Modeling Large Spatial Datasets

Sudipto Banerjee1, Bradley P. Carlin1 and Alan E. Gelfand2

1Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

2Department of Statistical Sciences, Duke University, Durham, North Carolina.

August 02, 2014
Hierarchical Spatial model

\[p(\theta) \times p(\Psi) \times N(\beta \mid \mu_\beta, \Sigma_\beta) \times N(w \mid 0, C_w(\theta)) \]
\[\times \prod_{i=1}^{n} N_{m}(y(s_i) \mid X(s_i)^\top \beta + w(s_i), D(\Psi)) \]

- regression slopes
- spatial random effects from Gaussian process
- nonspatial variability (nugget)
- spatial process parameters (spatial variance, range, smoothness) and
Computational issues.

- We need to evaluate

\[-\frac{1}{2} \log \det (C_w(\theta)) - \frac{1}{2} w^\top C_w(\theta)^{-1} w\]

- What if \(n \) is LARGE? How do we tackle \(C_w(\theta)^{-1} \) and \(\det(C(\theta)) \)?
Approaches to dimension reduction:

- Covariance tapering (Furrer et al. 2006; Zhang and Du, 2007; Du et al. 2009; Kaufman et al., 2009)

- Spectral domain: (Fuentes 2007; Paciorek, 2007)

- Approximate using GMRFs: \textsc{INLA} (Rue et al. 2009; Lindgren et al., 2011)

- Nearest-neighbor models (processes) (Vecchia 1988; Stein et al. 2004; Datta et al., 2014)

- Low-rank approaches (Wahba, 1990; Higdon, 2002; Lin et al., 2000; Kamman & Wand, 2003; Paciorek, 2007; Rasmussen & Williams, 2006; Stein 2007, 2008; Cressie & Johannesson, 2008; Banerjee et al., 2008; 2010; Sang et al., 2011)

\[S^* = \{s_1^*, s_2^*, \ldots, s_n^*\} \]: a set of “knots”.

\[w(s) \approx w_{KC}(s) = \sum_{j=1}^{n^*} k(s - s_j^*, \theta_1) u_j \]

\[u_j \sim iid \sim N(0, 1) \]

Smoothing causes loss in variability:

\[w(s) - w_{KC}(s) = \int k(s - v, \theta_1) dU(v) - \sum_{j=1}^{n^*} k(s - s_j^*, \theta_1) u_j \approx \sum_{j=n^*+1}^{\infty} k(s - s_j^*, \theta_1) u_j \]

No easy way to quantify this difference with kernel convolutions.
Low rank Gaussian process

- Call $w(s) \sim GP_m(0, C_\theta(\cdot))$ the *parent process*
- For $\mathcal{S}^* = \{s_1^*, s_2^*, \ldots, s_n^*\}$, let $C^*_w(\theta) = \{C_\theta(s_i^*, s_j^*)\}$:
 \[
 w^* = (w(s_1^*)^\top, w(s_2^*)^\top, \ldots, w(s_n^*)^\top)^\top \sim N(0, C^*_w(\theta))
 \]
- The *predictive process* derived from $w(s)$ is:
 \[
 \tilde{w}(s) = \mathbb{E}[w(s) | w^*] = \text{cov}\{w(s), w^*\}^\top \text{var}\{w^*\}^{-1}w^*.
 \]
- $\tilde{w}(s)$ is a *degenerate* Gaussian process delivering dimension-reduction.
Hierarchical predictive process models

\[
\tilde{w}(s) = z(s, \theta)^\top w^*
\]

Low rank interpolation

\[
\begin{align*}
\mathbf{w}^* &= \left(\mathbf{w}(s_1^*)^\top, \ldots, \mathbf{w}(s_{n^*})^\top\right)^\top \\
\end{align*}
\]

Hierarchical predictive process models

\[
p(\theta) \times p(\Psi) \times N(\beta | \mu_\beta, \Sigma_\beta) \times N(w^* | 0, C_w(\theta)) \\
\times \prod_{i=1}^n N_m(y(s_i) | X(s_i)^\top \beta + \tilde{w}(s_i), D(\Psi)).
\]
Hierarchical predictive process models

Parent process surface

Predictive process surface

JSM 2014 Hierarchical Modeling and Analysis for Spatial Data
Hierarchical predictive process models

Systemic under-estimation:

\[
\text{var}\{w(s)\} = \text{var}\{E[w(s) | w^*]\} + E\{\text{var}[w(s) | w^*]\} \\
\geq \text{var}\{E[w(s) | w^*]\} = \text{var}\{\tilde{w}(s)\}.
\]

Orthogonal decomposition:

\[
\text{var}\{w(s)\} = \text{var}\{\tilde{w}(s)\} + \text{var}\{w(s) - \tilde{w}(s)\}
\]

\[
\tilde{\epsilon}(s) = w(s) - \tilde{w}(s) \sim GP(0, C_{\tilde{\epsilon}}(s_1, s_2; \theta_1)):
\]

\[
C_{\tilde{\epsilon}}(s_1, s_2; \theta_1) = C(s_1, s_2; \theta_1) - c(s_1; \theta_1)' C^*(\theta_1)^{-1} c(s_2; \theta_2).
\]