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e Background: discussed so far,
1) semi-parametric PHM; —use partial likelihood.
2) parametric AFT; parametric PHM can be done
similarly;—use full likelihood.

How about semi-parametric AFT?
partial likelihood does not work; topic here.

Discuss one of the earliest, Buckley-James estimator; intuitive,
related to the EM discussed for the one-sample problem.
Refs.: Buckley, J. and James, I. (1977). Linear regression with
censored data. Biometrika, 66, 429-436.

Miller, R. and Halpern, J. (1982). Regression with censored
data. Biometrika, 69, 521-531.

See also Section 2.2 in Chapter 6 of Miller (1980).

More recent ones, based on estimating functions, e.g.,

Wei, Ying and Lin (1990). Linear regression analysis of

censored survival data based on rank tests. Biometrika, 77,




845-851.

Problem: given data (7},0;,%4,), 7 =1,...,n, )

AFT model: Y; = log X; = Z:0 + ¢;, where ¢; e Fp.
Semi-parametric: no parametric assumption on Fj (in contrast
to parametric approaches where Fj is assumed to be, e.g. an

extreme value distr = X; as Weibull).
Goal: inference on 0.

Basic idea: If Y; were observed, then could use OLSE 9 and so

on.

Challenge: Y, may be censored!
Solution: impute!

How?
Estimate E(Y;|Y; > logT; = y,).

First, if we have an initial é, then
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use (7,0;) to estimate Fp: use estimator, Fy = Fy(9).

Suppose
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E\(YJ|YJ > logT;) = Z;@A + E(ej|ej > r;).
Define

A

Y, =logT} if 6; =1;

Y; = E(Y;|Y; > log Ty) if 6; = 0.

Use complete data (Y}, Z;) to get an updated OLSE 9:
0=[(Z—-2)Z-2)]"YZ-2)Y.

Repeat the above steps until convergence (if any).

B-J suggested
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Cov(0) = 62[(Z; — Zu)' A(Z; — Zu)] 7Y,

where 62 = 35 _(y; — %u — (Z; — Z4)'0)%/(ny — 2), and
A = diag(d;)

. n
u: uncensored observations:; n, = Y . 1 0;.
) 1=1"J

Var(0y,)

No theoretical justification, but seems to work reasonably well
in simulations; my view: perhaps upward-biased, why?

Variance estimation is challenging (usually involving unknown
density functions, and the estimating function is usually

non-smooth); use bootstrap; under current investigation.

Example (Miller and Halpern 1982): Stanford transplant data.
Compared to other methods, the Cox and B-J estimators
agreed more to each other, and were claimed to be the winners.

e Software: R function bj () in package rms.




The author (Dr Frank Harrell): “The program implements the

algorithm as described in the original article by Buckley &
James. Also, we have used the original Buckley & James
prescription for computing variance/covariance estimator. This
is based on non-censored observations only and does not have
any theoretical justification, but has been shown in simulation
studies to behave well. Our experience confirms this view.”
“The bootcov function may be worth using with bj fits, as the
properties of the Buckley-James covariance matrix estimator
are not fully known for strange censoring patterns.”

e Example: R




