Martingale

stochastic process without drift.

Simplest (and earliest) def'n:

\(\mathcal{F}_n \) \(n=0,1,\ldots \) \(\exists \) is a martingale if

i) \(\mathbb{E}[X_n] < \infty \ \forall n \)

ii) \(\mathbb{E}[X_{n+1} | X_0, X_1, \ldots, X_n] = X_n \ \forall n \)

More complex def'n.

\(\exists Y_n \) is a (possibly multivariate) stoch. process.

Let \(\mathcal{F}_n = \sigma \{ Y_0, Y_1, \ldots, Y_n \} \)

\(\exists Y_n \) is a mart. wrt \(\{ Y_n \} \) equiv. wrt \(\{ \mathcal{F}_n \} \) if.

i) \(\mathbb{E}[X_n] < \infty \ \forall n \)

ii) \(X_n \) is deterministic fn. of \(Y_0, Y_1, \ldots, Y_n \); \(X_n \in \mathcal{F}_n \)

iii) \(\mathbb{E}[X_{n+1} | Y_0, Y_1, \ldots, Y_n] = X_n \)

Think of \(Y_0, Y_1, \ldots, Y_n \) (i.e. \(\mathcal{F}_n \)) as the information available, history up through stage \(n \).

History may include covariates, as well as \(X \)'s themselves.
Review of Conditional Expectation

The following list summarizes these and other properties of conditional expectations. Here, with or without affixes, X and Y are random variables, c is a real number, g is a function for which $E[|g(X)|] < \infty$, f is a bounded function and h is a function of two variables for which $E[|h(X, Y)|] < \infty$.

$$E[a_1 g(X_1) + a_2 g(X_2)|Y] = a_1 E[g(X_1)|Y] + a_2 E[g(X_2)|Y],$$ \hspace{1cm} (1.6)

$$g \geq 0 \implies E[g(X)|Y] \geq 0,$$ \hspace{1cm} (1.7)

$$E[h(X, Y)|Y = y] = E[h(X, y)|Y = y],$$ \hspace{1cm} (1.8)

$$E[g(X)|Y = y] = E[g(X)]$$ \hspace{1cm} (1.9)

if X and Y are independent, and

$$E[g(X)f(Y)|Y] = f(Y)E[g(X)|Y],$$ \hspace{1cm} (1.10)

and

$$E[g(X)f(Y)] = E[E[g(X)|Y]f(Y)].$$ \hspace{1cm} (1.11)

As consequences of (1.6), (1.10) and (1.11), with either $g \equiv 1$ or $f \equiv 1$, we obtain,

$$E[c|Y] = c,$$ \hspace{1cm} (1.12)

$$E[f(Y)|Y] = f(Y),$$ \hspace{1cm} (1.13)

and

$$E[g(X)] = E[E[g(X)|Y]].$$ \hspace{1cm} (1.14)

- **Jensen's conditional inequality** \textit{KoT p.249}

 Let ϕ be a convex function.

 $$E[\phi(X)|Y_0, \ldots, Y_n] \geq \phi(E[X|Y_0, \ldots, Y_n])$$

 corollary: $E[1E(X|Y_0, \ldots, Y_n)]^p \leq E[1^p X]$ for $p > 1$

- **Law of total prob. for conditional expectation.**

 Suppose $E|X| < \infty$

 $$E[X|Z] = E[E[X|Y, Z]|Z].$$ \textit{KoT, p.246}

Footnote.
Classic Example

Let Y_1, Y_2, \ldots be indep. $E(Y_n) = 0$, $E|Y_n| < \infty \forall n$.

Define $Y_0 = 0$. Let $X_n = \sum_{i=0}^{n} Y_i$.

Then $\{X_n\}$ is a mart. wrt. \mathcal{F}_n.

Proof: verify properties

1) $E[X_n] = E[Y_0 + Y_1 + \ldots + Y_n]
\leq \sum_{i=0}^{n} E|Y_i| < \infty$ by assumption.

2) $E(X_{n+1} | Y_0, \ldots, Y_n) = E(X_n + Y_{n+1} | Y_0, \ldots, Y_n)
= E(X_n | Y_0, \ldots, Y_n) + E(Y_{n+1} | Y_0, \ldots, Y_n)
= X_n + E(Y_{n+1})$

a) because X_n is fn of Y_0, \ldots, Y_n + 1.13

b) because of indep. 1.9

$= X_n$ because $E(Y_{n+1}) = 0$.

Properties

1) Generalization of martingale property
\[E[X_{n+k} | Y_0, ..., Y_n] = (E[X_{n+k} | \mathcal{F}_n]) = X_n \quad \text{for } k \geq 1 \]

Martingales in general share 2 important properties w. sums of independent mean 0 rvs:

2) Constant mean - no drift
\[E(X_n) = E(X_0) \forall n \]

3) Uncorrelated increments (but maybe dependent).
 Consider integers \(S < t \leq u < V \)
\[\text{Cov}(X_v - X_u, X_t - X_S) = 0 \]

pf: \[\text{Cov}(X_v - X_u, X_t - X_S) = E \left[(X_v - X_u)(X_t - X_S) \right] \]

In proofs for marts., trick is to condition on past but as far forward as possible:
\[E[(X_v - X_u)(X_t - X_S)] = E \{ E[(X_v - X_u)(X_t - X_S) | \mathcal{F}_u] \} \]

\[= E E[(X_t - X_S)E(X_v - X_u | \mathcal{F}_u)] \]

but \(E(X_v - X_u | \mathcal{F}_u) = E(X_v | \mathcal{F}_u) - E(X_u | \mathcal{F}_u) = X_u - X_u = 0 \).
2) Doob's martingale \textcopyright{} p. 246

Accumulating data about a random variable.

Let X be rv with $E|X| < \infty$.

Let Y_1, Y_2, \ldots be stochastic process.

Define $X_n = E[X | Y_1, \ldots, Y_n]$.

Then $\sum_{n=1}^{\infty} X_n$ is a Doob's martingale w.r.t. \mathcal{F}_n.

Doob's martingale useful in Stochastic curtailment.
Optional Sampling/Stopping of Mart

Let $\xi X_n \xi$ be martingale wrt $\xi V_n \xi$.

Broadest sense: Let $T_1 \leq T_2 \leq \cdots \leq T_n \leq \cdots$ be increasing sequence of stopping times.

Theorems give regularity conditions under which

X_{T_1}, X_{T_2}, \ldots (martingale sampled at random times)

is still a martingale.

Narrower focus: Single stopping time, T

Reg. conditions under which $E(X_T) = E(X_0)$

i.e. $\xi X_0, X_T \xi$ forms a 2 element martingale recall constant mean of martingale.

Regularity conditions involve some sort of boundedness conditions on T and/or $\xi X_n \xi$.
Doob's Optimal Stopping Theorem
Th 3.2 K+T (1st course, p. 261).

Let $\{X_n\}$ be a mart. T a stopping time
If:

a) $P_n \{ T < \infty \} = 1$

b) $E |X_T| < \infty$

c) $\lim_{n \to \infty} E [X_n \mathbf{1}_{\{T > n\}}] = 0$

i.e. $\lim_{n \to \infty} \int_{T > n} X_n dP = 0$

Then $E[X_T] = E[X_0]$.

Note:
1) K+T emphasize that (b) is not a consequence of $E |X_n| < \infty \forall n$; must be checked.

Doob (1953, Stochastic Processes, p. 302-303) proves that if $P_n \{ T < \infty \} = 1$
then $L.U.B$ $E[X_n |13 < \infty]$ is sufficient for $E |X_T| < \infty$. (L.U.B = least upper bound = supremum)

2) c) has variants

common $\lim_{n \to \infty} \inf_{s \geq n} E [|X_s| \mathbf{1}_{\{T > n\}}] = 0.$

Fristedt & Gray, 1997, p. 467
Simpler Optional Stopping Thms.

Restrictions on T get less while those on $\{X_n\}$ get stricter as we go down the list.

1) T is bounded a.s. $\exists M < \infty$ s.t. $P_n (T < M) = 1$

Frystyk & Gray, Prop. 9, p. 469.

2) $E(T) < \infty$ & $\exists K < \infty$ s.t.

$$E \left[|X_{n+1} - X_n| \mid Y_0, y_1, \ldots, Y_n \right] \leq K$$

w. prob. 1

(i.e. for almost all w) in the set $[T > n]$

$k + T$, p. 260

Note: Here we assume that $\{X_n\}$ is a mart + T is a stopping time w. respect to $\{Y_n\}$.

Williams, Probability with martingales, p. 120

has stronger condition $|X_{n+1} - X_n| \leq K$ w.

3) $P_n (T < \omega) = 1 > E (\sup_n |X_n|) < \infty$

Ash, 1972, p. 305.

$P_n (T < \omega) = 1 > E (\sup_n |X_{\text{min}(T, n)}|) < \infty$

$k + T$, Th. 3.1, p. 259

Williams (1991), p. 106 has stronger condition $|X_n| \leq K$ w.

Under any of these conditions

$E(X_T) = E(X_0)$
Optional Stopping Counter-Example.

Martingale + stopping time with \(E(X_T) \neq E(X_0) \).

Let \(Y_0 = 0 \), \(Y_1, Y_2, \ldots \), iid

\[
\Pr \{ Y_k = +1 \} = p \quad \Pr \{ Y_k = -1 \} = \frac{1}{2}
\]

Set \(X_n = \sum_{i=0}^{n} Y_n \)

\(\{ X_n \} \) is a m.a.r.t. wrt \(\{ Y_n \} \)

symmetric random walk.

Let \(T = \inf_{n \geq 1} \{ n : X_n = 13 \} \) a stopping time.

Note: \(E(X_n) = E(X_0) = 0 \) \(\forall n \)

but \(X_T = 1 \)

So \(E(X_T) = 1 \)

\(E(X_T) \neq E(X_0) \)
Properties of counter-example.

1) \(P(T < \infty) = 1 \) finite termination.

This situation is equivalent to the gambler's ruin problem where an individual with stake = 1 plays against infinitely rich adversary.

Prob. of ultimately entering absorbing state of 0 (gambler's ruin) = 1.

(KT first course p. 93-94)

2) \(E|X_T| < \infty \)

So 1 & 2 mean conditions a) & b) of Doob's optional stopping theorem are met.

Whittle (2000, ed. 4, p. 304) points out but does not prove that condition c is violated:

"The process can show infinite excursions, (necessarily in a negative direction) before the stopping set \(X=1 \) is attained."