Special Topic: Bayesian Finite Population Survey Sampling

Sudipto Banerjee

Division of Biostatistics
School of Public Health
University of Minnesota

September 15, 2010
Scientific survey sampling (Neyman, 1934) represents one of statistics’ greatest contribution to science.

It provides the remarkable ability to obtain useful inferences about large populations from modest samples, with measurable uncertainty.

It forms the backbone of data collection in science and government.

Traditional (and widely favoured) approach: Randomization-based.

Advocating Bayes for survey sampling is like “swimming upstream”: Modelling assumptions of any kind are anathema here, let alone priors and further subjectivity that Bayes brings along!
For a population with \(N \) units, let \(Y = (Y_1, \ldots, Y_N) \) denote the population variable

\(Y_i \) is the value of unit \(i \) in the population

Let \(I = (I_1, \ldots, I_N) \) be the set of *inclusion indicator variables*

\(I_i = 1 \) if unit \(i \) is selected in the sample; \(I_i = 0 \) otherwise

Let \(I' \) denote the complement of \(I \), obtained by “switching” the 1’s to 0’s and 0’s to 1’s in \(I \)

Thus, \(I' \) represents the *exclusion indicator variables*, indexing units *not* selected in the sample.
Simple Random Sampling With Replacement (SRSWR): We draw a unit from the population, put it back and draw again.

Simple Random Sampling Without Replacement (SRSWOR): We draw a unit from the population, keep it aside and draw again.

SRSWR leads to binomial distribution; chances of units being drawn remain the same between draws.

SRSWOR leads to hypergeometric distribution: chances of units being drawn change from draw to draw.

Key questions:
- What are the random variables?
- What are the parameters?
Let \(\mathbf{Y}_I \) be the collection of units selected in the sample; we often write \(\mathbf{Y}_I \) as \(\mathbf{y} = (y_1, \ldots, y_n) \).

IMPORTANT: The lower-case \(y_i \)'s simply index the sample; thus \(y_i \) does not necessarily represent \(Y_i \), but the \(i \)-th member of the sample.

Let \(\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i \) be the population mean

Let \(\bar{Y}_I = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \) be the sample mean; i.e. the mean of \(\mathbf{Y}_I \)

Let \(\mathbf{Y}_I' \) be the collection of units excluded from the sample; let \(\bar{Y}_I' \) be the mean of \(\mathbf{Y}_I' \).

Then \(\bar{Y} = f \bar{y} + (1 - f) \bar{Y}_I' \); \(f = \frac{n}{N} \) is the sampling fraction
Key questions answered:

- What are the random variables? Answer: The I_i's
- What are the parameters? Answer: The Y_i's.

For SRSWOR: $E[I_i] = P(I_i = 1) = \frac{(N-1)}{(N\choose n)} = \frac{n}{N}$ for each i.

Unbiasedness of the sample mean \bar{y}: Write $\bar{y} = \frac{1}{n} \sum_{i=1}^{N} I_i Y_i$ and see:

$$E[\bar{y}] = \frac{1}{n} \sum_{i=1}^{N} E[I_i]Y_i = \frac{1}{n} \sum_{i=1}^{N} \frac{n}{N} Y_i = \bar{Y}.$$

For SRSWR: $\bar{y} = \sum_{i=1}^{N} W_i Y_i$, where W_i is the number of times unit i appears in the sample. Then, $W_i \sim Bin(n, \frac{1}{N})$, so $E[W_i] = \frac{n}{N}$, hence

$$E[\bar{y}] = \frac{1}{n} \sum_{i=1}^{N} E[W_i]Y_i = \frac{1}{n} \sum_{i=1}^{N} \frac{n}{N} Y_i = \bar{Y}.$$
We need a prior for each population unit: Y_i

Suppose $Y_i \sim \text{iid } N(\mu, \sigma^2)$

Let us first assume σ^2 is known and $P(\mu) \propto 1$.

What is “seen”? $D = (Y_I, I)$

Note that $P(D | \mu, \sigma^2) = P(I)P(Y_I | \mu, \sigma^2) \propto P(Y_I | \mu, \sigma^2)$; so likelihood is product of n independent $N(\mu, \sigma^2)$.

We need the posterior distribution

$$P(\bar{Y} | D, \sigma^2) = \int P(\bar{Y} | D, \mu, \sigma^2)P(\mu | D, \sigma^2)d\mu.$$
Let us take a closer look at $P(\bar{Y} \mid D, \sigma^2)$.

Observe that $\bar{Y} = f\bar{y} + (1 - f)\bar{Y}_{I'}$.

Given D, \bar{y} is fixed; so the posterior distribution of $\bar{Y}_{I'}$ will determine the posterior distribution of \bar{Y}.

So, what is the posterior distribution $P(\bar{Y}_{I'} \mid D, \sigma^2)$?

$$P(\bar{Y}_{I'} \mid D, \sigma^2) = \int P(\bar{Y}_{I'} \mid \mu, \sigma^2)P(\mu \mid D, \sigma^2)d\mu,$$

where we use $P(\bar{Y}_{I'} \mid D, \mu, \sigma^2) = P(\bar{Y}_{I'} \mid \mu, \sigma^2)$. Note $P(\bar{Y}_{I'} \mid \mu, \sigma^2) = N\left(\mu, \frac{\sigma^2}{N(1-f)}\right)$

Can we simplify this posterior without integrating?
What is the posterior distribution $P(\mu \mid D, \sigma^2)$?

Note that $P(\mu \mid D, \sigma^2) \propto P(D \mid \mu, \sigma^2)$

$\implies P(\mu \mid D, \sigma^2) = N \left(\bar{y}, \frac{\sigma^2}{n} \right)$.

Conditional on D and σ^2, we can write:

$$\bar{Y} = f \bar{y} + (1 - f) \bar{Y}_I'$$

$$\bar{Y}_I' = \mu + u_1; \ u_1 \sim N \left(0, \frac{\sigma^2}{N(1 - f)} \right)$$

$$\Rightarrow \bar{Y} = f \bar{y} + (1 - f) \mu + (1 - f) u_1$$

Also, conditional on D and σ^2, $\mu = \bar{y} + u_2; \ u_2 \sim N \left(0, \frac{\sigma^2}{n} \right)$.
Then:

\[\bar{Y} = \bar{y} + (1 - f)u_2 + (1 - f)u_1 \]

The posterior is \(P(\bar{Y} \mid D, \sigma^2) \) is:

\[N \left(\bar{y}, \frac{\sigma^2}{n}(1 - f) \right) \]

Let \(\sigma^2 \) be unknown. Prior: \(P(\mu, \sigma^2) \propto \frac{1}{\sigma^2} \)

Then we reproduce classical result:

\[\frac{\bar{Y} - \bar{y}}{\sqrt{s^2/n (1 - f)}} \sim t_{n-1} \]

where \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 \) is the sample variance.
Note that the marginal posterior distribution

\[P(\sigma^2 \mid D) = IG \left(\frac{n-1}{2}, \frac{(n-1)s^2}{2} \right), \]

where \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 \) is the sample variance.

We can perform exact posterior sampling as follows. For \(l = 1, \ldots, L \) do the following:

- Draw \(\sigma^2_{(l)} \sim IG \left(\frac{n-1}{2}, \frac{(n-1)s^2}{2} \right) \)
- Draw \(\mu_{(l)} \sim N \left(\bar{y}, \frac{\sigma^2_{(l)}}{n(1-f)} \right) \)
- Draw \(\bar{Y}_{I'}^{(l)} \sim N \left(\mu_{(l)}, \frac{\sigma^2_{(l)}}{N(1-f)} \right) \)
- Set \(\bar{Y}^{(l)} = f\bar{y} + (1-f)\bar{Y}_{I'}^{(l)}. \)

The resulting collection \(\{\bar{Y}^{(l)}\}_{l=1}^{L} \) is a sample from the posterior distribution of the population mean.
A simple random sample of 30 households was drawn from a township containing 576 households. The numbers of persons per household in the sample were as follows:

5, 6, 3, 3, 2, 3, 3, 4, 4, 3, 2, 7, 4, 3, 5, 4, 4, 3, 4, 3, 1, 2, 4, 3, 4, 2, 4

Use a non-informative Bayesian analysis to estimate the total number of people in the area and compute the posterior probability that the population total lies within 10% of the sample estimate.

From a list of 468 small 2-year colleges in the North-Eastern United States, a simple sample of 100 colleges was drawn. Data for the number of students (y) and the number of teachers (x) for these colleges were summarized as follows:

- The total number of students in the sample was: 44,987
- The total number of teachers in the sample was: 3,079
- Also given are the sample sums of squares: $\sum_{i=1}^{n} y_i^2 = 29,881,219$ and $\sum_{i=1}^{n} x_i^2 = 111,090$.

Assuming a non-informative Bayesian setting and where the population of students and teachers are independent, find the posterior mean and 95% credible interval for the student-teacher ratio in the population (i.e. all the 468 colleges combined).
A general theory for Bayesian missing data analysis

Let \(y = (y_1, \ldots, y_N) \) be the units in the population. We assume a likelihood for this population, say \(p(y | \theta) \), where \(\theta \) are the parameters in the model.

Let \(I = (I_1, \ldots, I_N) \) be the set of “inclusion indicators”.

Let us denote by “obs” the index set \(\{i : I_i = 1\} \) and by “mis” the index set \(\{i; I_i = 0\} \)

So, \(y_{obs} \) is the set of observed data points and \(y_{mis} \) is for the unobserved data. We will often write \(y = (y_{obs}, y_{mis}) \).
We will break the joint probability model into two parts

- The model for the “complete data” \(p(y | \theta) \) – including observed and missing data

- The model for the inclusion vector \(I \), say \(p(I | y, \phi) \)

We define the complete-likelihood as:

\[
p(y, I | \theta, \phi) = p(y | \theta)p(I | y, \phi)
\]

Parameters: Scientific interest usually revolves around estimation of \(\theta \) (sometimes called the “super-population” parameters)

The parameters \(\phi \) index the missingness model (often called “design” parameters).
The “complete-likelihood” is not the data likelihood as it involves the missing data component as well.

The actual information available is \((y_{obs}, I)\). So the data likelihood is:

\[
p(y_{obs}, I \mid \theta, \phi) = \int p(y, I \mid \theta, \phi) dy_{mis}
\]

The joint posterior distribution is

\[
p(\theta, \phi \mid y_{obs}, I) \propto p(\theta, \phi) p(y_{obs}, I \mid \theta, \phi)
\]

\[
\propto p(\theta, \phi) \int p(y \mid \theta) p(I \mid y, \phi) dy_{mis}
\]
These integrals are evaluated by drawing samples
\((y_{mis}, \theta, \phi)\) from \(p(y_{mis}, \theta, \phi \mid y_{obs}, I)\)

Typically, we first compute samples \((\theta^{(l)}, \phi^{(l)})\) from
\(p(\theta, \phi \mid y_{obs}, I)\)

Then we draw \(y_{mis}^{(l)} \sim p(y_{mis} \mid y_{obs}, I, \theta^{(l)}, \phi^{(l)})\)

Computations often simplify from assumptions:
- \(p(I \mid y, \phi) = p(I \mid y_{obs}, \phi)\)
- \(p(I \mid y, \phi) = p(I \mid \phi) = p(I)\)
- \(p(\phi \mid \theta) = p(\phi)\)
- \(p(y_{mis} \mid \theta^{(l)}, y_{obs}) = p(y_{mis} \mid \theta^{(l)})\).