The Swarm: Causes and consequences of HIV quasispecies diversity

Julian Wolfson

Dept. of Biostatistics - Biology Project

August 14, 2008
Success of HIV largely due to its ability to “escape” control of immune system/drug treatment via rapid mutation

$10^9 - 10^{10}$ viral particles produced each day, ~ 3 mutations per particle \Rightarrow enormous diversity possible
Mutation, mutation, mutation

- Success of HIV largely due to its ability to “escape” control of immune system/drug treatment via rapid mutation
- $10^9 - 10^{10}$ viral particles produced each day, ~ 3 mutations per particle \Rightarrow enormous diversity possible
- Vast majority of mutations cripple virus, but small number confer evolutionary advantage
Mutation, mutation, mutation

- Success of HIV largely due to its ability to “escape” control of immune system/drug treatment via rapid mutation
- $10^9 - 10^{10}$ viral particles produced each day, ~ 3 mutations per particle \Rightarrow enormous diversity possible
- Vast majority of mutations cripple virus, but small number confer evolutionary advantage

The Swarm

Within an infected person, HIV exists as a genetically diverse population of competing **quasispecies**
Quasispecies

Questions:

- How do we characterize HIV sequence diversity in an infected patient?
- What is the balance point between ability to resist selective pressure and overall viral function?
- How is quasispecies diversity maintained in the face of this pressure?
- What are the consequences of viral diversity?
1 HIV Infection, briefly
2 Sequencing Techniques
3 Viral Fitness
4 Inducing Diversity
5 Maintaining Diversity
6 Impact of Diversity
7 Summary
1 HIV Infection, briefly

2 Sequencing Techniques

3 Viral Fitness

4 Inducing Diversity

5 Maintaining Diversity

6 Impact of Diversity

7 Summary
Natural Course of Infection

- **Motivation**
- **Infection**
- **Sequencing**
- **Viral Fitness**
- **Inducing Diversity**
- **Maintaining Diversity**
- **Impact of Diversity**
- **Summary**

Natural Course of Infection

- **Primary Infection**
 - Wide dissemination of virus
 - Seeding of lymphoid organs

- **Acute HIV syndrome**
- **Clinical Latency**
- **Opportunistic Diseases**
- **Constitutional Symptoms**
- **Death**

- **CD4+ T Lymphocyte Count (cells/mm^3)**
 - 0 to 1200 cells/mm^3

- **HIV RNA Copies per ml Plasma**
 - 10^2 to 10^7 copies/ml
Stage 1: Acute/Early Infection

- Virus enters body, infects a number of possible target cells (e.g., Langerhans, dendritic, macrophage, CD4)
Stage 1: Acute/Early Infection

- Virus enters body, infects a number of possible target cells (e.g., Langerhans, dendritic, macrophage, CD4)
- Very high viral loads, CD4+ (T “helper” cell) levels drop dramatically
- Flu-like symptoms
Stage 1: Acute/Early Infection

- Virus enters body, infects a number of possible target cells (e.g. Langerhans, dendritic, macrophage, CD4)
- Very high viral loads, CD4+ (T “helper” cell) levels drop dramatically
- Flu-like symptoms
- Vigorous CD8+ (T “killer” cell) response, killing many HIV-infected cells. CD4+ levels rebound, but do not reach original levels.
Stage 2: Immune Control

- Virus remains active in lymphoid tissue, mutations accumulate
- Reservoirs persist in other parts of the body (i.e. gut)
- Gradual decrease in CD4+ levels over a two-week to 20-year period
Stage 3: Immune Failure

- CD4+ count drops to level where cell-mediated immunity is no longer effective
- Viral load rises sharply, progression to AIDS
1. HIV Infection, briefly

2. Sequencing Techniques

3. Viral Fitness

4. Inducing Diversity

5. Maintaining Diversity

6. Impact of Diversity

7. Summary
Basic Sequencing

Issues

• Viral sequences may differ across tissues
• May miss rare sequences, misrepresent population diversity
• If small number of genomes in original sample (e.g., very low viral load), may amplify same template sequence more than once

Liu 1996
Basic Sequencing

Issues

- Viral sequences may differ across tissues

Motivation	Infection
Sequencing | Viral Fitness
---|---
Inducing Diversity | Maintaining Diversity
---|---
Impact of Diversity | Summary
Basic Sequencing

Issues

- Viral sequences may differ across tissues
- May miss rare sequences, misrepresent population diversity
- If small number of genomes in original sample (i.e., very low viral load), may amplify same template sequence more than once \(^a\)

\(^a\) Liu 1996
Limiting Dilution

- Isolate individual sequences via dilution, then amplify to get enough copies for sequencing
- Limited by number of individual genomes which can be sequenced in reasonable amount of time
Pyrosequencing

- Yields large number of short (200-400 bp) “reads”
- Can be automated \(\Rightarrow\) fast
- Computational techniques for haplotype/frequency estimation
Pyrosequencing

- Yields large number of short (200-400 bp) “reads”
- Can be automated \Rightarrow fast
- Computational techniques for haplotype/frequency estimation

Limitations

- Works best when known template sequence available
- Subject to quality of algorithms applied
1 HIV Infection, briefly
2 Sequencing Techniques
3 Viral Fitness
4 Inducing Diversity
5 Maintaining Diversity
6 Impact of Diversity
7 Summary
Genetic variability causes individual viruses to have different abilities to:

1. Infect cells
2. Replicate within cells
3. Cause clinical disease
Viral fitness

- Genetic variability causes individual viruses to have different abilities to:
 1. Infect cells
 2. Replicate within cells
 3. Cause clinical disease

- For our purposes, \textit{Viral fitness} = \textit{Replication Capacity} / \textit{Persistence in vivo}
Viral fitness

- Genetic variability causes individual viruses to have different abilities to:
 1. Infect cells
 2. Replicate within cells
 3. Cause clinical disease
- For our purposes, *Viral fitness = Replication Capacity / Persistence in vivo*
- May differ from fitness *in vitro*
In vitro vs. in vivo

Figure: HIV quasispecies fitness maps for two individuals [Fernandez 2007]
Characteristics which affect a virus’ ability to survive and replicate *in vivo* over a long period of time include:

- Epitope sequences
- Tissue tropism
- Ability of viral proteins (eg. protease, reverse transcriptase) to function efficiently in presence of Abs/ART
1 HIV Infection, briefly
2 Sequencing Techniques
3 Viral Fitness
4 Inducing Diversity
5 Maintaining Diversity
6 Impact of Diversity
7 Summary
Initial Infection

- Early quasispecies diversity limited by transmission bottleneck\(^1\) (unrelated to replication capacity?)
- Quasispecies which become established are not necessarily fittest/most virulent of infecting population

\(^1\)Karlsson 1998
\(^2\)Bergstrom 1999
Initial Infection

- Early quasispecies diversity limited by transmission bottleneck\(^1\) (unrelated to replication capacity?)
- Quasispecies which become established are not necessarily fittest/most virulent of infecting population
- May decrease viral fitness over sequential transmissions\(^2\)

\(^1\) Karlsson 1998

\(^2\) Bergstrom 1999
After infection is established, three major selection forces act on HIV quasispecies:

1. The host’s **natural immune response**, mediated by antibodies and T cells
2. **Competition** between quasispecies for limited resources
3. **Drug therapy**, if applicable
Antibodies attach to outer surface of circulating virus particles, neutralizing them.

In HIV, main target is viral envelope (encoded by \textit{env} gene).

Constant interplay3 between

- Quasispecies mutation to avoid detection by antibodies
- Production of antibodies which recognize currently circulating quasispecies

3Richman 2003
Natural Immune Response - T cells

- T cells recognize **epitope**, small piece of viral protein presented on surface of infected cell
- Recognition of viral epitope triggers T-cell-mediated destruction of cell
- Viruses with “unrecognizable” epitopes can remain undetected in a cell
- Epitope presentation/recognition by CD8+ varies by individual’s HLA type\(^a\)

\(^a\)Lichterfeld 2005
Viral Competition

- Fitness cost associated with escape mutations (CTL or HAART) can be high
- Viruses carrying these mutations may be out-competed by more efficient (e.g., wild-type) virus in absence of selective pressure\(^4\)
- Potential loss of resistance mutations forms the basis of “drug holiday” and “intermittent therapy” regimens

\(^4\) Leslie 2004, Friedrich 2004
Quasispecies theory5 shows why single-drug regimens (eg. AZT) failed:

- Initial therapy causes reduction in viral load, increases supply of uninfected cells

5Frost 1994
6Petravic 2008
Drug Therapy and Quasispecies

Quasispecies theory\(^5\) shows why single-drug regimens (eg. AZT) failed:
- Initial therapy causes reduction in viral load, increases supply of uninfected cells
- Mutant strains resistant to (single) drug arise

\(^5\)Frost 1994
\(^6\)Petravic 2008
Quasispecies theory5 shows why single-drug regimens (eg. AZT) failed:

- Initial therapy causes reduction in viral load, increases supply of uninfected cells
- Mutant strains resistant to (single) drug arise
- Mutants, \textit{nearly as fit as original strains}, benefit from large number of uninfected cells to maintain infection6

5Frost 1994
6Petravic 2008
Drug Therapy and Quasispecies

Quasispecies theory\(^5\) shows why single-drug regimens (eg. AZT) failed:

- Initial therapy causes reduction in viral load, increases supply of uninfected cells
- Mutant strains resistant to (single) drug arise
- Mutants, *nearly as fit as original strains*, benefit from large number of uninfected cells to maintain infection\(^6\)

Idea

Raise barriers to escape so that viruses which carry necessary mutations are likely to have low replication capacity

\(^5\)Frost 1994
\(^6\)Petravic 2008
• Highly Active Anti-Retroviral Therapy now standard treatment in developed countries
• Involves a combination of three or more drugs from the following categories:
 1. Nucleoside Reverse Transcriptase Inhibitors (NRTI)
 2. Non-Nucleoside RTIs (NNRTI)
 3. Protease Inhibitors (PI)
 4. Integrase Inhibitors
 5. Entry Inhibitors
 6. Maturation Inhibitors
• Difficult for HIV to mutate to evade \(\geq 3 \) drugs simultaneously without severe loss of replicative capacity
HAART exerts extreme selective pressure on HIV, yet:

- “Drug holiday” and “intermittent therapy” regimes have had limited success in practice
- Recent studies7 have found quasispecies resistant to multiple drugs

7Quan 2008
HAART exerts extreme selective pressure on HIV, yet:

- “Drug holiday” and “intermittent therapy” regimes have had limited success in practice
- Recent studies\(^7\) have found quasispecies resistant to multiple drugs

An Implacable Foe?

Intense selective pressure tends to create evolutionary bottlenecks which decrease quasispecies diversity...

\(^7\)Quan 2008
Breaking bottlenecks

HAART exerts extreme selective pressure on HIV, yet:

- “Drug holiday” and “intermittent therapy” regimes have had limited success in practice
- Recent studies\(^7\) have found quasispecies resistant to multiple drugs

An Implacable Foe?

Intense selective pressure tends to create evolutionary bottlenecks which decrease quasispecies diversity... but viral population remains heterogeneous

\(^7\)Quan 2008
HAART exerts extreme selective pressure on HIV, yet:

- “Drug holiday” and “intermittent therapy” regimes have had limited success in practice
- Recent studies\(^7\) have found quasispecies resistant to multiple drugs

An Implacable Foe?

Intense selective pressure tends to create evolutionary bottlenecks which decrease quasispecies diversity... but viral population remains heterogeneous

How is quasispecies diversity maintained?

\(^7\)Quan 2008
<table>
<thead>
<tr>
<th></th>
<th>HIV Infection, briefly</th>
<th>Sequencing Techniques</th>
<th>Viral Fitness</th>
<th>Inducing Diversity</th>
<th>Maintaining Diversity</th>
<th>Impact of Diversity</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HIV Infection, briefly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sequencing Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Viral Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inducing Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Maintaining Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Impact of Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recombination

- A major force for introducing new (possibly resistant) quasispecies into viral population

Charpentier 2006
Recombination

- A major force for introducing new (possibly resistant) quasispecies into viral population
- Possibly also a mechanism for avoiding evolutionary bottlenecks\(^8\):
 - Fitness “peak jumping”
 - Limit size of regions which are homogeneous across quasispecies

\(^8\)Charpentier 2006
Compartmentalization

• Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF9, breast milk10, genital tract11, and CD4 cells12

9Harrington 2007, Abbate 2005, Caragounis 2008
10Becquart 2002
11Diem 2008
12Fulcher 2004
13van Marle 2007
14Chen 2006
Compartmentalization

- Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF\(^9\), breast milk\(^{10}\), genital tract\(^{11}\), and CD4 cells\(^{12}\)
- Further evidence of compartmentalization within certain organs (gut\(^{13}\), brain\(^{14}\))

\(^{9}\)Harrington 2007, Abbate 2005, Caragounis 2008
\(^{10}\)Becquart 2002
\(^{11}\)Diem 2008
\(^{12}\)Fulcher 2004
\(^{13}\)van Marle 2007
\(^{14}\)Chen 2006
Compartmentalization

- Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF\(^9\), breast milk\(^{10}\), genital tract\(^{11}\), and CD4 cells\(^{12}\)
- Further evidence of compartmentalization **within** certain organs (gut\(^{13}\), brain\(^{14}\))
- May arise as response to different biological conditions within compartments

\(^{10}\) Becquart 2002
\(^{11}\) Diem 2008
\(^{12}\) Fulcher 2004
\(^{13}\) van Marle 2007
\(^{14}\) Chen 2006
Compartmentalization

- Distinct quasispecies populations may become established in different parts of the body, eg. gut, blood, CSF\(^9\), breast milk\(^{10}\), genital tract\(^{11}\), and CD4 cells\(^{12}\)
- Further evidence of compartmentalization within certain organs (gut\(^{13}\), brain\(^{14}\))
- May arise as response to different biological conditions within compartments
- Some suggestion that reservoirs may exchange genetic information (Diem, Harrington)

\(^{10}\) Becquart 2002
\(^{11}\) Diem 2008
\(^{12}\) Fulcher 2004
\(^{13}\) van Marle 2007
\(^{14}\) Chen 2006
Archiving

- Resting T cells can harbour replication-competent virus over a long period of time

15 Ruff 2002
Archiving

- Resting T cells can harbour replication-competent virus over a long period of time
- ⇒ Allows for archiving of quasispecies over *entire infection history*\(^{15}\)

\(^{15}\)Ruff 2002
• Resting T cells can harbour replication-competent virus over a long period of time
• ⇒ Allows for archiving of quasispecies over entire infection history15
• Macrophages, other cell types may also serve similar archiving role

15 Ruff 2002
Archiving

- Resting T cells can harbour replication-competent virus over a long period of time
- ⇒ Allows for archiving of quasispecies over *entire infection history*\(^1^5\)
- Macrophages, other cell types may also serve similar archiving role
- “Rewind” ability allows HIV to adapt quickly to change in biological conditions

\(^1^5\) Ruff 2002
1 HIV Infection, briefly

2 Sequencing Techniques

3 Viral Fitness

4 Inducing Diversity

5 Maintaining Diversity

6 Impact of Diversity

7 Summary
• Quasispecies diversity plays an important role in ensuring HIV’s survival by
 1. Ensuring the **stability** of the viral population
 2. Improving adaptability to different biological conditions through **cooperative interactions**
 3. Helping to thwart **drug therapy** regimes
Population Stability: Survival of the flattest?

- Theory based on ideas of Eigen and Schuster \(^{16}\), “verified" \(\textit{in silico}^{17}\) and \(\textit{in vivo}^{18}\)
- **Basic idea:** Collection of quasispecies with higher \textit{average} fitness will outcompete one with lower average fitness, even if latter contains individuals with very high fitness

\(^{16}\)Schuster 1988, Eigen 1996

\(^{17}\)Wilke 2001

\(^{18}\)Elena 2008
Motivation

Infection

Sequencing

Viral Fitness

Inducing Diversity

Maintaining Diversity

Impact of Diversity

Summary
Cooperative interactions

Quasispecies theory predicts that viral populations, not individual variants, are the target of evolutionary selection.

Neat experiment [Vignuzzi 2006]

Compare growth of wild-type (WT) poliovirus to one with high-fidelity (HF) polymerase *in vitro* and *in vivo*
Cooperative interactions, cont’d.

Results - in vitro

• WT outcompetes HF under adverse conditions
 ⇒ Limiting quasispecies diversity lowers replication capacity

• HF highly attenuated as compared to WT, unable to survive in neurological tissue
 • Artificially increasing quasispecies diversity in HF population restored pathogenicity/neurotropism to WT levels
 • Artificially diversified HF and WT brain isolates genetically indistinguishable, but only WT isolate was neurotropic when injected into a new host!

Conclusion

Sequence diversity itself, not particular set of mutations, determines pathogenesis
Cooperative interactions, cont’d.

Results - in vitro

- WT outcompetes HF under adverse conditions
- ⇒ Limiting quasispecies diversity lowers replication capacity

Results - in vivo
Cooperative interactions, cont’d.

Results - in vitro

- WT outcompetes HF under adverse conditions
- ⇒ Limiting quasispecies diversity lowers replication capacity

Results - in vivo

- HF highly attenuated as compared to WT, unable to survive in neurological tissue

Sequence diversity itself, not particular set of mutations, determines pathogenesis
Cooperative interactions, cont’d.

Results - in vitro

- WT outcompetes HF under adverse conditions
- ⇒ Limiting quasispecies diversity lowers replication capacity

Results - in vivo

- HF highly attenuated as compared to WT, unable to survive in neurological tissue
- Artifically increasing quasispecies diversity in HF population restored pathogenicity/neurotropism to WT levels
Cooperative interactions, cont’d.

Results - in vitro

- WT outcompetes HF under adverse conditions
- ★ Limiting quasispecies diversity lowers replication capacity

Results - in vivo

- HF highly attenuated as compared to WT, unable to survive in neurological tissue
- Artificially increasing quasispecies diversity in HF population restored pathogenicity/neurotropism to WT levels
- Artificially diversified HF and WT brain isolates genetically indistinguishable, but only WT isolate was neurotropic when injected into a new host!
Cooperative interactions, cont’d.

Results - in vitro

- WT outcompetes HF under adverse conditions
- ⇒ Limiting quasispecies diversity lowers replication capacity

Results - in vivo

- HF highly attenuated as compared to WT, unable to survive in neurological tissue
- Artificially increasing quasispecies diversity in HF population restored pathogenicity/neurotropism to WT levels
- Artifically diversified HF and WT brain isolates genetically indistinguishable, but only WT isolate was neurotropic when injected into a new host!

Conclusion

Sequence diversity itself, not particular set of mutations, determines pathogenesis
Drug resistance

- **Compartmentalization** can limit effectiveness of drug treatment in places where ARs may not penetrate (e.g. brain)
Drug resistance

- **Compartmentalization** can limit effectiveness of drug treatment in places where ARs may not penetrate (eg. brain)
- **Recombination** restricts evolutionary bottleneck effect to very specific genomic regions, maintains diversity at adjacent regions
Drug resistance

- **Compartmentalization** can limit effectiveness of drug treatment in places where ARs may not penetrate (eg. brain)
- **Recombination** restricts evolutionary bottleneck effect to very specific genomic regions, maintains diversity at adjacent regions
- **Archiving** maintains a catalogue of viruses resistant to previous treatments, making previously-tried drugs ineffective
<table>
<thead>
<tr>
<th></th>
<th>Motivation</th>
<th>Infection</th>
<th>Sequencing</th>
<th>Viral Fitness</th>
<th>Inducing Diversity</th>
<th>Maintaining Diversity</th>
<th>Impact of Diversity</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HIV Infection, briefly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sequencing Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Viral Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inducing Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Maintaining Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Impact of Diversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• HIV exists as a complex and dynamic population within infected individuals, shaped by selective pressure due to immune response, competition, and drug treatment
• HIV exists as a complex and dynamic population within infected individuals, shaped by selective pressure due to immune response, competition, and drug treatment

• Quasispecies diversity is crucial to HIV’s survival in face of these selection forces
HIV exists as a complex and dynamic population within infected individuals, shaped by selective pressure due to immune response, competition, and drug treatment.

Quasispecies diversity is crucial to HIV’s survival in face of these selection forces.

Future vaccine and therapy approaches will need to account for and/or exploit HIV intrahost population dynamics.
Acknowledgements

- Prof. Peter Gilbert
- Prof. Julie Overbaugh
- Anne Piantadosi

Thanks!

Questions?