Let \(\{X_n\}_{n \geq 0} \) be a discrete-time stochastic process with countable state-space \(E \). If, for all integers \(n \geq 0 \) and all states \(i_0, i_1, \ldots, i_{n-1}, i, j \) in \(E \),

\[
P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \ldots, X_0 = i_0) = P(X_{n+1} = j | X_n = i),
\]

whenever both sides are well-defined, this stochastic process is called a Markov Chain. It is called a homogeneous Markov Chain (abbreviated as HMC) if in addition, the right hand side in the above equation is independent of \(n \).

Transition probabilities for a homogeneous Markov Chain are defined as

\[
p_{ij} = P(X_{n+1} = j | X_n = i), \text{ where } i, j \in E.
\]

The transition matrix of the Markov Chain has its \((i,j)^{th}\) element as \(p_{ij} \). Thus,

\[
[P]_{ij} = p_{ij}
\]

The matrix dimension of \(P \) is finite or infinite depending upon cardinality of \(E \).

The random variable \(X_0 \) denotes the start of the Markov Chain and represents the initial state. The corresponding distribution \(\nu_0(i_0) = P(X_0 = i_0) \) is called the initial distribution.

Lemma 1 Consider a Markov chain with \(r > 1 \) states having an \(r \times r \) transition matrix \(P = [p_{ij}] \) all of whose entries are positive, i.e. \(p_{ij} > 0 \) for all \(i, j \), with the minimum entry being \(d \). Let \(u \) be a \(r \times 1 \) vector with non-negative entries, the largest of which is \(M_0 \) and the smallest of which is \(m_0 \). Also, let \(M_1 \) and \(m_1 \) be the maximum and minimum elements in \(Pu \). Then,

\[
M_1 \leq dm_0 + (1 - d)M_0, \quad \text{and} \quad m_1 \geq dM_0 + (1 - d)m_0,
\]

and hence that

\[
M_1 - m_1 \leq (1 - 2d)(M_0 - m_0).
\]
Proof Each entry in the vector Pu is a weighted average of the entries in u. The largest weighted average that could be obtained in the present case would occur if all but one of the entries of u have value M_0 and one entry has value m_0, and this one small entry is weighted by the smallest possible weight, namely d. In this case, the weighted average would equal
\[dm_0 + (1-d)M_0. \]
Similarly, the smallest possible weighted average equals:
\[dM_0 + (1-d)m_0. \]
Thus,
\[M_1 - m_1 \leq (dm_0 + (1-d)M_0) - (dM_0 + (1-d)m_0) = (1-2d)(M_0-m_0). \]

Lemma 2 In the setup of Lemma 1, define M_n and m_n as the maximum and minimum elements of $P^n u$. Then $\lim_{n \to \infty} M_n$ and $\lim_{n \to \infty} m_n$ both exist and are in fact equal.

Proof The vector $P^n u$ is obtained from the vector $P^{n-1} u$ by multiplying on the left by the matrix P. Hence each component of $P^n u$ is an average of the components of $P^{n-1} u$. Thus,
\[M_0 \geq M_1 \geq M_2 \cdots \]
and
\[m_0 \leq m_1 \leq m_2 \cdots. \]
Each of the above sequences is monotone and bounded:
\[m_0 \leq m_n \leq M_n \leq M_0. \]
Hence each of these sequences will have a limit as $n \to \infty$.

Let $\lim_{n \to \infty} M_n = M$ and $\lim_{n \to \infty} m_n = m$. We know that $m \leq M$. We shall prove that $M - m = 0$, which will be the case if $M_n - m_n$ tends to 0. Recall that d is the smallest element of P and, since all entries of P are strictly positive, we have $d > 0$. By our lemma
\[M_n - m_n \leq (1-2d)(M_{n-1} - m_{n-1}), \]
from which it follows that
\[M_n - m_n \leq (1-2d)^n(M_0 - m_0). \]
Since $r \geq 2$, we must have $d \leq 1/2$, so $0 \leq 1 - 2d < 1$, so $M_n - m_n \to 0$ as $n \to \infty$. Since every component of $P^n u$ lies between m_n and M_n, each component must approach the same number $M = m$. \[\square \]

Theorem 3 If $P = [p_{ij}]$ is an $r \times r$ transition matrix all of whose entries are positive, then
\[\lim_{n \to \infty} P^n = W \]
where W is some $r \times r$ matrix with identical row vectors. Also, each element of W is positive.
Proof Lemma 2 implies that if we denote the common limit $M = m = \alpha$ then:

$$\lim_{n \to \infty} P^n u = \alpha 1.$$

In particular, suppose we choose $u = e_j$ where e_j is the $r \times 1$ vector with its j-th component equal to 1 and all other components equaling 0. Then we obtain an α_j such that $\lim_{n \to \infty} P^n e_j = \alpha_j 1$. Repeating this for each $j = 1, \ldots, r$ we obtain:

$$\lim_{n \to \infty} P^n [e_1 : \ldots : e_r] = [\alpha_1 1 : \ldots : \alpha_r 1]$$

which implies that $\lim_{n \to \infty} P^n = W$ with each row of W being the vector $\alpha^T = (\alpha_1, \ldots, \alpha_r)$.

It remains to show that all entries in W are strictly positive. Note that $P e_j$ is the j-th column of P, and this column has all entries strictly positive. The minimum component of the vector $P u$ was defined to be m_1, hence $m_1 > 0$. Since $m_1 \leq m$, we have $m > 0$. Note finally that this value of m is just the j-th component of α, so all components of α are strictly positive. □

Theorem 4 Suppose we relax the condition for all entries of P being positive to the condition that there exists an integer N such that all entries in P^N are positive. Then, the result in Theorem 3 will still hold for such a P.

Proof We can directly apply Theorem 3 to the strictly positive matrix P^N and obtain $M_{nN} - m_{nN} \to 0$ as $n \to \infty$, where M_{nN} and m_{nN} are defined analogously as the maximum and minimum elements of $P^{Nn} u$. However, by our earlier inequality the difference $M_n - m_n$ can never increase. Hence, if we know that the differences obtained by looking at every N-th time tend to 0, then the entire sequence must also tend to 0. □

To interpret the above result in terms of the stationary distribution of a finite Markov Chain, note that the vector α in Theorem 3 satisfies $\sum_{i=1}^r \alpha_i = 1$ since:

$$1 = \lim_{n \to \infty} P^n 1 = W 1$$

and each element of $W 1$ is $\sum_{i=1}^r \alpha_i$. Finally, observe that α (i.e. each row of W) is precisely the stationary distribution of P by noting that if π denotes a stationary distribution of P, then π must coincide with α:

$$\pi^T = \pi^T P = \pi^T P^n = \pi^T \lim_{n \to \infty} P^n = \pi^T W = \pi^T [\alpha_1 1 : \ldots : \alpha_r 1] = \alpha^T,$$

where we used the fact $\pi^T 1 = 1$ in the last equality. This also shows that such a chain must have a unique stationary distribution.