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§4.2 Estimate S(¢) for Right-Censored Data
Given data (T;,6;), 1 =1,...,n.

Goal: to estimate S(.) (and H(.)) for X;.
not S(.) for T; or Cj!

Assumption: nonparametric; independent censoring:
assume that X and C are independent = no difference
between a subject censored at t and one surviving beyond
t.—always assume this!

Does it mean that every subject has an equal probability of
being censored?

Notation

Define t1 < ty < ... < tp as distinct event times;

d; = # events at t;;

y; = # subjects at risk at t; = #{i: X; > t;}, called risk set

size.




e Kaplan-Meier (K-M) estimator, Product-Limit (PL) estimator:

1 if £ < tq;

S(t) = d; .
Htigt (1 — y—> otherwise.

e Example 4.1: Table 1.1, 6-MP group, n = 21
Data: 6, 6, 6, 6+, 7, 94, 10, 10+, 114, 13,...
t;: 6, 7,10, 13, ...
dz-: 3,1,1,1,...

—dy/yn =1—3/21 = 857;
57(1 — 1/17) = .806;
06 «(1—1/15) = .752;
52(1 — 1/12) = .690;




e Example 4.1: SAS; handout

e Justifications for S(t):
— S(t) = S.(t) if there is no censoring:

Suppose no tied event times;

S(to) = 1;

“Reduced-sample” argument:
Because only observe events at t;’s, without any other

assumption, S (t) should be a step function of ¢;; think
about S, (t).

PriX>tX>t)=1-Pr(X =t;|X >t) =..




S(t:) S(ti1)
S(ti—1) S(ti—2)
Pr(X > t;| X > tz-)

(-5,

— Redistribution-to-the-right algorithm:

LY

Example: n = 6; Probability mass:

T, 3 4 5+ 6 T+
Tter=1 1/6 1/6 1/6 1/6 1/6
Tter=2 1/6 1/6 0  1/6+1/18 1/6+1/18

—4/18 4/18
Tter=3 1/6 1/6 0  4/18 0

S(3)=1—1/6;
S(4)=1-1/6—1/6;




S6)=1—1/6—1/6—4/18;
S(8)=1-1/6—-1/6—4/18 —8/18 = 0.
Verify S(t) = S(t)?

Self-consistency:

SC(t) = % <zn: [Ty > 1)

SC(t)
Y SC(Ty)

I(T; <t,6; = 0))

1=

2nd term = P\T(XZ > t|XZ > Tz) — E[I(Xz > t‘XZ > Tz)]
K-M estimator is the unique self-consistent estimator for
t < Tiy); for a proof, see Miller (1981).

K-M estimator is the nonparametric MLE (NPMLE):
1) No censoring. The ECDF F is the NPMLE of F, hence
1 — F =5 is the NPMLE of S.




Example: observe events at x1, xs.

Denote p; = Pr(X =x;),1=1,2.

L = pips with 0 < p1,p2,p1 +p2 < 1.

To maximize L, we need to have p; + po = 1; otherwise, p;
and/or po will be smaller, and thus L will be smaller.

So, L=pi(1—p1)= L' =1-2p1 =0=p1 =pr = 1/2.
2) With censoring. Again the NPMLE would put all
probability mass at observed event times t;’s and possibly
T(n) if 5(n) = 0 and T(n) >1tp.

L [[PrxX =1)%Pr(X >T)"°
1=1

n

H ;i I( Z py

1=1 T;>t;

— L is maximized by S(t); see Miller 1981 for a proof.




e Variance of S Et)

logg( t) = Zt <t10g (1 — E)

1 — y—z =1—p; =q;, d; ~ Bin(y;, E(p;)).

Delta method: Var(g(X)] ~ [¢/(X)]*Var(X).

Var(loggq) = (1/¢;)*Var(q;) = qli qZ(lyi = yi(yi-li—di)'

Treating all the terms as mdependent (incorrectly),
Var log S( ) S( )2 VCL?“[ ( )] Zt <t yz(yz d;)"

Var[S(t)] ~ S(t)? Dt <t yi(yi_di)7 Greenwood’s formula.

e For any given tg < tp,
S(to) ~ N(S(to), Var[S(t))).

e Example 4.1.




§4.2 Estimate H(t) for Right-censored Data

e Based on K-M estimator:

e Nelson-Aalen estimator of H:

0 if t < tq;
(L) - )

Di,<t - Otherwise.

7

Interpretation of d; /y;:
For discrete r.v.. h(t;) = Pr(X =X > t;,) = ...
e N-A estimator of S, also called Fleming-Harrington estimator:
. i d;
S(t) = exp(—H(t)) = | [ exp(——).
f.<t Yi

Note: if d; /y; is small,




Comparison:

Fleming-Harrington compared the performance of S (¢) and
S(t) empirically, finding that S has smaller MSE when
S(x) > 0.2, but larger MSE otherwise.

In practice, use S(t) for S(t); use H(t) for H(t).

~

Var(H(t)):

1) d; ~ Pois(E(d;)) = Var(H(t)) = Dt <t 3—2
2) di ~ Binlyi, E(p)) = Var(H(t)) = 3, <, “P " =

e T yi
1) is_preferired.

Deriv? Va/r(g(t)): by~§( ) = e:vp(jﬁ(t ),~
Var(S(t)) = (exp(—H(t)))*Var(H(t)) = S(t)*

to Greenwood’s formula.




e Example 4.1b.r

11



§4.3 Point-wise CI for S(t)
e Recall S(t) ~ N(S(t), Var(S(t)))
— 95% Wald CI of S(t) at any given t is
5(t) = 1.96/Var(5(t)), -linear CI.

Downsides:

1) can be out of the range of [0,1];
2) lower coverage probability: the true distribution of S(¢) is
typically skewed.

— take some transformation!

log transformation:

A

Var(log(S(t))) ~ 3(1)2 Var(5(t)), and 95% CI of log S(t) is

log($(£)) + 1.96\/ Var (log($(1))),




hence 95% CI of S(?) is

expllog(5(1)) % 1.96y/ Var(log(5(t)))]

log-log transformation:

log(—log S(t)). )
Use the Delta-method to estimate Var[log(—log S(t))], then

exp{expl[log(—log S(t)) + 1.96vVar|}.

Textbook gives another one based on arcsin-square root
(Angular or Anscomb) transformation; p.105.

Logit transformation

Summary: Linear CI is not good for small samples, while log-
or log-log-transformation is good enough, which works well
even for n > 25 (with 50% censoring).

Similarly, one can derive linear, log-, log-log-transformed CI for




H(t) based on H(t) and Var(H(t)); p.107.

e Example 4.1c.sas




§4.4 Confidence bands for S(t)

e Point-wise CI:

valid only for a given point t.
Suppose 95% C1T = [L(tp), U(to)], we have

PT{L(tO) S S(t()) S U(to)} = .95.

Confidence bands: for ¢ in some interval,
Pri{L(t) < S(t)<U(t)} = .95 for all t € [ty,ty].

Equal probability (EP) bands proportional to point-wise CI.

Var(S(t)) = S()* X<t gy = S°05(1).

_ _nog(tr)
ar = 1+nog(tr)’

2
_ _nog(ty)
au = 1+no%(ty)’

n: sample size.

Require 0 < ar,ay < 1.
Find a coefficient ¢, (ar,ay) from Table C.3, an analog of 1.96




for N(0,1).
Linear:

S(t) £ calar,ap)\/Var(S(t))

log-log transformed:

A

)7, 5(t)°), 6 = exp

S(t) log S(t)

Hall-Wellner bands

1) not proportional to CI;

2) allow tL = 0.

Find coefficient k. (ar,ay) from Table C.4.
Linear:




Log-log transformed: ...
Fig 4.6.
Similarly, construct confidence bands for H(t); p.114-116.

EP bounds: the linear one not good; log-transformed good
even for n > 20.

H-W bounds: both linear and log-transformed seem fine for

S(t); linear not good for H(t); log-transformed good for H (t).

Example 4.1d.sas
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Figure 4.6 Comparison of 95% pointwise confidence interval, EP confidence
band and Hall-Wellner confidence band for the disease free survival func-
tion found using the log transformation for ALL patients. Estimated Survival
(——); Pointwise confidence interval (———); EP confidence band (------);
Hall-Wellner band (————)



4.5 Estimates of the mean or median survival
time

e mean/median: a good summary of S(t).

o Recall p=E(X) = [ S(t)dt,
= = [° S(t)dt.
But S(t) =7 for t > T if the largest observed time T, is a

censoring time (i.e. () = 0) —reasonable?

—> can or cannot calculate [~ S(t)dt?

Solution 1): define S (T1ny) = 0, —Efron’s tail correction.
Another one by R Gill: S(t) = S(T(n)) for ¢t > T\,,).
Either one leads to biased or unbiased 17

Solution 2): estimate p with the restriction that ¢ € [0, 7| for
some 7 < Ty,

i = [ S(t)dt.




VCL’I”‘(,LLT _ z 1(ft > yi(yczll—dz)

fir ~ N (pr, Var(fir)).
= 95% CI: fi, +1.961/Var(fi,).

e Read example 4.1-4.2, p.118-119.

e Recall the pth quantile x, = inf{t: S(t) <1 —p}.
— 7, =inf{t: S(t) <1—p}.

r1/2 18 the median.
But Var(z,) is tough to estimate.

e 100(1 — a)% CI for x,: all t satisfying




log[—log S(t)] — log[—log(1 — p)]
5(t)log S()/Var(5(¢))
e Example 4.2, Table 4.7, p.121.

< Za/Z'

—Ra/2

e cx4.1.sas




I

TABLE 4.7

Construction of a 95% Confidence Interval for the Median

Linear Log Arcsine

t S8 VIS (4.54) (4.5.5) (45.6)
1 0.9737 0.0260 18.242 3.258 7.074
55 0.9474 0.0362 12.350 3.607 6.829
74 0.9211 0.0437 9.625 3.691 6.172
86 0.8947 0.0498 7.929 3.657 5.609
104 0.8684 0.0548 6.719 3.557 5.107
107 0.8421 0.0592 5.783 3.412 4.645
109 0.8158 0.0629 5.022 3.236 4.214
110 0.7895 0.0661 4.377 3.036 3.806
122 0.7368 0.0714 3.316 2,582 3.042
129 0.7105 0.0736 2.862 2.334 2.679
172 0.6842 0.0754 2.443 2.074 2.326
192 0.6579 0.0770 2.052 1.804 1.981
194 0.6316 0.0783 1.681 1.524 1.642
230 0.0041 0.0795 1.309 1.220 1.290
276 0.5767 0.0805 0.952 0.909 0.945
332 0.5492 0.0812 0.606 0.590 0.604
383 0.5217 0.0817 0.266 0.263 0.266
418 0.4943 0.0819 —-0.070 —0.070 -0.070
468 0.4668 0.0818 —0.400 —0.411 --0.405
487 0.4394 0.0815 —0.744 —0.759 ~0.741
526 0.4119 0.0809 —1.090 -1.114 —-1.078
609 0.3825 0.0803 —1.464 —1.497 —1.437
662 0.3531 0.0793 —1.853 —1.886 —1.798
2081 0.3531 0.0793 —1.853 ~1.8860 —1.798

20-1

~m—n



§4.6 left-truncated and right-censored data

Given data: (L;,T;,0;),1=1,2,...,n.
Goal: to estimate S(t) and H(t) for X.

Notation: as before,

i) define t; < t3 < ...,tp as ordered distinct event times;

ii) d; = # (events at t;);

iii) y; = # (subjects at risk at ¢;)=# {j : L; <t; <T}}; ie. #
of subjects who entered the study at/before ¢;, and died

at /after t;.

All the estimators discussed earlier for R-C’ed data are
applicable here (with modified y;). e.g.

. d;
g (1 _ _) |
f.<t Yi

Note 1). Suppose L = min; L;, then it’s obvious that the data




contain only information for those who can survive beyond L;
that is, S(t) estimate

Pr(X > t|X > L) = S(t)/S(L).

If L ~0= S(L)~ 1 and this S(t) is roughly estimate S(t).

Note 2). Truncation introduces difficulty in estimating S(t) (or
more precisely, S(t)/S(L)).

eg.,ifdi =y =1 = S(t) =0 for any t > t;!

More generally, results may not be reliable if some early y;’s

are small.
Example 4.3; Figs 4.10-4.11.

Channing House data: the male group; order the subjects by
their L;’s:

1st subject entered at month 751;

2nd subject entered at month 759;




these two died at month 777 and 781, respectively;

3rd subject entered at month 782;

— =777, d1 =1, 51 =2 = S(t;) = 1/2;

— by =T81,dy=1,ys =1 = S(tz) =1/2% (1 —1/1) = 0!

How to fix?

1) To estimate S,(t) = S(t)/S(a) = Pr(X > t|X > a) for some
large (but not so large) a (around which y;’s are reasonably

large): for t > a,




e 2) Lai-Ying’s estimator:

d.
L— —1I(y; > CW)) :
Yi
where ¢ > 0, 0 < a < 1 are some constants.
Asymptotically equivalent to PL estimator, but ad hoc for

finite samples; more importantly, how to choose ¢ and a?
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Figure 4.10 Number at risk as a function of age for the 97 males (————)

and the 365 females (-----) in the Channing bouse data set



Estimated Conditional Survival Probability
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Figure 4.11  Estimated conditional survival functions for Channing house res-

idents. 68 year old females (————); 80 year old females (—-----); 68 year old
males (———); 80 year old males (————).



