#### Chapter 4 Nonparametric Methods: One-sample Problem

PubH 7450

#### ©Wei Pan

Email: weip@biostat.umn.edu

Http: www.biostat.umn.edu/ $\sim$ weip

# §4.2 Estimate S(t) for Right-Censored Data

- Given data  $(T_i, \delta_i), i = 1, ..., n$ .
- Goal: to estimate S(.) (and H(.)) for  $X_i$ . not S(.) for  $T_i$  or  $C_i$ !
- Assumption: nonparametric; **independent censoring**: assume that X and C are independent  $\Longrightarrow$  no difference between a subject censored at t and one surviving beyond t.—always assume this!

Does it mean that every subject has an equal probability of being censored?

Notation

Define  $t_1 < t_2 < ... < t_D$  as distinct event times;  $d_i = \#$  events at  $t_i$ ;  $y_i = \#$  subjects at risk at  $t_i^- = \#\{i : X_i \ge t_i\}$ , called risk set size.

• Kaplan-Meier (K-M) estimator, Product-Limit (PL) estimator:

$$\hat{S}(t) = \begin{cases} 1 & \text{if } t < t_1; \\ \prod_{t_i \le t} \left(1 - \frac{d_i}{y_i}\right) & \text{otherwise.} \end{cases}$$

• Example 4.1: Table 1.1, 6-MP group, n = 21Data: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13,...  $t_i$ : 6, 7, 10, 13, ...  $d_i$ : 3, 1, 1, 1,...  $y_i$ : 21, ?, ?, ?,...  $t = 0, \hat{S}(t) = 1;$  $t = t_1 = 6$ ,  $\hat{S}(t) = 1 - d_1/y_1 = 1 - 3/21 = .857$ ;  $t = t_2 = 7, \, \hat{S}(t) = .857(1 - 1/17) = .806;$  $t = t_3 = 10, \, \hat{S}(t) = .806 * (1 - 1/15) = .752;$  $t = t_4 = 13, \, \hat{S}(t) = .752(1 - 1/12) = .690;$ 

Plot?

- Example 4.1: SAS; handout
- Justifications for  $\hat{S}(t)$ :
  - $-\hat{S}(t) = S_e(t)$  if there is no censoring: Suppose no tied event times;

$$S(t_0) = 1;$$

$$S(t_1) = 1 - \frac{1}{n};$$

$$S(t_2) = \frac{n-1}{n} (1 - \frac{1}{n-1}) = 1 - \frac{2}{n};$$

$$S(t_3) = \frac{n-2}{n} (1 - \frac{1}{n-2}) = 1 - \frac{3}{n};$$

- "Reduced-sample" argument:

Because only observe events at  $t_i$ 's, without any other assumption,  $\hat{S}(t)$  should be a step function of  $t_i$ ; think about  $S_e(t)$ .

$$\widehat{Pr}(X > t_i | X \ge t_i) = 1 - \widehat{Pr}(X = t_i | X \ge t_i) = \dots$$

$$\hat{S}(t_i) = \frac{\hat{S}(t_i)}{\hat{S}(t_{i-1})} \frac{\hat{S}(t_{i-1})}{\hat{S}(t_{i-2})} \dots \frac{\hat{S}(t_1)}{\hat{S}(t_0)} \hat{S}(t_0) 
= Pr(X > t_i | X \ge t_i) Pr(X > t_{i-1} | X \ge t_{i-1}) \dots 1 
= \prod_{j \le i} \left( 1 - \frac{d_j}{y_j} \right).$$

- Redistribution-to-the-right algorithm:

Example: n = 6; Probability mass:

$$T_i$$
 3 4 5+ 6 7+ 8

Iter=1 1/6 1/6 1/6 1/6 1/6 1/6 1/6

Iter=2 1/6 1/6 0 1/6+1/18 1/6+1/18 1/6+1/18

=4/18 4/18 4/18

Iter=3 1/6 1/6 0 4/18 0 4/18+4/18

 $\tilde{S}(3) = 1 - 1/6;$ 
 $\tilde{S}(4) = 1 - 1/6 - 1/6;$ 

$$\tilde{S}(6) = 1 - 1/6 - 1/6 - 4/18;$$
  
 $\tilde{S}(8) = 1 - 1/6 - 1/6 - 4/18 - 8/18 = 0.$   
Verify  $\hat{S}(t) = \tilde{S}(t)$ ?

- Self-consistency:

$$\widehat{SC}(t) = \frac{1}{n} \left( \sum_{i=1}^{n} I(T_i > t) + \sum_{i=1}^{n} \frac{\widehat{SC}(t)}{\widehat{SC}(T_i)} I(T_i \le t, \delta_i = 0) \right)$$

2nd term =  $\widehat{Pr}(X_i > t | X_i > T_i) = E[I(X_i > t | X_i > T_i)]$ . K-M estimator is the unique self-consistent estimator for  $t < T_{(n)}$ ; for a proof, see Miller (1981).

- K-M estimator is the nonparametric MLE (NPMLE):
  - 1) No censoring. The ECDF  $\hat{F}$  is the NPMLE of F, hence  $1 \hat{F} = \hat{S}$  is the NPMLE of S.

Example: observe events at  $x_1, x_2$ .

Denote  $p_i = Pr(X = x_i), i = 1, 2.$ 

 $L = p_1 p_2$  with  $0 \le p_1, p_2, p_1 + p_2 \le 1$ .

To maximize L, we need to have  $p_1 + p_2 = 1$ ; otherwise,  $p_1$  and/or  $p_2$  will be smaller, and thus L will be smaller.

So, 
$$L = p_1(1 - p_1) \Longrightarrow L' = 1 - 2p_1 = 0 \Longrightarrow \hat{p_1} = \hat{p_2} = 1/2.$$

2) With censoring. Again the NPMLE would put all probability mass at observed event times  $t_i$ 's and possibly  $T_{(n)}$  if  $\delta_{(n)} = 0$  and  $T_{(n)} > t_D$ .

$$L = \prod_{i=1}^{n} Pr(X = T_i)^{\delta_i} Pr(X > T_i)^{1-\delta_i}$$
$$= \prod_{i=1}^{n} [p_j I(T_i = t_j)]^{\delta_i} (\sum_{T_i > t_j} p_j)^{1-\delta_i}.$$

 $\implies L$  is maximized by  $\hat{S}(t)$ ; see Miller 1981 for a proof.

• Variance of  $\hat{S(t)}$ 

$$\log \hat{S}(t) = \sum_{t_i \le t} \log \left( 1 - \frac{d_i}{y_i} \right).$$

$$1 - \frac{d_i}{y_i} = 1 - p_i = q_i, d_i \sim Bin(y_i, E(p_i)).$$

Delta method:  $Var(g(X)) \approx [g'(X)]^2 Var(X)$ .

$$Var(\log q_i) \approx (1/q_i)^2 Var(q_i) \approx \frac{1}{q_i^2} \frac{q_i(1-q_i)}{y_i} = \frac{d_i}{y_i(y_i-d_i)}.$$

Treating all the terms as independent (incorrectly),

$$Var \log \hat{S}(t) \approx \frac{1}{\hat{S}(t)^2} Var[\hat{S}(t)] \approx \sum_{t_i \leq t} \frac{d_i}{y_i(y_i - d_i)}.$$

$$Var[\hat{S}(t)] \approx \hat{S}(t)^2 \sum_{t_i < t} \frac{d_i}{y_i(y_i - d_i)}$$
, —Greenwood's formula.

• For any given  $t_0 < t_D$ ,

$$\hat{S}(t_0) \stackrel{a.}{\sim} N(S(t_0), Var[\hat{S}(t)]).$$

• Example 4.1.

# §4.2 Estimate H(t) for Right-censored Data

• Based on K-M estimator:

$$\hat{H}(t) = \dots$$

• Nelson-Aalen estimator of H:

$$\tilde{H}(t) = \begin{cases} 0 & \text{if } t < t_1; \\ \sum_{t_i \le t} \frac{d_i}{y_i} & \text{otherwise.} \end{cases}$$

Interpretation of  $d_i/y_i$ :

For discrete r.v.,  $h(t_i) = Pr(X = t_i | X \ge t_i) \Longrightarrow ...$ 

• N-A estimator of S, also called Fleming-Harrington estimator:

$$\tilde{S}(t) = exp(-\tilde{H}(t)) = \prod_{t_i \le t} exp(-\frac{d_i}{y_i}).$$

Note: if  $d_i/y_i$  is small,

$$\log \hat{S}(t) = \sum \log \left(1 - \frac{d_i}{y_i}\right) \approx \sum -\frac{d_i}{y_i} = -\tilde{H}(t).$$

• Comparison:

Fleming-Harrington compared the performance of  $\hat{S}(t)$  and  $\tilde{S}(t)$  empirically, finding that  $\tilde{S}$  has smaller MSE when  $S(x) \geq 0.2$ , but larger MSE otherwise. In practice, use  $\hat{S}(t)$  for S(t); use  $\tilde{H}(t)$  for H(t).

- $Var(\tilde{H}(t))$ :
  - 1)  $d_i \sim Pois(E(d_i)) \Longrightarrow Var(\tilde{H}(t)) = \sum_{t_i \leq t} \frac{d_i}{y_i^2}$ .
  - 2)  $d_i \sim Bin(y_i, E(p_i)) \Longrightarrow Var(\tilde{H}(t)) = \sum_{t_i \leq t} \frac{y_i p_i (1-p_i)}{y_i^2} = \sum_{t_i \leq t} \frac{d_i (y_i d_i)}{y_i^3}$ .
  - 1) is preferred.
- Derive  $Var(\tilde{S}(t))$ : by  $\tilde{S}(t) = exp(-\tilde{H}(t))$ ,  $Var(\tilde{S}(t)) \approx (exp(-\tilde{H}(t)))^2 Var(\tilde{H}(t)) = \tilde{S}(t)^2 \sum_{t_i \leq t} \frac{d_i}{y_i^2}$ , close to Greenwood's formula.

| • Example 4.1b.r |  |  |
|------------------|--|--|
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |
|                  |  |  |

## §4.3 Point-wise CI for S(t)

• Recall  $\hat{S}(t) \stackrel{a.}{\sim} N(S(t), Var(\hat{S}(t)))$  $\implies 95\%$  Wald CI of S(t) at any given t is  $\hat{S}(t) \pm 1.96\sqrt{Var(\hat{S}(t))}$ , -linear CI.

Downsides:

- 1) can be out of the range of [0,1];
- 2) lower coverage probability: the true distribution of  $\hat{S}(t)$  is typically skewed.
- $\implies$  take some transformation!
- log transformation:

$$Var(\log(\hat{S}(t))) \approx \frac{1}{\hat{S}(t)^2} Var(\hat{S}(t))$$
, and 95% CI of  $\log S(t)$  is

$$\log(\hat{S}(t)) \pm 1.96\sqrt{Var(\log(\hat{S}(t)))},$$

hence 95% CI of S(t) is

$$\exp[\log(\hat{S}(t)) \pm 1.96\sqrt{Var(\log(\hat{S}(t)))}].$$

- log-log transformation:
  - $\log(-\log \hat{S}(t)).$

Use the Delta-method to estimate  $Var[\log(-\log \hat{S}(t))]$ , then

$$\exp\{\exp[\log(-\log \hat{S}(t)) \pm 1.96\sqrt{Var}]\}.$$

- Textbook gives another one based on arcsin-square root (Angular or Anscomb) transformation; p.105.
- Logit transformation
- Summary: Linear CI is not good for small samples, while logor log-log-transformation is good enough, which works well even for  $n \ge 25$  (with 50% censoring).
- Similarly, one can derive linear, log-, log-log-transformed CI for

H(t) based on  $\tilde{H}(t)$  and  $Var(\tilde{H}(t))$ ; p.107.

• Example 4.1c.sas

## §4.4 Confidence bands for S(t)

• Point-wise CI:

valid only for a given point  $t_0$ .

Suppose 95%  $CI = [L(t_0), U(t_0)]$ , we have

$$Pr\{L(t_0) \le S(t_0) \le U(t_0)\} = .95.$$

- Confidence bands: for t in some interval,  $Pr\{L(t) \leq S(t) \leq U(t)\} = .95$  for all  $t \in [t_L, t_U]$ .
- Equal probability (EP) bands: proportional to point-wise CI.

$$Var(\hat{S}(t)) = \hat{S}(t)^2 \sum_{t_i \le t} \frac{d_i}{y_i(y_i - d_i)} = \hat{S}(t)^2 \sigma_S^2(t).$$

$$a_L = \frac{n\sigma_S^2(t_L)}{1 + n\sigma_S^2(t_L)},$$

$$a_U = \frac{n\sigma_S^2(t_U)}{1 + n\sigma_S^2(t_U)},$$

n: sample size.

Require  $0 < a_L, a_U < 1$ .

Find a coefficient  $c_{\alpha}(a_L, a_U)$  from Table C.3, an analog of 1.96

for N(0,1).

Linear:

$$\hat{S}(t) \pm c_{\alpha}(a_L, a_U) \sqrt{Var(\hat{S}(t))} = \hat{S}(t) \pm c_{\alpha}(a_L, a_U) \sigma_S(t) \hat{S}(t).$$

log-log transformed:

$$[\hat{S}(t)^{1/\theta}, \hat{S}(t)^{\theta}], \ \theta = \exp\left(\frac{c_{\alpha}(a_L, a_U)\sqrt{Var(\hat{S}(t))}}{\hat{S}(t)\log\hat{S}(t)}\right).$$

- Hall-Wellner bands
  - 1) not proportional to CI;
  - 2) allow  $t_L = 0$ .

Find coefficient  $k_{\alpha}(a_L, a_U)$  from Table C.4.

Linear:

$$\hat{S}(t) \pm \frac{k_{\alpha}(a_L, a_U)[1 + n\sigma_S^2(t)]}{\sqrt{n}} \hat{S}(t).$$

Log-log transformed: ...

- Fig 4.6.
- Similarly, construct confidence bands for H(t); p.114-116.
- EP bounds: the linear one not good; log-transformed good even for  $n \geq 20$ .
- H-W bounds: both linear and log-transformed seem fine for S(t); linear not good for H(t); log-transformed good for H(t).
- Example 4.1d.sas



**Figure 4.6** Comparison of 95% pointwise confidence interval, EP confidence band and Hall-Wellner confidence band for the disease free survival function found using the log transformation for ALL patients. Estimated Survival (———); Pointwise confidence interval (———); EP confidence band (———); Hall-Wellner band (————)

# §4.5 Estimates of the mean or median survival time

- mean/median: a good summary of S(t).
- Recall  $\mu = E(X) = \int_0^\infty S(t)dt$ ,  $\Longrightarrow \hat{\mu} = \int_0^\infty \hat{S}(t)dt$ . But  $\hat{S}(t) = ?$  for  $t > T_{(n)}$  if the largest observed time  $T_{(n)}$  is a censoring time (i.e.  $\delta_{(n)} = 0$ ) —-reasonable?  $\Longrightarrow$  can or cannot calculate  $\int_0^\infty \hat{S}(t)dt$ ?
- Solution 1): define  $\hat{S}(T_{(n)}) = 0$ , —-Efron's tail correction. Another one by R Gill:  $\hat{S}(t) = \hat{S}(T_{(n)})$  for  $t > T_{(n)}$ . Either one leads to biased or unbiased  $\hat{\mu}$ ?
- Solution 2): estimate  $\mu$  with the restriction that  $t \in [0, \tau]$  for some  $\tau \leq T_{(n)}$ ,  $\hat{\mu}_{\tau} = \int_{0}^{\tau} \hat{S}(t) dt$ .

$$Var(\hat{\mu}_{\tau}) = \sum_{i=1}^{D} \left( \int_{t_{i}}^{\tau} \hat{S}(t) \right)^{2} \frac{d_{i}}{y_{i}(y_{i} - d_{i})}.$$

$$\hat{\mu}_{\tau} \stackrel{a.}{\sim} N(\mu_{\tau}, Var(\hat{\mu}_{\tau})).$$

$$\implies 95\% \text{ CI: } \hat{\mu}_{\tau} \pm 1.96\sqrt{Var(\hat{\mu}_{\tau})}.$$

- Read example 4.1-4.2, p.118-119.
- Recall the pth quantile  $x_p = \inf\{t : S(t) \le 1 p\}$ .  $\implies \hat{x}_p = \inf\{t : \hat{S}(t) \le 1 - p\}$ .  $x_{1/2}$  is the median. But  $Var(\hat{x}_p)$  is tough to estimate.
- $100(1-\alpha)\%$  CI for  $x_p$ : all t satisfying

$$-z_{\alpha/2} \le \frac{\hat{S}(t) - (1-p)}{\sqrt{Var(\hat{S}(t))}} \le z_{\alpha/2},$$

or

$$-z_{\alpha/2} \le \frac{\log[-\log \hat{S}(t)] - \log[-\log(1-p)]}{\hat{S}(t)\log \hat{S}(t)\sqrt{Var(\hat{S}(t))}} \le z_{\alpha/2}.$$

- Example 4.2, Table 4.7, p.121.
- ex4.1.sas

**TABLE 4.7**Construction of a 95% Confidence Interval for the Median

| $t_i$ | $\hat{S}(t_i)$ | $\sqrt{\hat{V}[\hat{S}(t_i)]}$ | <i>Linear</i> (4.5.4) | Log<br>(4.5.5) | Arcsine<br>(4.5.6) |
|-------|----------------|--------------------------------|-----------------------|----------------|--------------------|
| 1     | 0.9737         | 0.0260                         | 18.242                | 3.258          | 7.674              |
| 55    | 0.9474         | 0.0362                         | 12.350                | 3.607          | 6.829              |
| 74    | 0.9211         | 0.0437                         | 9.625                 | 3.691          | 6.172              |
| 86    | 0.8947         | 0.0498                         | 7.929                 | 3.657          | 5.609              |
| 104   | 0.8684         | 0.0548                         | 6.719                 | 3.557          | 5.107              |
| 107   | 0.8421         | 0.0592                         | 5.783                 | 3.412          | 4.645              |
| 109   | 0.8158         | 0.0629                         | 5.022                 | 3.236          | 4.214              |
| 110   | 0.7895         | 0.0661                         | 4.377                 | 3.036          | 3.806              |
| 122   | 0.7368         | 0.0714                         | 3.316                 | 2.582          | 3.042              |
| 129   | 0.7105         | 0.0736                         | 2.862                 | 2.334          | 2.679              |
| 172   | 0.6842         | 0.0754                         | 2.443                 | 2.074          | 2.326              |
| 192   | 0.6579         | 0.0770                         | 2.052                 | 1.804          | 1.981              |
| 194   | 0.6316         | 0.0783                         | 1.681                 | 1.524          | 1.642              |
| 230   | 0.6041         | 0.0795                         | 1.309                 | 1.220          | 1.290              |
| 276   | 0.5767         | 0.0805                         | 0.952                 | 0.909          | 0.945              |
| 332   | 0.5492         | 0.0812                         | 0.606                 | 0.590          | 0.604              |
| 383   | 0.5217         | 0.0817                         | 0.266                 | 0.263          | 0.266              |
| 418   | 0.4943         | 0.0819                         | -0.070                | -0.070         | -0.070             |
| 468   | 0.4668         | 0.0818                         | -0.406                | -0.411         | -0.405             |
| 487   | 0.4394         | 0.0815                         | -0.744                | -0.759         | -0.741             |
| 526   | 0.4119         | 0.0809                         | -1.090                | -1.114         | -1.078             |
| 609   | 0.3825         | 0.0803                         | -1.464                | -1.497         | -1.437             |
| 662   | 0.3531         | 0.0793                         | -1.853                | -1.886         | -1.798             |
| 2081  | 0.3531         | 0.0793                         | -1.853                | -1.886         | -1.798             |

~-01

#### §4.6 left-truncated and right-censored data

- Given data:  $(L_i, T_i, \delta_i), i = 1, 2, ..., n$ .
- Goal: to estimate S(t) and H(t) for X.
- Notation: as before,
  - i) define  $t_1 < t_2 < ..., t_D$  as ordered distinct event times;
  - ii)  $d_i = \#$  (events at  $t_i$ );
  - iii)  $y_i = \#$  (subjects at risk at  $t_i$ )=# { $j : L_j \le t_i \le T_j$ }; i.e. # of subjects who entered the study at/before  $t_i$ , and died at/after  $t_i$ .
- All the estimators discussed earlier for R-C'ed data are applicable here (with modified  $y_i$ ). e.g.

$$\hat{S}(t) = \prod_{t_i \le t} \left( 1 - \frac{d_i}{y_i} \right).$$

• Note 1). Suppose  $L = \min_i L_i$ , then it's obvious that the data

contain only information for those who can survive beyond L; that is,  $\hat{S}(t)$  estimate

$$Pr(X > t | X \ge L) = S(t)/S(L).$$

If  $L \approx 0 \Longrightarrow S(L) \approx 1$  and this  $\hat{S}(t)$  is roughly estimate S(t).

• Note 2). Truncation introduces difficulty in estimating S(t) (or more precisely, S(t)/S(L)).

e.g., if 
$$d_1 = y_1 = 1 \Longrightarrow \hat{S}(t) = 0$$
 for any  $t \ge t_1!$ 

More generally, results may not be reliable if some early  $y_i$ 's are small.

- Example 4.3; Figs 4.10-4.11.
- Channing House data: the male group; order the subjects by their  $L_i$ 's:

1st subject entered at month 751;

2nd subject entered at month 759;

these two died at month 777 and 781, respectively; 3rd subject entered at month 782;

$$\implies t_1 = 777, d_1 = 1, y_1 = 2 \Longrightarrow \hat{S}(t_1) = 1/2;$$
  
 $\implies t_2 = 781, d_2 = 1, y_2 = 1 \Longrightarrow \hat{S}(t_2) = 1/2 * (1 - 1/1) = 0!$ 

- How to fix?
- 1) To estimate  $S_a(t) = S(t)/S(a) = Pr(X > t|X > a)$  for some large (but not so large) a (around which  $y_i$ 's are reasonably large): for  $t \ge a$ ,

$$\hat{S}_a(t) = \prod_{a \le t_i \le t} \left( 1 - \frac{d_i}{y_i} \right).$$

Fig 4.11.

• 2) Lai-Ying's estimator:

$$\hat{S}(t) = \prod_{t_i \le t} \left( 1 - \frac{d_i}{y_i} I(y_i \ge cn^{\alpha}) \right),$$

where c > 0,  $0 < \alpha < 1$  are some constants.

Asymptotically equivalent to PL estimator, but ad hoc for finite samples; more importantly, how to choose c and  $\alpha$ ?



**Figure 4.10** Number at risk as a function of age for the 97 males (————) and the 365 females (-----) in the Channing house data set



**Figure 4.11** Estimated conditional survival functions for Channing house residents. 68 year old females (-----); 80 year old females (-----); 80 year old males (------).