The Swarm: Causes and consequences of HIV quasispecies diversity

Julian Wolfson

Dept. of Biostatistics - Biology Project

August 14, 2008

- Success of HIV largely due to its ability to "escape" control of immune system/drug treatment via rapid mutation
- 10^9 10^{10} viral particles produced each day, ~ 3 mutations per particle \Rightarrow enormous diversity possible

- Success of HIV largely due to its ability to "escape" control of immune system/drug treatment via rapid mutation
- 10^9 10^{10} viral particles produced each day, ~ 3 mutations per particle \Rightarrow enormous diversity possible
- Vast majority of mutations cripple virus, but small number confer evolutionary advantage

- Success of HIV largely due to its ability to "escape" control of immune system/drug treatment via rapid mutation
- * 10^9 10^{10} viral particles produced each day, \sim 3 mutations per particle \Rightarrow enormous diversity possible
- Vast majority of mutations cripple virus, but small number confer evolutionary advantage

The Swarm

Within an infected person, HIV exists as a genetically diverse population of competing **quasispecies**

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity 00000	Summary
Quasi	specie	es					

Questions:

- How do we characterize HIV sequence diversity in an infected patient?
- What is the balance point between ability to resist selective pressure and overall viral function?
- How is quasispecies diversity maintained in the face of this pressure?
- What are the consequences of viral diversity?

Motivation				

- Sequencing Techniques
- O Viral Fitness
- **4** Inducing Diversity
- **6** Maintaining Diversity
- 6 Impact of Diversity

Summary

Infection						
0000	000	000	000000	000	00000	

- Sequencing Techniques
- O Viral Fitness
- Inducing Diversity
- **6** Maintaining Diversity
- **6** Impact of Diversity
- Summary

• Virus enters body, infects a number of possible target cells (eg. Langerhans, dendritic, macrophage, CD4)

- Virus enters body, infects a number of possible target cells (eg. Langerhans, dendritic, macrophage, CD4)
- Very high viral loads, CD4+ (T "helper" cell) levels drop dramatically
- Flu-like symptoms

- Virus enters body, infects a number of possible target cells (eg. Langerhans, dendritic, macrophage, CD4)
- Very high viral loads, CD4+ (T "helper" cell) levels drop dramatically
- Flu-like symptoms
- Vigorous CD8+ (T "killer" cell) response, killing many HIV-infected cells. CD4+ levels rebound, but do not reach original levels.

- Virus remains active in lymphoid tissue, mutations accumulate
- Reservoirs persist in other parts of the body (i.e. gut)
- Gradual decrease in CD4+ levels over a two-week to 20-year period

- CD4+ count drops to level where cell-mediated immunity is no longer effective
- Viral load rises sharply, progression to AIDS

	Sequencing					
0000	000	000	000000	000	00000	

- Sequencing Techniques
- O Viral Fitness
- Inducing Diversity
- **6** Maintaining Diversity
- **6** Impact of Diversity
- Summary

	Infection 0000	Sequencing ●○○	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity 00000	
Basic	Sequ	encing					

Issues

• Viral sequences may differ across tissues

Issues

- Viral sequences may differ across tissues
- May miss rare sequences, misrepresent population diversity
- If small number of genomes in original sample (ie. very low viral load), may amplify same template sequence more than once^a

- Isolate individual sequences via dilution, then amplify to get enough copies for sequencing
- Limited by number of individual genomes which can be sequenced in reasonable amount of time

- Yields large number of short (200-400 bp) "reads"
- Can be automated \Rightarrow fast
- Computational techniques for haplotype/frequency estimation

- Yields large number of short (200-400 bp) "reads"
- Can be automated \Rightarrow fast
- Computational techniques for haplotype/frequency estimation

Limitations

- Works best when known template sequence available
- Subject to quality of algorithms applied

	Viral Fitness		

- Sequencing Techniques
- O Viral Fitness
- Inducing Diversity
- **6** Maintaining Diversity
- 6 Impact of Diversity
- Summary

Motivation	Infection 0000	Sequencing 000	Viral Fitness ●00	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity 00000	Summary
Viral	fitness	;					

- Genetic variability causes individual viruses to have different abilities to:
 - 1 Infect cells
 - 2 Replicate within cells
 - 3 Cause clinical disease

Motivation	Infection 0000	Sequencing 000	Viral Fitness ●00	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity 00000	Summary
Viral	fitness	;					

- Genetic variability causes individual viruses to have different abilities to:
 - 1 Infect cells
 - 2 Replicate within cells
 - 3 Cause clinical disease
- For our purposes, *Viral fitness* = *Replication Capacity* / *Persistence* **in vivo**

Motivation	Infection 0000	Sequencing 000	Viral Fitness ●00	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity 00000	Summary
Viral	fitness						

- Genetic variability causes individual viruses to have different abilities to:
 - 1 Infect cells
 - 2 Replicate within cells
 - 3 Cause clinical disease
- For our purposes, *Viral fitness* = *Replication Capacity* / *Persistence* **in vivo**
- May differ from fitness in vitro

Figure: HIV quasispecies fitness maps for two individuals [Fernandez 2007]

Characteristics which affect a virus' ability to survive and replicate *in vivo* over a long period of time include:

- Epitope sequences
- Tissue tropism
- Ability of viral proteins (eg. protease, reverse transcriptase) to function efficiently in presence of Abs/ART

		Inducing Diversity		

- **2** Sequencing Techniques
- O Viral Fitness

4 Inducing Diversity

6 Maintaining Diversity

6 Impact of Diversity

Summary

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity	Maintaining Diversity 000	Impact of Diversity 00000	Summary
Initial	Infec	tion					

- Early quasispecies diversity limited by transmission bottleneck¹ (unrelated to replication capacity?)
- Quasispecies which become established are not necessarily fittest/most virulent of infecting population

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity	Maintaining Diversity 000	Impact of Diversity 00000	Summary
Initial	Infec	tion					

- Early quasispecies diversity limited by transmission bottleneck¹ (unrelated to replication capacity?)
- Quasispecies which become established are not necessarily fittest/most virulent of infecting population
- May decrease viral fitness over sequential transmissions²

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity	Maintaining Diversity 000	Impact of Diversity 00000	Summary		
Selection Forces									

After infection is established, three major selection forces act on HIV quasispecies:

- The host's natural immune response, mediated by antibodies and T cells
- **2** Competition between quasispecies for limited resources
- **3** Drug therapy, if applicable

- Antibodies attach to outer surface of circulating virus particles, neutralizing them
- In HIV, main target is viral envelope (encoded by env gene)
- Constant interplay³ between
 - Quasispecies mutation to avoid detection by antibodies
 - Production of antibodies which recognize currently circulating quasispecies

- T cells recognize **epitope**, small piece of viral protein presented on surface of infected cell
- Recognition of viral epitope triggers T-cell-mediated destruction of cell
- Viruses with "unrecognizable" epitopes can remain undetected in a cell
- Epitope presentation/recognition by CD8+ varies by individual's HLA type^a

^aLichterfeld 2005

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity	Maintaining Diversity 000	Impact of Diversity 00000	
Viral	Comp	etition					

- Fitness cost associated with escape mutations (CTL or HAART) can be high
- Viruses carrying these mutations may be out-competed by more efficient (eg. wild-type) virus in absence of selective pressure⁴
- Potential loss of resistance mutations forms the basis of "drug holiday" and "intermittent therapy" regimens

⁴Leslie 2004, Friedrich 2004

Quasispecies theory 5 shows why single-drug regimens (eg. AZT) failed:

• Initial therapy causes reduction in viral load, increases supply of uninfected cells

Quasispecies theory 5 shows why single-drug regimens (eg. AZT) failed:

- Initial therapy causes reduction in viral load, increases supply of uninfected cells
- Mutant strains resistant to (single) drug arise

Quasispecies theory 5 shows why single-drug regimens (eg. AZT) failed:

- Initial therapy causes reduction in viral load, increases supply of uninfected cells
- Mutant strains resistant to (single) drug arise
- Mutants, *nearly as fit as original strains*, benefit from large number of uninfected cells to maintain infection⁶

Quasispecies theory 5 shows why single-drug regimens (eg. AZT) failed:

- Initial therapy causes reduction in viral load, increases supply of uninfected cells
- Mutant strains resistant to (single) drug arise
- Mutants, *nearly as fit as original strains*, benefit from large number of uninfected cells to maintain infection⁶

Idea

Raise barriers to escape so that viruses which carry necessary mutations are likely to have low replication capacity

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity ○○○○●○	Maintaining Diversity 000	Impact of Diversity 00000	
HAAF	۲۲						

- Highly Active Anti-Retroviral Therapy now standard treatment in developed countries
- Involves a combination of three or more drugs from the following categories:
 - 1 Nucleoside Reverse Transcriptase Inhibitors (NRTI)
 - Non-Nucleoside RTIs (NNRTI)
 - 8 Protease Inhibitors (PI)
 - Integrase Inhibitors
 - 6 Entry Inhibitors
 - 6 Maturation Inhibitors
- Difficult for HIV to mutate to evade ≥ 3 drugs simultaneously without severe loss of replicative capacity

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity ○○○○○●	Maintaining Diversity	Impact of Diversity 00000	
Break	king b	ottlene	cks				

- "Drug holiday" and "intermittent therapy" regimes have had limited success in practice
- Recent studies⁷ have found quasispecies resistant to multiple drugs

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity ○○○○○●	Maintaining Diversity 000	Impact of Diversity 00000	
Break	king b	ottlene	cks				

- "Drug holiday" and "intermittent therapy" regimes have had limited success in practice
- Recent studies⁷ have found quasispecies resistant to multiple drugs

An Implacable Foe?

Intense selective pressure tends to create evolutionary bottlenecks which decrease quasispecies diversity...

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity ○○○○○●	Maintaining Diversity 000	Impact of Diversity 00000	
Break	king b	ottlene	cks				

- "Drug holiday" and "intermittent therapy" regimes have had limited success in practice
- Recent studies⁷ have found quasispecies resistant to multiple drugs

An Implacable Foe?

Intense selective pressure tends to create evolutionary bottlenecks which decrease quasispecies diversity... but viral population remains heterogeneous

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity ○○○○○●	Maintaining Diversity 000	Impact of Diversity 00000	
Break	king b	ottlene	cks				

- "Drug holiday" and "intermittent therapy" regimes have had limited success in practice
- Recent studies⁷ have found quasispecies resistant to multiple drugs

An Implacable Foe?

Intense selective pressure tends to create evolutionary bottlenecks which decrease quasispecies diversity... but viral population remains heterogeneous

How is quasispecies diversity maintained?

		Maintaining Diversity	

1 HIV Infection, briefly

- Sequencing Techniques
- **3** Viral Fitness
- Inducing Diversity
- Maintaining Diversity
- **6** Impact of Diversity
- Summary

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity ●00	Impact of Diversity 00000	Summary
Recor	mbina	tion					

• A major force for introducing new (possibly resistant) quasispecies into viral population

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity ●00	Impact of Diversity 00000	Summary
Recor	mbina	tion					

- A major force for introducing new (possibly resistant) quasispecies into viral population
- Possibly also a mechanism for avoiding evolutionary bottlenecks⁸:
 - Fitness "peak jumping"
 - Limit size of regions which are homogeneous across quasispecies

				Maintaining Diversity ○●○	
Comp	bartme	entaliza	ation		

 Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF⁹, breast milk¹⁰, genital tract¹¹, and CD4 cells¹²

				Maintaining Diversity ○●○	
Comp	bartme	entaliza	ation		

- Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF⁹, breast milk¹⁰, genital tract¹¹, and CD4 cells¹²
- Further evidence of compartmentalization within certain organs $(gut^{13}, brain^{14})$

				Maintaining Diversity ○●○	
Comp	bartme	entaliza	ation		

- Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF⁹, breast milk¹⁰, genital tract¹¹, and CD4 cells¹²
- Further evidence of compartmentalization within certain organs $(gut^{13}, brain^{14})$
- May arise as response to different biological conditions within compartments

- Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF⁹, breast milk¹⁰, genital tract¹¹, and CD4 cells¹²
- Further evidence of compartmentalization within certain organs $(gut^{13}, brain^{14})$
- May arise as response to different biological conditions within compartments
- Some suggestion that reservoirs may exchange genetic information (Diem, Harrington)

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 00●	Impact of Diversity 00000	
Archi	ving						

• Resting T cells can harbour replication-competent virus over a long period of time

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 00●	Impact of Diversity 00000	
Archi	ving						

- Resting T cells can harbour replication-competent virus over a long period of time
- \Rightarrow Allows for archiving of quasispecies over *entire infection history*¹⁵

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 00●	Impact of Diversity 00000	
Archi	ving						

- Resting T cells can harbour replication-competent virus over a long period of time
- \Rightarrow Allows for archiving of quasispecies over *entire infection history*¹⁵
- Macrophages, other cell types may also serve similar archiving role

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 00●	Impact of Diversity 00000	
Archi	ving						

- Resting T cells can harbour replication-competent virus over a long period of time
- \Rightarrow Allows for archiving of quasispecies over *entire infection history*¹⁵
- Macrophages, other cell types may also serve similar archiving role
- "Rewind" ability allows HIV to adapt quickly to change in biological conditions

			Impact of Diversity	

1 HIV Infection, briefly

- **2** Sequencing Techniques
- **3** Viral Fitness
- Inducing Diversity
- **6** Maintaining Diversity
- 6 Impact of Diversity
- Summary

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity	
Impa	ct of [Diversit	.y				

- Quasispecies diversity plays an important role in ensuring HIV's survival by
 - 1 Ensuring the stability of the viral population
 - Improving adaptability to different biological conditions through cooperative interactions
 - 3 Helping to thwart drug therapy regimes

- Theory based on ideas of Eigen and Schuster $^{16},\ ``verified''\ in\ silico$ 17 and $in\ vivo$ 18
- **Basic idea:** Collection of quasispecies with higher *average* fitness will outcompete one with lower average fitness, even if latter contains individuals with very high fitness

			Impact of Diversity ○●○○○	

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity	Summary
Соор	erative	e intera	actions				

Quasispecies theory predicts that viral populations, not individual variants, are the target of evolutionary selection.

Neat experiment [Vignuzzi 2006]

Compare growth of wild-type (WT) poliovirus to one with high-fidelity (HF) polymerase in vitro and in vivo

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity ○○○●○	Summary
Coop	erativ	e intera	actions.	cont'd.			

- WT outcompetes HF under adverse conditions
- $\bullet \ \Rightarrow \ \text{Limiting quasispecies diversity lowers replication capacity}$

Results - in vivo

- WT outcompetes HF under adverse conditions
- $\bullet \ \Rightarrow \ \text{Limiting quasispecies diversity lowers replication capacity}$

Results - in vivo

• HF highly attenuated as compared to WT, unable to survive in neurological tissue

- WT outcompetes HF under adverse conditions
- $\bullet \ \Rightarrow \ \text{Limiting quasispecies diversity lowers replication capacity}$

Results - in vivo

- HF highly attenuated as compared to WT, unable to survive in neurological tissue
- Artificially increasing quasispecies diversity in HF population restored pathogenicity/neurotropism to WT levels

- WT outcompetes HF under adverse conditions
- $\bullet \ \Rightarrow \ \text{Limiting quasispecies diversity lowers replication capacity}$

Results - in vivo

- HF highly attenuated as compared to WT, unable to survive in neurological tissue
- Artificially increasing quasispecies diversity in HF population restored pathogenicity/neurotropism to WT levels
- Artifically diversified HF and WT brain isolates genetically indistinguishable, but only WT isolate was neurotropic when injected into a new host!

- WT outcompetes HF under adverse conditions
- $\bullet \ \Rightarrow \ \text{Limiting quasispecies diversity lowers replication capacity}$

Results - in vivo

- HF highly attenuated as compared to WT, unable to survive in neurological tissue
- Artificially increasing quasispecies diversity in HF population restored pathogenicity/neurotropism to WT levels
- Artifically diversified HF and WT brain isolates genetically indistinguishable, but only WT isolate was neurotropic when injected into a new host!

Conclusion

Sequence diversity **itself**, not particular set of mutations, determines pathogenesis

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity ○○○○●	Summary
Drug	resist	ance					

• **Compartmentalization** can limit effectiveness of drug treatment in places where ARs may not penetrate (eg. brain)

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity ○○○○●	Summary
Drug	resist	ance					

- **Compartmentalization** can limit effectiveness of drug treatment in places where ARs may not penetrate (eg. brain)
- **Recombination** restricts evolutionary bottleneck effect to very specific genomic regions, maintains diversity at adjacent regions

Motivation	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity 000	Impact of Diversity ○○○○●	Summary
Drug	resist	ance					

- **Compartmentalization** can limit effectiveness of drug treatment in places where ARs may not penetrate (eg. brain)
- **Recombination** restricts evolutionary bottleneck effect to very specific genomic regions, maintains diversity at adjacent regions
- Archiving maintains a catalogue of viruses resistant to previous treatments, making previously-tried drugs ineffective

			Summary

1 HIV Infection, briefly

- **2** Sequencing Techniques
- **3** Viral Fitness
- Inducing Diversity
- **6** Maintaining Diversity
- 6 Impact of Diversity

Summary

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity	Impact of Diversity 00000	
Sumn	nary						

• HIV exists as a complex and dynamic population within infected individuals, shaped by selective pressure due to immune response, competition, and drug treatment

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity	Impact of Diversity 00000	
Sumn	nary						

- HIV exists as a complex and dynamic population within infected individuals, shaped by selective pressure due to immune response, competition, and drug treatment
- Quasispecies diversity is crucial to HIV's survival in face of these selection forces

	Infection 0000	Sequencing 000	Viral Fitness 000	Inducing Diversity 000000	Maintaining Diversity	Impact of Diversity 00000	
Sumn	nary						

- HIV exists as a complex and dynamic population within infected individuals, shaped by selective pressure due to immune response, competition, and drug treatment
- Quasispecies diversity is crucial to HIV's survival in face of these selection forces
- Future vaccine and therapy approaches will need to account for and/or exploit HIV intrahost population dynamics

			Summary

Acknowledgements

- Prof. Peter Gilbert
- Prof. Julie Overbaugh
- Anne Piantadosi

Thanks!

Questions?