group 3
• |Z3| > c3, stop and reject H0



Example

Let K = 4
• |Z1| < c1, continue to group 2
• |Z2| < c2, continue to group 3
• |Z3| < c3, continue to group 4
• |Z4| < c4, stop and fail to reject H0



Key Question

Key Question:
• How do we choose the critical values?



Pocock Bounds

• The simplest approach to finding critical values is to use the
approach proposed by Pocock (1977)

• Identify a constant critical value that provides the correct overall
type-I error rate

• That is
• ck = CPK (α,K ) for all k = 1, . . . ,K
• Find CPK (α,K ) that provides the desired type-I error rate
• Note that CPK (α,K ) is a function of α and K



Pocock Bounds

• Formally, the Pocock test is as follows:
• For k = 1, . . . ,K − 1

• if |Zk | > CPK (α,K ), stop and reject H0

• otherwise, continue to group k + 1
• For k = K

• if |ZK | > cPK (α,K ), stop and reject H0

• otherwise, stop and fail to reject H0



Pocock Bounds: Example

• α = 0.05 and K = 4: CPK (α,K ) = 2.361
• c1 = 2.361
• c2 = 2.361
• c3 = 2.361
• c4 = 2.361



Pocock Bounds: Examples
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Pocock Bounds: Example

• α = 0.05 and K = 6: CPK (α,K ) = 2.453
• c1 = 2.361
• c2 = 2.361
• c3 = 2.361
• c4 = 2.361
• c5 = 2.361
• c6 = 2.361



Pocock Bounds: Examples
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CPK (α,K ) as a function of α and K

• CPK (α,K ) increases as K increases
• CPK (α,K ) increases as α decreases



Pocock: Advantages and Disadvantages

• Advantages
• Simple!
• Aggressive with regards to stopping early and, therefore, has small

expected sample size
• Disadvantages

• Substantial reduction in power requires and relatively large
increase in maximum sample size



O’Brien-Fleming Bounds

• A second approach, and possibly the most popular, was
proposed by O’Brien and Fleming in 1979

• O’Brien-Fleming Bounds using a very large critical value early in
the study and use progressively smaller critical value as the
study progresses

• Specifically:
• ck = COF (α,K )

√
K/k for all k = 1, . . . ,K

• Find COF (α,K ) that provides the desired type-I error rate



O’Brien-Fleming Bounds

• Formally, the O’Brien-Fleming test is as follows:
• For k = 1, . . . ,K − 1

• if |Zk | > COF (α,K )
√

K/k , stop and reject H0

• otherwise, continue to group k + 1
• For k = K

• if |ZK | > cOF (α,K ), stop and reject H0

• otherwise, stop and fail to reject H0



O’Brien-Fleming Boundaries: Example

• α = 0.05 and K = 4: COF (α,K ) = 2.024
• c1 = 4.048
• c2 = 2.862
• c3 = 2.337
• c4 = 2.024



O’Brien-Fleming Boundaries: Example
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O’Brien-Fleming Boundaries: Example

• α = 0.05 and K = 6: COF (α,K ) = 2.053
• c1 = 5.029
• c2 = 3.556
• c3 = 2.903
• c4 = 2.514
• c5 = 2.249
• c6 = 2.053



O’Brien-Fleming Boundaries: Example
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O’Brien Fleming: Advantages and Disadvantages

• Advantages
• Final critical value is close to critical value for fixed-sample design
• More powerful than Pocock and therefore requires a smaller

maximum sample size
• Disadvantages

• Less likely to stop early than Pocock boundaries and, therefore,
has larger expected sample size



Wang and Tsiatis Family of Tests

• Wang and Tsiatis (1987) proposed a family of sequential tests
indexed by a parameter ∆

• Specifically:
• ck = CWT (α,K ,∆) (k/K )∆−0.5 for all k = 1, . . . ,K
• 0 ≤ ∆ ≤ 0.5
• Find CWT (α,K ,∆) that provides the desired type-I error rate



Wang and Tsiatis Family of Tests

• Formally, the Wang and Tsiatis test is as follows:
• For k = 1, . . . ,K − 1

• if |Zk | > CWT (α,K ,∆) (k/K )∆−0.5, stop and reject H0

• otherwise, continue to group k + 1
• For k = K

• if |ZK | > cWT (α,K ,∆), stop and reject H0

• otherwise, stop and fail to reject H0



Relationship with Pocock and O’Brien-Fleming
Tests

• The Pocock and O’Brien-Fleming tests are special cases of the
Wang and Tsiatis Test

• ∆ = 0 produces O’Brien-Fleming boundaries
• ∆ = 0.5 produces Pocock Boundaries
• 0 < ∆ < 0.5 produces intermediate shapes



Wang and Tsiatis Boundaries

Examples
• CWT (α,K ,∆) is a function of α, K and ∆

• CWT (α,K ,∆) increases as ∆ increases
• α = 0.05, K = 6 and ∆ = 0.1: CWT (α,K ,∆) = 2.083
• α = 0.05, K = 6 and ∆ = 0.25: CWT (α,K ,∆) = 2.154
• α = 0.05, K = 6 and ∆ = 0.4: CWT (α,K ,∆) = 2.292

• CWT (α,K ,∆) increases as α and K



Wang and Tsiatis Boundaries: Example

• α = 0.05, K = 4 and ∆ = 0.25: CWT (α,K ,∆) = 2.113
• c1 = 2.988
• c2 = 2.513
• c3 = 2.271
• c4 = 2.113



Wang and Tsiatis Boundaries: Example
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Wang and Tsiatis Boundaries: Example

• α = 0.05, K = 6 and ∆ = 0.25: CWT (α,K ,∆) = 2.154
• c1 = 3.371
• c2 = 2.835
• c3 = 2.562
• c4 = 2.384
• c5 = 2.254
• c6 = 2.154



Wang and Tsiatis Bounds: Examples
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Haybittle-Peto Tests

• Haybittle (1971) and Peto (1976) suggest a simple approach of
using a very large critical value for the interim analysis and
adjusting hte final analyses to achieve the desired type-I error

• Specifically:
• ck = 3.0 for all k = 1, . . . ,K
• Find cK = CHP (α,K ) that provides the desired type-I error rate



Haybittle-Peto Test

• Formally, the Haybittle-Peto test is as follows:
• For k = 1, . . . ,K − 1

• if |Zk | > 3, stop and reject H0

• otherwise, continue to group k + 1
• For k = K

• if |ZK | > cHP (α,K ), stop and reject H0

• otherwise, stop and fail to reject H0



Haybittle-Peto Boundaries: Example

Examples
• α = 0.05 and K = 4: COF (α,K ) = 1.983

• c1 = 3
• c2 = 3
• c3 = 3
• c4 = 1.983



Haybittle-Peto Boundaries: Example
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Haybittle-Peto Boundaries: Example

Examples
• α = 0.05 and K = 6: COF (α,K ) = 1.997

• c1 = 3
• c2 = 3
• c3 = 3
• c4 = 3
• c5 = 3
• c6 = 1.997



Haybittle-Peto Boundaries: Example
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Haybittle-Peto Test: Advantages and
Disadvantages

• Advantages
• Simple!
• Results in final critical value close to critical value for fixed-sample

test
• Disadvantages

• It is not possible to find CHP that achieves the desired type-I error
rate for some combinations of α and K

• i.e. if α is too small or K is too large



Comparison of Stopping Boundaries

• We have discussed four types of stopping boundaries
• Pocock boundaries
• O’Brien-Fleming boundaries
• Wang and Tsiatis boundaries
• Haybittle-Peto boundaries



Comparison of Stopping boundaries
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Comparison of Stopping boundaries
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Comparison of Stopping boundaries

For α = 0.05 and K = 8

• At k = 1, from largest to smallest critical values
• O’Brien-Fleming
• Wang and Tsiatis
• Haybittle-Peto
• Pocock



Comparison of Stopping boundaries

For α = 0.05 and K = 8

• At k = 5, from largest to smallest critical values
• Haybittle-Peto
• O’Brien-Fleming
• Wang and Tsiatis
• Pocock



Comparison of Stopping boundaries

For α = 0.05 and K = 8

• At k = 8, from largest to smallest critical values
• Pocock
• Wang and Tsiatis
• O’Brien-Fleming
• Haybittle-Peto



Comparison of Stopping boundaries

• In general, there is a trade-off between the magnitude of critical
values at interim analysis and at study completion

• Studies with smaller critical values at the interim analyses will have
larger critical values at study completion

• O’Brien-Fleming and Heybittle-Peto boundaries have large critical
values at the interim analyses but relatively small critical values at
study completion

• Pocock boundaries have small critical values at the interim
analyses but large critical values at study completion



Comparison of Stopping boundaries

• The four stopping boundaries we’ve considered have the same
type-1 error rate

• How do they compare for?
• Power/maximum sample size
• Expected sample size



Power and Group Sequential Designs

• Recall that adding interim analyses decreases the power
• We must increase the maximum sample size to achieve the

desired power
• The increase in sample size will depend on α, 1− β, K and the

type of boundaries being used



Power Example: Pocock Boundaries

• When comparing means for two normally distributed random
variables, a sample size of 100 subjets per group provides 80%
power to detect a 0.4 standard deviation difference with α = 0.05

• Consider a group sequential test with K = 5 and Pocock
stopping boundaries

• Maximum sample size must be multiplied by 1.229 to achieve
80% power

• Maximum sample size increased to 123
• Interim analysis at n = 25, 50, 74 and 99



Maximum Sample Size Comparison

• Maximum Sample Size inflation factor for
• α = 0.05
• 1− β = 0.80

Boundary K = 4 K = 6 K = 8
Pocock 1.202 1.249 1.279

O’Brien-Fleming 1.024 1.032 1.037
Wang and Tsiatis: ∆ = 0.25 1.065 1.077 1.084

Haybittle-Peto 1.011 1.019 1.027



Maximum Sample Size Comparison

• Maximum Sample Size inflation factor for
• α = 0.05
• 1− β = 0.90

Boundary K = 4 K = 6 K = 8
Pocock 1.183 1.225 1.252

O’Brien-Fleming 1.022 1.030 1.034
Wang and Tsiatis: ∆ = 0.25 1.059 1.071 1.078

Haybittle-Peto 1.010 1.017 1.024



Maximum Sample Size Summary

• Maximum sample size is closely related to final critical value
• Stopping boundaries with smaller final critical values have

smaller maximum sample size
• Pocock boundaries require a large maximum sample size
• O’Brien-Fleming and Haybittle-Peto boundaries require only a

small increase in sample size
• Wang and Tsiatis boundaries are in the middle depending on ∆



Expected Sample Size

• Sample size is a random variable in a group sequential design
• We can compare designs by the expected sample size
• The expected sample size will depend on α, 1− β, K , the type of

boundaries being used and the true difference between groups



Expected Sample Size Example: Pocock
boundaries

• A fixed-sample test requires 100 subjets per group to achieve
80% power to detect a 0.4 standard deviation difference with
α = 0.05

• Pocock stopping boundaries with K = 5 requires a maximum
sample size of 123 to achieve 80

• The expected sample size depends on the true difference
between groups

• δ = 0: expected sample size equals 119.8
• δ = 0.2σ: expected sample size equals 110.4
• δ = 0.4σ: expected sample size equals 79.9
• δ = 0.6σ: expected sample size equals 50.1



Expected Sample Size Comparison

• Expected sample size as percentage of sample size required to
detect a difference of δ

• α = 0.05
• 1− β = 0.80
• K = 5

True Difference
Boundary 0 .5 δ δ 1.5 δ
Pocock 119.8 110.4 79.9 50.1

O’Brien-Fleming 102.1 97.9 81.8 61.9
Wang and Tsiatis: ∆ = 0.25 105.8 99.8 78.7 55.2

Haybittle-Peto 101.1 98.8 85.9 61.5



Expected Sample Size Comparison

• Expected sample size as percentage of sample size required to
detect a difference of δ

• α = 0.05
• 1− β = 0.90
• K = 5

True Difference
Boundary 0 .5 δ δ 1.5 δ
Pocock 117.7 105.2 68.5 41.2

O’Brien-Fleming 101.9 96.1 75.0 54.8
Wang and Tsiatis: ∆ = 0.25 105.3 97.0 70.4 47.3

Haybittle-Peto 100.9 97.6 78.8 50.8



Expected Sample Size: Summary

• Pocock boundaries result in dramatic increases in sample size
with no or small difference between groups but big savings with
large differences

• O’Brien-Fleming and Haybittle-Peto boundaries result in minimal
increase in sample size under null but less savings with large
differences

• Wang and Tsiatis boundaries are somewhere in between



How to pick K?

• How should we go about picking K when designing a study?
• We know that increasing K will increase the maximum sample

size.
• What about the expected sample size?

• It depends on the stopping boundaries and true difference between
groups



Effect of K on Expected Sample Size: Pocock

• Expected sample size as percentage of sample size required to
detect a difference of δ

• α = 0.05
• 1− β = 0.80

True Difference
Max SS 0 .5 δ δ 1.5 δ

K = 2 111.0 109.4 103.9 85.3 65.0
K = 3 116.6 114.3 106.7 81.9 56.0
K = 4 120.2 117.5 108.8 80.5 52.2
K = 5 122.9 119.8 110.4 79.9 50.1

K = 10 130.1 126.3 115.3 79.5 46.2
K = 15 133.8 129.7 118.1 80.0 45.1
K = 20 136.3 131.9 120.0 80.5 44.7



Effect of K on Expected Sample Size:
O’Brien-Fleming

• Expected sample size as percentage of sample size required to
detect a difference of δ

• α = 0.05
• 1− β = 0.80

True Difference
Max SS 0 .5 δ δ 1.5 δ

K = 2 100.8 100.5 99.0 90.2 71.9
K = 3 101.7 101.2 98.3 85.6 68.0
K = 4 102.4 101.7 98.0 83.1 64.1
K = 5 102.8 102.1 97.9 81.8 61.9

K = 10 104.0 103.1 97.9 79.1 58.1
K = 15 104.5 103.5 97.9 78.3 56.9
K = 20 104.7 103.7 97.9 77.9 56.3



Effect of K on Expected Sample Size: Wang and
Tsiatis

• Expected sample size as percentage of sample size required to
detect a difference of δ

• α = 0.05
• 1− β = 0.80
• ∆ = 0.25

True Difference
Max SS 0 .5 δ δ 1.5 δ

K = 2 103.8 103.0 99.7 86.0 66.1
K = 3 105.4 104.4 99.6 82.0 66.1
K = 4 106.5 105.2 99.7 79.9 57.1
K = 5 107.2 105.8 99.8 78.7 55.2

K = 10 108.9 107.3 100.2 76.2 51.3
K = 15 109.7 108.0 100.4 75.4 50.0
K = 20 110.1 108.3 100.5 75.0 49.4



Effect of K on Expected Sample Size:
Haybittle-Peto

• Expected sample size as percentage of sample size required to
detect a difference of δ

• α = 0.05
• 1− β = 0.80

True Difference
Max SS 0 .5 δ δ 1.5 δ

K = 2 100.3 100.2 99.2 92.5 75.7
K = 3 100.7 100.5 98.9 89.2 68.1
K = 4 101.1 100.8 98.8 87.2 64.0
K = 5 101.5 101.1 98.8 85.9 61.5

K = 10 103.3 102.5 99.3 83.0 55.6
K = 15 104.8 103.7 100.0 81.8 53.3
K = 20 106.1 104.8 100.7 81.3 51.9



Effect of K on Expected Sample Size: Summary

• In general, there is little benefit of more than 5 stopping times
• The decrease in expected sample size is minimal after K = 5

and the expected sample size actually increases in some cases
• The maximum sample size increases dramatically for the Pocock

boundaries
• Excessively large number of stopping times becomes unwieldy



Software

• The best (free) software I’ve found for calculating group
sequential stopping boundaries is the gsDesign package in R

• The gsDesign package will calculate Pocock, O’Brien-Fleming
and Wang and Tsiatis stopping boundaries (Haybittle-Peto
boundaries are not supported)

• The gsDesign package will calculate stopping boundaries,
maximum sample size and expected sample size under the null
and alternative hypothesis



Calculating Stopping Boundaries using the
gsDesign package

The primary function for calculating group sequential stopping
boundaries is the gsDesign function. Key inputs include:

• k: the number of stopping times
• test.type: one-sided, two-sided symmetric, two-sided

asymmetric, etc. For now, we’re only using two-sided symmetric,
which is coded as 2

• alpha: one-sided type-I error rate (i.e. use 0.025 for a two-sided
alpha of 0.05)

• beta: 1 - power



Calculating Stopping Boundaries using the
gsDesign package

• n.fix: sample size for a fixed-sample design
• sfu: boundary type, options include ”Pocock”, ”OF” for

O’Brien-Fleming and ”WT” for wang and tsiatis. Other options
are available and will be explained later in the semester

• sfupar: boundary parameter. This is ∆ for the Wang and Tsiatis
boundaries and is not used for Pocock or O’Brien-Fleming
boundaries



Calculating Stopping Boundaries: Example

Consider the following clinical trial to evaluate a new blood pressure
medication to the standard of care

• We will consider a randomized clinical trial with subjects
randomized in a 1:1 ratio to the new treatment and standard of
care

• The final outcome will by systolic blood pressure at 12 months
• We expect a difference of 5 mmHg
• The standard deviation is known to be 15 mmHg
• With α = 0.05 and 90% power, the sample size for a

fixed-sample design is 190 subjects per group



Calculating Stopping Boundaries: Example

Boundary type K Max SS E (SS|H0) E (SS|HA)
Fixed-sample 1 190 190 190

Pocock 5 230 223.6 130.1
O’Brien-Fleming 5 196 193.6 142.5

Wang and Tsiatis (∆ = 0.25) 5 203 200.0 133.7



Calculating Stopping Boundaries: Example

• The Pocock boundaries have the potential of a much larger
sample size than the other two options

• O’Brien-Fleming require 30 less subjects under the null but only
12.5 more under the alternative

• Wang and Tsiatis is even better:
• 23.6 less under the null
• 3.6 more under the alternative



Sequential Monitoring Example: MRFIT Study

• Randomized control trial on the prevention coronary heart
disease (CHD) mortality

• Men aged 35 - 57 years old
• No definitive evidence of CHD at baseline



MRFIT treatment

• Men were randomized to either usual care or experimental
intervention

• intervention: dietary counseling, smoking cessation counseling and
stepped-care hypertension medication

• usual care: treatment by usual primary care physician



MRFIT outcomes

• Men returned every year for six years and the following outcomes
were recorded

• medication use
• systolic blood pressure
• diastolic blood pressure
• triglycerides
• HDL cholesterol
• LDL cholesterol



Sequential monitoring in MRFIT

• We will focus on a subset of 800 (400 per group) and the
outcomes systolic and diastolic blood pressure at 24 months

• Consider group sequential designs with 5 stopping times at 80,
160, 240, 320 and 400 subjects per group

• We have two outcomes and will use a Bonferroni adjusted type-1
error rate of 0.025 for each outcome

• We will consider Pocock, O’Brien-Fleming and Wang and Tsiatis
boundaries



Stopping Boundaries

K n PK OF WT (∆ = 0.25)
1 160 2.67 5.15 3.57
2 320 2.67 3.64 3.01
3 480 2.67 2.97 2.72
4 640 2.67 2.58 2.53
5 800 2.67 2.30 2.39



Test statistic

• For our example, we will assume that the standard deviation for
SBP is 14 mmHg and standard deviation of DBP is 8.5, both
known

• Out test statistic, Zk will be defined as before

Zk =
X̄trt − X̄ctl√

2σ2/nk



Sequential test statistic: SBP

K n per group X̄trt X̄ctl Zk
1 80 123.7 125.7 -0.88
2 160 122.0 127.6 -3.60
3 240 121.4 128.2 -5.31
4 320 121.8 129.0 -6.53
5 400 121.8 128.8 -7.04



Sequential Monitoring of SBP: Pocock
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Sequential Monitoring of SBP: O’Brien-Fleming
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Sequential Monitoring of SBP: Wang and Tsiatis
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Sequential test statistic: DBP

K n per group X̄trt X̄ctl Zk
1 80 84.3 87.6 -1.52
2 160 83.6 86.9 -2.07
3 240 82.7 86.4 -2.87
4 320 82.5 87.0 -4.04
5 400 82.6 86.6 -4.13



Sequential Monitoring of DBP: Pocock
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Sequential Monitoring of DBP: O’Brien-Fleming
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Sequential Monitoring of DBP: Wang and Tsiatis

●

●
●

● ●

0 1 2 3 4 5 6

−
6

−
4

−
2

0
2

4
6

DBP at 24 months: Wang and Tsiatis Bounds (delta = 0.25)

Group

Z
_k

●

●
●

● ●



Sequential Monitoring of MRFIT: Conclusions

• We reject the null hypothesis for both endpoints
• Reject null for SBP after second stopping time for Pocock and

Wang and Tsiatis boundaries and after the third for
O’Brien-Fleming boundaries

• Reject null for DBP after third stopping time for Pocock and Wang
and Tsiatis boundaries and after the fourth for O’Brien-Fleming
boundaries

• Assuming that we would stop the trial only if both are rejected, we
would stop after the third interim analysis for Pocock and Wang
and Tsiatis boundaries and after the fourth for O’Brien-Fleming

• Therefore, we would require a sample size of 480 (240/group) for
the Pocock and Wang and Tsiatis boundaries and 640
(320/group) for the O’Brien-Fleming boundaries



Brownian Motion

Let W (t) be a continuous Gaussian process defined on 0 ≤ t ≤ 1.
W (t) is a Brownian Motion if:

• W (0) = 0
• E [W (t)] = t for all t ∈ [0,1]

• Cov [W (t1) ,W (t2)] = t1 for 0 ≤ t1 ≤ t2 ≤ 1



Properties of Brownian Motion

A nice property of Brownian motion is that Brownian Motion has
independent increments. That is,

• W (t2)−W (t1) and W (t4)−W (t3) are independent for
0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ 1



Samples Paths for Brownian Motion
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Partial Sum Process

Let X1,X2, . . . ,Xn be i.i.d. random variables with mean 0 and variance
1. Define the partial sum process, Sn (t) by

Sn (t) =
1√
n

[nt]∑
i=1

Xi

where [nt ] = k such that,

k
n
≤ t <

k + 1
n



Partial Sum Process and Brownian Motion

You can show that

Sn (t)→d W (t)

This a helpful result that allows us to derive the joint distribution of Zk .


