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§11.2 Cox-Snell residuals

Goal/use: a graphical assessment of the overall fit of a model.

Basic idea:

1. X ~ F (cdf) = F(X) ~U(0,1);

A rough proof: for any 0 <y <1,

Pr[F(X) <yl =PrlX < F ' y)] = F[F~}(y
2. HX)=—-1logS(X)=—log|l — F(X)]

— h(t) =1,H(t) =

Given: 1) data (7},6;,7Z;),j=1,...,n;
2) a Cox PHM: h(t|Z) = ho(t) exp(Z'5).

How?

1) fit the model — Hy(t), f;
2) r; = H;(T;) = Ho(T;) exp(Z! ).
——-Cozx-Snell residuals

Q: what is the distribution of r;?




3) (rj,05)’s: a sample from ...

4) plot based on (r;,d;)’s; compare with
whether there is a strong discrepancy between the two; if yes,

the model is inadequate!

e Example 11.1: Fig. 11.1-3.
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11.1  Cox=Snell residual plot treating MIX as a fixed time covariaté
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Figure 11.2  Cox-Snell residual plots for MTX and no MTX patients separately
treating MTX as a fixed covariate in the model. MTX patients (------) No MTX

patients (- ) 3.9
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Figure 11.3  Cox-Snell residual plotg[ngTX and no MTX patients
a model stratified on MTX usage. MTX patients (--—----) No MTX pat{«fflts



§11.3 Martingale residuals

Goal: to determine the functional form of a covariate.

similar to (partial) residual plot?

Given: 1) data (1},6;,%4,),5=1,...,n;

2) a Cox PHM: h(t|Z) = ho(t) exp(Z'5).

martingale residuals:

Mj =0; — ﬁo(Tj) exp(Z;ﬂA) —#obs’ed events - #exp’ed events,

7=1,...,n.
Given: Z = (Z1,Z%)" and we know functional form of Zs.
Q: find functional form of 7.

How?

1) fit a PHM w/o Z1: h(t|Zs) = ho(t) exp(Z53) = M;
7=1,..n.

2) plot M ; vs Zj: the trend tells the functional form of Z;.




e Example 11.2: Fig 11.4.

e (): why not just do H.T.? why do graphics?
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Figure 11.4  Plot of martingale residual verus waiting time 1o transplant and
LOWESS smooth



§11.5 Deviance residuals

Goal: to identify possible outliers (and assess overall model
fiting).

Motivation:
Martingale residuals: highly skewed!
min(M;) = —oo, max(M;) = 1.

Deviance residuals: transform M; so that it is more symmetric

(like a Normal variate),
Dj = sgn(M;){(—2)[M; + §;log(5; — M;)]}'/2.

Some properties:

A

M]:0:>D]:0

D; increases as M,; — 1.

D; shrinks a large negative M j

Goal 1: to identify outliers, use index plot:

plot D; vs j,...



e Goal 2: for general model checking,

A

plot D; vs Z?(3 (linear rpedictor or risk score); if any trend, ...

e Example 11.2: Fig 11.20-21.
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Figure 11.20 Plot of the martingale residuals versus risk scores for the bone
marrow transplant example
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Figure 11.21 Plot of the deviance residuals versus risk scores for the boné:
marrow transplant example
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§New. Other residuals
References: p.376 in §11.4; Therneau and Grambsch, §6.2.

Schoenfeld (1982) residuals: Assume no ties, no
time-dependent covariate, at each time point ¢;,
Ui = U(tz) = Z(i) — Z( z'); where
ZjeR(ti) Zj exp(Z’)

D icreey PEZ5B)

Z(t;) =

U =" U is the score eq.

U, is a vector, as Z(;) and Z(t;).

With tied event times, then give multiple U; at ¢;, one for each
observation with the tied event time.

will be used later for model checking.
time-varying coefficient models and GOF tests.




e Score residuals: with time-dependent covariates,

Si = Jy [Z(u) — Z(w))dM;(u), score residual.
used to simplify delete-1 stat’s for influence analysis.




§New. Time-dependent coefficient model

Reference: Therneau and Grambsch, §6.2.

Goal: a generalized version of a standard PHM; can be used to
check the standard PHM.

Standard PHM:
h(t|Z) = ho(t) exp(Z'3).

Note: (3 are constants, do not change over t.

Time-dependent coefficient PHM:
h(t|Z) = ho(t) exp(Z/B(1)).

Note: B(t) is in general a function of ¢.

Model checking:
If B(t) = const, say (3, then the standard PHM holds;
otherwise, it gives evidence against the standard PHM.

Basic idea:




Use scaled (or weighted, as called in SAS) Schoenfeld residuals
s

*
177
covariate/coefficient vector.

Theory: by Grambsch and Therneau (1995),
E(si;) + 05 = Bi(t:),
where (3; is obtained from the standard PHM.

— (nonparametrically) smooth s}; + Bj over t to obtain Bj (¢)!
And

¢ for time point ¢;, and 5 for component j of the

A formal check on each covariate:

Plot s7; + Bj against t; or g(t;) (e.g. log(t;));
Fit a line;

Test whether the slope 6; = 0.

If yes, then Bj (t) is not constant, and thus ...

Note: applies to each covariate j or ;.

e A global check:




Hy: B1(t) = B, B2(t) = Ba,...
H(/): (91:(92:...20

e Choice of g(t):
different g(t) leads to different test;
g(t) = log(t) leads to the score test of the zero-coefficient for
Z;log(t)!

e Example: R




§11.6 Influence analysis

Goal: to find influential observations.
Outliers may or may not be influential.
Influence on what?

General model-fitting:

General model-fitting measured by ...

How to measure influence? Likelihood change/displacement
with and without an observation.

5

AB; = Bj — B;(_i), DFBETA for each j.
before and after deleting obs 2.

Overall?

AB = (B — B—y)'V~HB — B(~i)), DFBETAS

Brute force: requires fitting the model n 4+ 1 times; some tricks
appply so that only fitting with the full data is needed.




Use score residuals: B — B(_i) R~ I(B)_lSZ-
See eq (11.6.1) on p.385 for an expression of S;.

e Example: SAS




