Model Assessment and Comparisons

Sudipto Banerjee

1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

September 15, 2010

Three critical questions

- Do the inferences from the model make sense?
- Is the model consistent with the data?
- How can we compare and, perhaps, “rank” different plausible models in their order of preference with respect to a given data set?

The role of checking and comparing models

First two stages:

1. Construct a reasonable probability model;
2. Compute the posterior distribution of model parameters — typically by drawing samples from it.

Third stage: Checking the quality of the model’s fit. This is crucial – Prior-to-Posterior inferences involve the whole structure (with hierarchies) of the Bayesian model and can produce spurious inference if the model is poor.

Sensitivity Analysis: How much do posterior inferences change when other probability models are used in place of the present model?

Replicating data sets using the posterior predictive distribution

Let \(y = (y_1, y_2, \ldots, y_n)' \) be the observed data and \(\theta \) be the collection of all parameters (including all hyperparameters) for a model \(p(\theta) \times p(y | \theta) \).

Let \(y_{rep} = (y_{rep,1}, y_{rep,2}, \ldots, y_{rep,n})' \) be the replicated data that we would see if the experiment that produced \(y \) today were replicated with the same model and the same value of \(\theta \) that produced the observed data.

Replicated data \(y_{rep} \) like predictions \(y \), has two components of uncertainty:

- The fundamental variability of the model, represented by the posited variability in the data;
- The posterior uncertainty in the estimation of \(\theta \)

The distribution of \(y_{rep} \) is the posterior predictive distribution:

\[
P(y_{rep} | y) = \int p(y_{rep} | \theta) p(\theta | y) d\theta
\]

We do not evaluate the above integral, but sample from

\[
p(y_{rep} | y):
\]

- Draw \(\theta^{(i)} \sim p(\theta | y) \), \(j = 1, 2, \ldots, M \)
- Draw \(y_{rep}^{(i)} \sim p(y_{rep} | \theta^{(i)}) \), \(j = 1, 2, \ldots, M \).

Usually full inferential output for Bayesian inference comprises a table comprising both samples from the posterior distribution of \(\theta \) and the posterior predictive distribution of replicated data sets.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\theta_1)</th>
<th>(\theta_2)</th>
<th>(\ldots)</th>
<th>(\theta_p)</th>
<th>(y_{rep,1})</th>
<th>(y_{rep,2})</th>
<th>(\ldots)</th>
<th>(y_{rep,n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\theta_1^{(1)})</td>
<td>(\theta_2^{(1)})</td>
<td>(\ldots)</td>
<td>(\theta_p^{(1)})</td>
<td>(y_{rep,1}^{(1)})</td>
<td>(y_{rep,2}^{(1)})</td>
<td>(\ldots)</td>
<td>(y_{rep,n}^{(1)})</td>
</tr>
<tr>
<td>2</td>
<td>(\theta_1^{(2)})</td>
<td>(\theta_2^{(2)})</td>
<td>(\ldots)</td>
<td>(\theta_p^{(2)})</td>
<td>(y_{rep,1}^{(2)})</td>
<td>(y_{rep,2}^{(2)})</td>
<td>(\ldots)</td>
<td>(y_{rep,n}^{(2)})</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
</tr>
<tr>
<td>M</td>
<td>(\theta_1^{(M)})</td>
<td>(\theta_2^{(M)})</td>
<td>(\ldots)</td>
<td>(\theta_p^{(M)})</td>
<td>(y_{rep,1}^{(M)})</td>
<td>(y_{rep,2}^{(M)})</td>
<td>(\ldots)</td>
<td>(y_{rep,n}^{(M)})</td>
</tr>
</tbody>
</table>
Example: linear regression model

Recall the Bayesian linear regression model with non-informative priors:
\[y_i | \mu_i, \sigma^2 \sim N(\mu_i, \sigma^2); \quad i = 1, 2, \ldots, n; \]
\[\mu_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} = \mathbf{x}_i' \mathbf{\beta}; \quad \mathbf{\beta} = (\beta_0, \beta_1, \ldots, \beta_p); \]
\[\mathbf{\beta}, \sigma^2 \sim p(\mathbf{\beta}, \sigma^2) = \frac{1}{\sigma^2}. \]

Unknown parameters include the regression parameters and the variance, i.e. \(\mathbf{\theta} = (\mathbf{\beta}, \sigma^2) \).

Obtain posterior samples: \(\mathbf{\theta}^{(j)} = (\mathbf{\beta}^{(j)}, \sigma^{2(j)}), j = 1, \ldots, M. \)

In Bayesian inference, a test statistic \(T(\mathbf{y}; \mathbf{\theta}) \) is evaluated over draws from the posterior distribution of the unknown parameters. We call \(T(\mathbf{y}; \mathbf{\theta}) \) a test measure.

The \(p \)-value is computed using the posterior samples of \(\mathbf{\theta} \) and \(\mathbf{y}_{\text{rep}} \).

For each sampled parameter vector \(\mathbf{\theta}^{(j)} = (\mathbf{\beta}^{(j)}, \sigma^{2(j)}), \) we replicate \(n \) data points:
\[\mathbf{y}_{\text{rep},j}^{(j)} \sim N(\mathbf{x}_i' \mathbf{\beta}^{(j)}, \sigma^{2(j)}), \quad j = 1, \ldots, M \quad \text{and} \quad i = 1, \ldots, n. \]

\(\mathbf{y}_{\text{rep}}^{(j)} = \left(\mathbf{y}_{\text{rep},1}^{(j)}, \mathbf{y}_{\text{rep},2}^{(j)}, \ldots, \mathbf{y}_{\text{rep},n}^{(j)} \right)' \) is the \(j \)-th sample from the posterior predictive distribution \(p(\mathbf{y}_{\text{rep}} | \mathbf{y}) \).

Remark: The number of posterior samples, \(M \), represents post-convergence (i.e. after burn-in) posterior samples. There is no need to consider pre-convergence samples for drawing the posterior predictive samples.
Bayesian p-value

Bayesian p-values close to 0 or 1 signifies lack of fit of the model with respect to the test measure. On the other hand, values of p_B close to 0.5 indicate very good fit. Estimates of p_B may be sensitive to choice of the test measure.

Unlike p_C, we should not interpret p_B with regard to “significance levels” of a test. Instead it should be used as a diagnostic to see if the model adequately fits the data. Bayesian p-values are not concerned with “Type-I error” rates. Hence, there is no need to consider adjusting p_B for multiple comparisons (in case we use several test measures).

Model comparisons using replicated data

- Compute the posterior predictive mean and variance for each observation:

$$
\mu_{rep,i} = E[y_{rep,i} | y] = \frac{1}{M} \sum_{j=1}^{M} y_{rep,j}^{(i)}; \quad i = 1, \ldots, n;
$$

$$
\sigma^2_{rep,i} = \text{var}[y_{rep,i} | y] = \frac{1}{M} \sum_{j=1}^{M} (y_{rep,j}^{(i)} - \mu_{rep,i})^2.
$$

- Goodness of fit measure G and expected mean-square predictive error P:

$$
G = \sum_{i=1}^{n} (y_i - \mu_{rep,i})^2; \quad P = \sum_{i=1}^{n} \sigma^2_{rep,i}; \quad D = G + P
$$

- D is a model comparison metric (lower values better).

Model comparisons using the DIC

- A general choice for the test measure is the deviance:

$$
T(y; \theta) = D(y; \theta) = -2 \log p(y | \theta).
$$

- A better option for hierarchical models that does not require replicated data (saves computation time):

$$
\bar{D}(y) = E[D(y; \theta) | y] = \frac{1}{M} \sum_{j=1}^{M} D(y; \theta^{(j)});
$$

$$
p_D = D(y) - \bar{D}(y); \quad \text{where} \quad \theta = E[\theta | y] = \frac{1}{M} \sum_{j=1}^{M} \theta^{(j)};
$$

$$
DIC = \bar{D}(y) + p_D = 2\bar{D}(y) - D(y; \bar{\theta}).
$$