Chapter 11 Regression Diagnostics

PubH 7450

(c)Wei Pan

Email: weip@biostat.umn.edu
Http: www.biostat.umn.edu/~weip

$\S 11.2$ Cox-Snell residuals

- Goal/use: a graphical assessment of the overall fit of a model.
- Basic idea:

1. $X \sim F(\mathrm{cdf}) \Longrightarrow F(X) \sim U(0,1)$;

A rough proof: for any $0 \leq y \leq 1$,
$\operatorname{Pr}[F(X) \leq y]=\operatorname{Pr}\left[X \leq F^{-1}(y)\right]=F\left[F^{-1}(y)\right]=y$.
2. $H(X)=-\log S(X)=-\log [1-F(X)] \sim \operatorname{Exp}(1)$
$\Longrightarrow h(t)=1, H(t)=t$.

- Given: 1) data $\left(T_{j}, \delta_{j}, Z_{j}\right), j=1, \ldots, n$;

2) a Cox PHM: $h(t \mid Z)=h_{0}(t) \exp \left(Z^{\prime} \beta\right)$.

- How?

1) fit the model $\longrightarrow \hat{H}_{0}(t), \hat{\beta}$;
2) $r_{j}=H_{j}\left(T_{j}\right)=\hat{H}_{0}\left(T_{j}\right) \exp \left(Z_{j}^{\prime} \hat{\beta}\right)$.
--Cox-Snell residuals
Q: what is the distribution of r_{j} ?
3) $\left(r_{j}, \delta_{j}\right)$'s: a sample from ...
4) plot based on $\left(r_{j}, \delta_{j}\right)$'s; compare with to see
whether there is a strong discrepancy between the two; if yes, the model is inadequate!

- Example 11.1: Fig. 11.1-3.

11.1 Cox-Snell residual plot treating MTX as a fixed time covariate

3-1

Figure 11.2 Cox-Snell residual plots for MTX and no MTX patients separately treating MTX as a fixed covariate in the model. MTX patients (----) No MTX patients (—)

Figure 11.3 Cox-Snell residual plot $f_{\mathcal{O}}{ }^{\text {MTX }}$ and no MTX patients basery a model stratified on MTX usage. MTX patients (------) No MTX patients $\&$

§11.3 Martingale residuals

- Goal: to determine the functional form of a covariate. similar to (partial) residual plot?
- Given: 1) data $\left(T_{j}, \delta_{j}, Z_{j}\right), j=1, \ldots, n$;

2) a Cox PHM: $h(t \mid Z)=h_{0}(t) \exp \left(Z^{\prime} \beta\right)$.
martingale residuals:
$\hat{M}_{j}=\delta_{j}-\hat{H}_{0}\left(T_{j}\right) \exp \left(Z_{j}^{\prime} \hat{\beta}\right)=\#$ obs'ed events - \#exp'ed events, $j=1, \ldots, n$.

- Given: $Z=\left(Z_{1}, Z_{2}^{\prime}\right)^{\prime}$ and we know functional form of Z_{2}.
- Q: find functional form of Z_{1}.
- How?

1) fit a PHM w/o $Z_{1}: h\left(t \mid Z_{2}\right)=h_{0}(t) \exp \left(Z_{2}^{\prime} \beta\right) \Longrightarrow \hat{M}_{j}$, $j=1, \ldots, n$.
2) plot \hat{M}_{j} vs Z_{1} : the trend tells the functional form of Z_{1}.

- Example 11.2: Fig 11.4.
- Q: why not just do H.T.? why do graphics?

Figure 11.4 Plot of martingale residual verus waiting time to transplant and LOWESS smooth

§11.5 Deviance residuals

- Goal: to identify possible outliers (and assess overall model fiting).
- Motivation:

Martingale residuals: highly skewed!
$\min \left(\hat{M}_{j}\right)=-\infty, \max \left(\hat{M}_{j}\right)=1$.

- Deviance residuals: transform \hat{M}_{j} so that it is more symmetric (like a Normal variate),
$D_{j}=\operatorname{sgn}\left(\hat{M}_{j}\right)\left\{(-2)\left[\hat{M}_{j}+\delta_{j} \log \left(\delta_{j}-\hat{M}_{j}\right)\right]\right\}^{1 / 2}$.
- Some properties:
$\hat{M}_{j}=0 \Longrightarrow D_{j}=0$.
D_{j} increases as $\hat{M}_{j} \rightarrow 1$.
D_{j} shrinks a large negative \hat{M}_{j}.
- Goal 1: to identify outliers, use index plot: plot D_{j} vs j, \ldots
- Goal 2: for general model checking, plot D_{j} vs $Z_{j}^{\prime} \hat{\beta}$ (linear rpedictor or risk score); if any trend, ...
- Example 11.2: Fig 11.20-21.

Figure 11.20 Plot of the martingale residuals versus risk scores for the bone marrow transplant example

$$
7-1
$$

Figure 11.21 Plot of the deviance residuals versus risk scores for the bone marrow transplant example

§New. Other residuals

- References: p. 376 in $\S 11.4$; Therneau and Grambsch, $\S 6.2$.
- Schoenfeld (1982) residuals: Assume no ties, no time-dependent covariate, at each time point t_{i}, $U_{i}=U\left(t_{i}\right)=Z_{(i)}-\bar{Z}\left(t_{i}\right)$, where
$\bar{Z}\left(t_{i}\right)=\frac{\sum_{j \in R\left(t_{i}\right)} Z_{j} \exp \left(Z_{j}^{\prime} \hat{\beta}\right)}{\sum_{j \in R\left(t_{i}\right)} \exp \left(Z_{j}^{\prime} \hat{\beta}\right)}$.
- $U=\sum_{i=1}^{D} U_{i}$ is the score eq.
- U_{i} is a vector, as $Z_{(i)}$ and $\bar{Z}\left(t_{i}\right)$.
- With tied event times, then give multiple U_{i} at t_{i}, one for each observation with the tied event time.
- will be used later for model checking. time-varying coefficient models and GOF tests.
- Score residuals: with time-dependent covariates, $U=\sum_{j=1}^{n} S_{j}$ $S_{j}=\int_{0}^{\infty}\left[Z_{j}(u)-\bar{Z}(u)\right] d \hat{M}_{j}(u)$, score residual. used to simplify delete-1 stat's for influence analysis.

§New. Time-dependent coefficient model

- Reference: Therneau and Grambsch, §6.2.
- Goal: a generalized version of a standard PHM; can be used to check the standard PHM.
- Standard PHM:
$h(t \mid Z)=h_{0}(t) \exp \left(Z^{\prime} \beta\right)$.
Note: β are constants, do not change over t.
- Time-dependent coefficient PHM:
$h(t \mid Z)=h_{0}(t) \exp \left(Z^{\prime} \beta(t)\right)$.
Note: $\beta(t)$ is in general a function of t.
- Model checking:

If $\beta(t)=$ const, say β, then the standard PHM holds; otherwise, it gives evidence against the standard PHM.

- Basic idea:

Use scaled (or weighted, as called in SAS) Schoenfeld residuals $s_{i j}^{*} ; i$ for time point t_{i}, and j for component j of the covariate/coefficient vector.

- Theory: by Grambsch and Therneau (1995),

$$
E\left(s_{i j}^{*}\right)+\hat{\beta}_{j} \approx \beta_{j}\left(t_{i}\right),
$$

where $\hat{\beta}_{j}$ is obtained from the standard PHM.
\Longrightarrow (nonparametrically) smooth $s_{i j}^{*}+\hat{\beta}_{j}$ over t to obtain $\hat{\beta}_{j}(t)$! And

- A formal check on each covariate:

Plot $s_{i j}^{*}+\hat{\beta}_{j}$ against t_{i} or $g\left(t_{i}\right)\left(\right.$ e.g. $\left.\log \left(t_{i}\right)\right)$;
Fit a line;
Test whether the slope $\theta_{j}=0$.
If yes, then $\hat{\beta}_{j}(t)$ is not constant, and thus ...
Note: applies to each covariate j or β_{j}.

- A global check:

$$
\begin{aligned}
& H_{0}: \beta_{1}(t)=\beta_{1}, \beta_{2}(t)=\beta_{2}, \ldots \\
& H_{0}^{\prime}: \theta_{1}=\theta_{2}=\ldots=0
\end{aligned}
$$

- Choice of $g(t)$:
different $g(t)$ leads to different test;
$g(t)=\log (t)$ leads to the score test of the zero-coefficient for $Z_{j} \log (t)$!
- Example: R

§11.6 Influence analysis

- Goal: to find influential observations. Outliers may or may not be influential. Influence on what?
- General model-fitting:

General model-fitting measured by ... How to measure influence? Likelihood change/displacement with and without an observation.

- β
$\Delta \beta_{j}=\hat{\beta}_{j}-\hat{\beta}_{j(-i)}$, DFBETA for each j.
before and after deleting obs i.
Overall?
$\Delta \beta=\left(\hat{\beta}-\hat{\beta}_{(-i)}\right)^{\prime} V^{-1}\left(\hat{\beta}-\hat{\beta}_{(-i)}\right)$, DFBETAS
- Brute force: requires fitting the model $n+1$ times; some tricks appply so that only fitting with the full data is needed.

Use score residuals: $\hat{\beta}-\hat{\beta}_{(-i)} \approx I(\hat{\beta})^{-1} S_{i}$
See eq (11.6.1) on p. 385 for an expression of S_{i}.

- Example: SAS

