Introduction to Spatial Data

Sudipto Banerjee

Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

September 14, 2010

Researchers in diverse areas such as climatology, ecology, environmental health, and real estate marketing are increasingly faced with the task of analyzing data that are:

- highly multivariate, with many important predictors and response variables,
- geographically referenced, and often presented as maps, and
- temporally correlated, as in longitudinal or other time series structures.

⇒ motivates hierarchical modeling and data analysis for complex spatial (and spatiotemporal) data sets.

Example: In an epidemiological investigation, we might wish to analyze lung, breast, colorectal, and cervical cancer rates by county and year in a particular state

- with smoking, mammography, and other important screening and staging information also available at some level.

Public health professionals who collect such data are charged not only with surveillance, but also statistical inference tasks, such as

- modeling of trends and correlation structures
- estimation of underlying model parameters
- hypothesis testing (or comparison of competing models)
- prediction of observations at unobserved times or locations.

Type of spatial data

- point-referenced data, where \(Y(s) \) is a random vector at a location \(s \in \mathbb{R}^r \), where \(s \) varies continuously over \(D \), a fixed subset of \(\mathbb{R}^r \) that contains an \(r \)-dimensional rectangle of positive volume;

- areal data, where \(D \) is again a fixed subset (of regular or irregular shape), but now partitioned into a finite number of areal units with well-defined boundaries;

- point pattern data, where now \(D \) is itself random; its index set gives the locations of random events that are the spatial point pattern. \(Y(s) \) itself can simply equal 1 for all \(s \in D \) (indicating occurrence of the event), or possibly give some additional covariate information (producing a marked point pattern process).

Map of PM2.5 sampling sites; plotting color indicates range of average 2001 level.
Introduction

Areal data

The previous figure is an example of a choropleth map, which uses shades of color (or greyscale) to classify values into a few broad classes, like a histogram.

From the choropleth map we know which regions are adjacent to (touch) which other regions.

Thus the "sites" $s \in D$ in this case are actually the regions (or blocks) themselves, which we will denote not by s, but by B_i, $i = 1, \ldots, n$.

It may be helpful to think of the county centroids as forming the vertices of an irregular lattice, with two lattice points being connected if and only if the counties are "neighbors" in the spatial map.

Misaligned areal and point data

Exemplified by residences of persons suffering from a particular disease, or by locations of a certain species of tree in a forest.

The response Y is often fixed (occurrence of the event), and only the locations s_i are thought of as random.

Such data are often of interest in studies of event clustering, where the goal is to determine whether points tend to be spatially close to other points, or result merely from a random process operating independently and homogeneously over space.

In contrast to areal data, here (and with point-referenced data as well) precise locations are known, and so must often be protected to protect the privacy of the persons in the set.

Spatial point pattern data

Exemplified by residences of persons suffering from a particular disease, or by locations of a certain species of tree in a forest.

The response Y is often fixed (occurrence of the event), and only the locations s_i are thought of as random.

Such data are often of interest in studies of event clustering, where the goal is to determine whether points tend to be spatially close to other points, or result merely from a random process operating independently and homogeneously over space.

In contrast to areal data, here (and with point-referenced data as well) precise locations are known, and so must often be protected to protect the privacy of the persons in the set.

Exploration of spatial data

Deterministic surface interpolation

Spatial surface observed at finite set of locations $\mathcal{S} = \{s_1, s_2, \ldots, s_n\}$

Tessellate the spatial domain (usually with data locations as vertices)

Fit an interpolating polynomial:

$$f(s) = \sum_i w_i(\mathcal{S}; s) f(s_i)$$

"Interpolate" by reading off $f(s_0)$.

Issues:

- Sensitivity to tessellations
- Choices of multivariate interpolators
- Numerical error analysis

Scallops Sites
Introduction
Scallops data: image and contour plots

Locations form patterns

Surface plot

Image contour plot

Drop-line scatter plot

Surface features
Introduction

Scallops data: image and contour plots

Interesting plot arrangements

E–W UTM coordinates

N–S UTM coordinates

Fundamentals of Cartography

The earth is round! So (longitude, latitude) $\neq (x, y)$!

A map projection is a systematic representation of all or part of the surface of the earth on a plane.

Theorem: The sphere cannot be flattened onto a plane without distortion.

Instead, use an intermediate surface that can be flattened. The sphere is first projected onto the this developable surface, which is then laid out as a plane.

The three most commonly used surfaces are the cylinder, the cone, and the plane itself. Using different orientations of these surfaces lead to different classes of map projections...

Map projections seek functions $f(\cdot)$ and $g(\cdot)$: Writing (longitude, latitude) as (λ, θ), projections are

$$x = f(\lambda, \phi), \quad y = g(\lambda, \phi),$$

where f and g are appropriate functions to be determined, based upon the properties we want our map to possess.

Equal area projections must satisfy

$$\left(\frac{\partial f}{\partial \lambda} \frac{\partial g}{\partial \phi} - \frac{\partial f}{\partial \phi} \frac{\partial g}{\partial \lambda} \right) = R^2 \cos \phi.$$

Conformal (equal-angle) projections must satisfy

$$\frac{\partial f}{\partial \lambda} \frac{\partial f}{\partial \phi} + \frac{\partial g}{\partial \lambda} \frac{\partial g}{\partial \phi} = 0.$$

Cylindrical (Sinusoidal) projection

This sinusoidal projection obtained by specifying $\frac{\partial g}{\partial \phi} = R$, which yields equally-spaced straight lines for the parallels, and results in (with the 0 degree meridian as the central meridian),

$$f(\lambda, \phi) = R\lambda \cos \phi; \quad g(\lambda, \phi) = R\phi.$$

Cylindrical (Mercator) projection

The Mercator projection is a conformal projection that distorts areas (badly at the poles):

$$f(\lambda, \phi) = R\lambda; \quad g(\lambda, \phi) = R \ln \tan \left(\frac{\pi}{4} + \frac{\phi}{2} \right).$$
The basic geometry behind calculating geodesic distances

Consider two points on the surface of the earth, \(P_1 = (\theta_1, \lambda_1) \) and \(P_2 = (\theta_2, \lambda_2) \), where \(\theta = \) latitude and \(\lambda = \) longitude.

The geodesic distance we seek is \(D = R\phi \), where

- \(\phi \) is the angle subtended by the arc connecting \(P_1 \) and \(P_2 \) at the center.

From elementary trigonometry, the coords on a sphere are
\[
x = R \cos \theta \cos \lambda, \quad y = R \cos \theta \sin \lambda, \quad \text{and} \quad z = R \sin \theta
\]

Assume a unit sphere (i.e. \(R = 1 \)). Letting \(u_1 = (x_1, y_1, z_1) \) and \(u_2 = (x_2, y_2, z_2) \), we know
\[
\cos \phi = \frac{\langle u_1, u_2 \rangle}{||u_1|| ||u_2||} = \langle u_1, u_2 \rangle.
\]

We now compute
\[
\langle u_1, u_2 \rangle = \cos \theta_1 \cos \lambda_1 \cos \theta_2 \cos \lambda_2 + \cos \theta_1 \sin \lambda_1 \cos \theta_2 \sin \lambda_2 + \sin \theta_1 \sin \theta_2
\]
\[
= \cos \theta_1 \cos \theta_2 \cos (\lambda_1 - \lambda_2) + \sin \theta_1 \sin \theta_2
\]

For a sphere of radius \(R \), our final answer is
\[
D = R\phi = R \arccos[\cos \theta_1 \cos \theta_2 \cos (\lambda_1 - \lambda_2) + \sin \theta_1 \sin \theta_2].
\]