Chapters 5 \& 6

PubH 7450

© Wei Pan
Email: weip@biostat.umn.edu Http: www.biostat.umn.edu/~weip

§5.4 Life-Table Methods

- Goal: to estimate $S(t), h(t), \ldots$
- When: 1) n is large; 2) grouped data
- Data:

1) $I_{j}=\left[a_{j-1}, a_{j}\right), j=1,2, \ldots, k+1, a_{0}=0, a_{k+1}=\infty$;
2) $y_{j}^{\prime}=\#\left(\right.$ risk set at $\left.a_{j-1}\right)$;
3) $W_{j}=\#\left(\right.$ censored in $\left.I_{j}\right)$, e.g. loss-to-followup;
4) $d_{j}=\#\left(\right.$ events in $\left.I_{j}\right)$.

- Estimates:

Assuming that censoring is uniform inside I_{j},

$$
\begin{gathered}
y_{j}=\#\left(\text { risk set in } I_{j}\right)=y_{j}^{\prime}-W_{j} / 2 \\
\hat{S}\left(a_{j}\right)=\hat{S}\left(a_{j-1}\right)\left(1-\frac{d_{j}}{y_{j}}\right)=\prod_{i=1}^{j}\left(1-\frac{d_{i}}{y_{i}}\right) .
\end{gathered}
$$

At the middle point $a_{m j}$ of interval I_{j},

$$
\begin{gathered}
\hat{f}\left(a_{m j}\right)=\frac{\hat{S}\left(a_{j-1}\right)-\hat{S}\left(a_{j}\right)}{a_{j}-a_{j-1}} . \\
\hat{h}\left(a_{m j}\right)=\frac{\hat{f}\left(a_{m j}\right)}{\hat{S}\left(a_{m j}\right)}=\frac{2 \hat{f}\left(a_{m j}\right)}{\hat{S}\left(a_{j-1}\right)+\hat{S}\left(a_{j}\right)},
\end{gathered}
$$

or, by the interpretation of $h()$ (as ...),

$$
\hat{h}\left(a_{m j}\right)=\frac{d_{j}}{\left(a_{j}-a_{j-1}\right)\left(y_{j}-d_{j} / 2\right)} .
$$

Conditional probability of having an event in J_{j} is $\hat{q}_{j}=d_{j} / y_{j}$, thus (as discussed before?) $\hat{S}\left(a_{j}\right)=\hat{S}\left(a_{j-1}\right)\left(1-\hat{q}_{j}\right)$.
Greenwood's (1926) formula:

$$
\widehat{\operatorname{Var}}\left(\hat{S}\left(a_{j-1}\right)\right)=\hat{S}\left(a_{j-1}\right)^{2} \sum_{i=1}^{j-1} \frac{d_{i}}{y_{i}\left(y_{i}-d_{i}\right)}
$$

- mrl, mdrl
$\operatorname{mrl}(x)$ is the mean of $X-x$ with the conditional distribution $(X \mid X \geq x)$, i.e. $S(t) / S(x) \Longrightarrow \operatorname{mrl}(x)=\int_{x}^{\infty} S(t) d t / S(x)$.
$\operatorname{mdrl}(x)$ is the median of $X-x$ with the conditional distribution of $(X \mid X \geq x)$:
$\Longrightarrow m d r l(x)=[$ median with $S(t) / S(x)]-x$.
- Q: $\operatorname{mrl}(0)=\operatorname{mrl}(2)+2$?

1) No ,
2) Yes,

- Example 5.4; SAS handout.

§5.2 Arbitrarily Censored and Truncated Data

- Goal: to estimate $S(t)$ for X nonparametrically.
- Given data: possibly right-censored, left-censored (and thus doubly-censored), and interval-censored; possibly left-, rightand even interval-truncated.
- Approach: NPMLE

1) Write down NP likelihood L, then numerically maximize it.
2) Via self-consistency or expectation-maximization (EM) algorithm; an extension of that for right-censored data.
Why 2)?
Why not 2)?

- References:

Turnbull (1974, JASA): doubly-censored data. Turnbull (1976, JRSS-B): interval-censored and truncated data.

- First, consider only interval-censored data: $\left(L_{i}, R_{i}\right], \mathrm{i}=1, \ldots, \mathrm{n}$.
- Ordering L_{i} 's and R_{i} 's to get distinct $\tau_{0}<\tau_{1}<\ldots<\tau_{m}$. Let $p_{j}=\operatorname{Pr}\left(\tau_{j-1}<X \leq \tau_{j}\right), j=1, \ldots, m$ known or unknown?
- $\alpha_{i j}=I\left\{\left(\tau_{j-1}, \tau_{j}\right] \subseteq\left(L_{i}, R_{i}\right]\right\}=I\left(\tau_{j-1} \geq L_{i}, \tau_{j} \leq R_{i}\right)$. known or not?
- $I_{i j}=I\left\{X_{i} \in\left(\tau_{j-1}, \tau_{j}\right]\right\}$. known or unknown?
If not, how to estimate it?
- Use its ...

$$
E\left(I_{i j} \mid \text { Data }\right)=\operatorname{Pr}\left\{X_{i} \in\left(\tau_{j-1}, \tau_{j}\right] \mid X_{i} \in\left(L_{i}, R_{i}\right]\right\}=\frac{\alpha_{i j} p_{j}}{\sum_{k=1}^{m} \alpha_{i k} p_{k}}
$$

- Then,
$d_{j}=\sum_{i=1}^{n} E\left(I_{i j}\right)$, UPDATE: $p_{j}=$

Or, $y_{j}=\sum_{k=j}^{m} d_{k}$, then use the K-M estimator:

$$
\begin{aligned}
& \hat{S}\left(\tau_{i}\right)=\prod_{j \leq i}\left(1-\frac{d_{j}}{y_{j}}\right) . \\
& p_{j}=\hat{S}\left(\tau_{j}\right)-\hat{S}\left(\tau_{j-1}\right) .
\end{aligned}
$$

- iterate until convergence (i.e. not much change of p_{j} 's.
- How to choose an initial estimate \hat{S} ?

Any \hat{S} ?
My recommendation:
1)
2)

- A potential problem:
- A toy example: observe $(0,2]$ and $(1,3], n=2$.
$L=$
To $\max L \Longrightarrow$
- Candidate non-zero probability mass intervals: $\left(u_{i}, v_{i}\right]$'s. u_{1} : starting from 0 , find the largest L_{i} without jumping over any R_{i};
u_{2} : jumping over consecutive R_{i} 's at the next right of u_{1} until encounter an L_{i}; keep going, find the largest L_{i} without jumping over another R_{i};
v_{i} : the smallest R_{j} that is larger than u_{i}.
- How to handle exact event times in the above self-consistency algorithm?
- How to handle left-censoring?
$L_{i}=$
- How to handle right-censoring?
$R_{i}=$
- R package Icens
- Example: Example 5.2 in R; Table 5.4.

		τ	$\begin{gathered} \text { Initial } \\ S(t) \end{gathered}$	Estimated Number of Deaths d	Estimated Number at Risk Y	updated $S(t)$	Cbange
		0	1.000	0.000	46.000	1.000	0.000
		4	0.979	0.842	46.000	0.982	-0.002
		5	0.955	1.151	45.158	0.957	-0.002
		6	0.934	0.852	44.007	0.938	-0.005
		7	0.905	1.475	43.156	0.906	-0.001
		8	0.874	1.742	41.680	0.868	0.006
		10	0.848	1.286	39.938	0.840	0.008
		11	0.829	0.709	38.653	0.825	0.004
		12	0.807	1.171	37.944	0.799	0.008
		14	0.789	0.854	36.773	0.781	0.008
		15	0.775	0.531	35.919	0.769	0.006
		16	0.767	0.162	35.388	0.766	0.001
		17	0.762	0.063	35.226	0.764	-0.002
		18	0.748	0.528	35.163	0.753	-0.005
		19	0.732	0.589	34.635	0.740	-0.009
		22	0.713	0.775	34.045	0.723	-0.011
		24	0.692	0.860	33.270	0.705	-0.012
		25	0.669	1.050	32.410	0.682	-0.012
		26	0.652	0.505	31.360	0.671	-0.019
		27	0.637	0.346	30.856	0.663	-0.026
		32	0.615	0.817	30.510	0.646	-0.031
Interval	Probability	33	0.590	0.928	29.693	0.625	-0.035
Ineral		34	0.564	1.056	28.765	0.602	--0.039
0-4	1.000	35	0.542	0.606	27.709	0.589	-0.047
5-6	0.954	36	0.523	0.437	27.103	0.580	-0.057
7	0.920	37	0.488	1.142	26.666	0.555	-0.066
8-11	0.832	38	0.439	1.997	25.524	0.512	-0.073
12-24	0.761	40	0.385	2.295	23.527	0.462	-0.077
25-33	0.668	44	0.328	2.358	21.233	0.410	-0.082
34-38	0.586	45	0.284	1.329	18.874	0.381	-0.097
40-48	0.467	46	0.229	1.850	17.545	0.341	-0.112
≥ 48	0.000	48	0.000	15.695	15.695	0.000	0.000
				$9-1$			

- A special case: doubly-censored data The algorithm on p. 141 seems incorrect, e.g. y_{i} is not defined.
- A similar and simpler algorithm

1) define τ_{j} 's as before; start with initial p_{j} 's;
2) excluding left-censored data, define d_{j} and y_{j};
3) for each left censored obs i, $E\left(I_{i j}\right)=\operatorname{Pr}\left\{X_{i} \in\left(\tau_{j-1}, \tau_{j}\right] \mid X_{i} \in\left(0, R_{i}\right]\right\}=\frac{\alpha_{i j} p_{j}}{\sum_{k=1}^{m} \alpha_{i k} p_{k}} ;$ $\mathrm{o} / \mathrm{w}, E\left(I_{i j}\right)=0$;
4) $d_{j}^{\prime}=d_{j}+\sum_{i=1}^{n} E\left(I_{i j}\right)$;
5) $y_{j}^{\prime}=y_{j}+\sum_{k=j}^{m} \sum_{i=1}^{n} E\left(I_{i k}\right)$.
6) plug-into the K-M estimator for new estimates p_{j} 's;
7) repeat 1)-6) until convergence.

- R package dblcens
- Truncated data: conditional on $X_{i} \in B_{i}$, observe $X_{i} \ldots$ $\beta_{i j}=I\left\{\left(\tau_{j-1}, \tau_{j}\right] \subseteq B_{i}\right\}$.
- $J_{i j}=\#$ of unobserved X_{j}^{\prime} 's that would fall in $\left(\tau_{j-1}, \tau_{j}\right]$ if a random sample were taken (i.e. no truncation), given $X_{i} \in B_{i}$.

$$
E\left(J_{i j}\right)=\frac{\left(1-\beta_{i j}\right) p_{j}}{\sum_{k=1}^{m} \beta_{i k} p_{k}} .
$$

- Modify
$d_{j}=\sum_{i=1}^{n}\left[E\left(I_{i j}\right)+E\left(J_{i j}\right)\right]$.
Then plug-into $y_{j}=\sum_{k=j}^{m} d_{k}$ and K-M estimator.
- Main idea: if you only know the winning games of the Vikings, is it possible to estimate the number of their losing games?
How about not and then allowing the possibility of tied games.
- An estimation problem:

An alternative:
Reference: Pan and Chappell (1998, Lifetime Data Analysis).

- (not required) NPMLE may not be consistent for left-truncated and interval-censored data;
Reference: Pan and Chappell (1999, Lifetime Data Analysis).
- Special cases: only left-censored, or right-truncated data. transform into a problem of right-censoring, or left-truncation! how?

§6.2 Estimating the hazard function

- Goal: to estimate $h(t)$ for X nonparametrically.
- Given data: right-censored data.

Note: for arbitrarily censored and truncated data, get the NPMLE $\hat{S}(t)$, then $\hat{H}(t)$; then the following idea applies.

- N-A estimator:
$\tilde{H}(t)=\sum_{t_{i} \leq t} d_{i} / y_{i}$
$\operatorname{Var}[\tilde{H}(t)]=\ldots$
- Method 1: crude
$\tilde{h}\left(t_{i}\right)=\tilde{H}\left(t_{i}\right)-\tilde{H}\left(t_{i-1}\right)=d_{i} / y_{i}$.
plot: $\tilde{H}(t), \tilde{h}(t)$.
discrete; not continuous.
- Method 2:
$\tilde{\tilde{H}}(t)$: piece-wise linear; based on $\tilde{H}(t)$.

$$
\begin{aligned}
\tilde{\tilde{h}}(t)=\frac{d \tilde{\tilde{H}}(t)}{d t} & =\frac{d_{1}}{y_{1}} /\left(t_{1}-0\right) \text { if } t \in\left[0, t_{1}\right) \\
& =\frac{d_{2}}{y_{2}} /\left(t_{2}-t_{1}\right) \text { if } t \in\left[t_{1}, t_{2}\right) \\
& =\cdots
\end{aligned}
$$

plot: $\tilde{\tilde{H}}(t), \tilde{\tilde{h}}(t)$. piece-wise constant; discontinuous

- Method 3: "smooth" Kernel estimates
- Idea: assuming $h(t)$ is smooth, then $\hat{h}\left(t^{*}\right)$ could be a of $h(t)$ with $t \in N\left(t^{*}\right)$, a neightborhood of t^{*} :

$$
\hat{h}\left(t^{*}\right)=\frac{\sum_{t_{k} \in N\left(t^{*}\right)} w_{k} \tilde{h}\left(t_{k}\right)}{\sum_{t_{k} \in N\left(t^{*}\right)} w_{k}}
$$

1) $N\left(t^{*}\right)=\left(t^{*}-b, t^{*}+b\right)$ is determined by b, called bandwidth;
2) Weights w_{k} are determined by a kernel function:
i) Uniform kernel; equal weights:
$K(x)=1 / 2$ for $x \in(-1,1) ;=0 \mathrm{o} / \mathrm{w}$.
ii) Epanechnikov kernel:
$K(x)=0.75\left(1-x^{2}\right)$ for $x \in(-1,1) ;=0 \mathrm{o} / \mathrm{w}$.
iii) others: biweight; Gaussian (i.e. pdf of $N(0,1)$).

- Kernel smoother:

$$
\begin{gathered}
\hat{h}(t)=\frac{1}{b} \sum_{i=1}^{D} K\left(\frac{t-t_{i}}{b}\right) \frac{d_{i}}{y_{i}} \\
\widehat{\operatorname{Var}}[\hat{h}(t)]=\frac{1}{b^{2}} \sum_{i=1}^{D} K\left(\frac{t-t_{i}}{b}\right)^{2} \frac{d_{i}}{y_{i}^{2}}
\end{gathered}
$$

- A Kernel estimate depends on the choice of b and $K()$, especially on b.

Small/large $b \Longrightarrow \ldots$
bias/variance trade-off:
How to choose? based on subject-matter knowledge, or some predictive performance measurement, e.g. mean integrated squared error (MISE) via cross-validation (CV); see p. 172 .

- Examples: Figs 6.2-6.4
- Example: R; R package muhaz
- Note: a kernel density estimate

$$
\hat{f}(t)=\frac{1}{b} \sum_{i=1}^{D} K\left(\frac{t-t_{i}}{b}\right) d \hat{F}\left(t_{i}\right)
$$

Figure 6.2 Estimated cumulative hazapd tate for kidney transplant patients

Figure 6.3 Effects of changing6t? kernel on the smoothed hazard rate estimates for kidney transplant patients using a bandwidth of 1 year. Uniform kernel (—); Epanechnikov kernel (------) Biweight kernel (———)

Figure 6.4 Effects of changing the bandwidth on the smoothed hazard rate estimates for kidney transpldunpatients using the Epanechnikov kernel. bandwidth $=0.5$ years (-) bandwidth $=1.0$ years (-----) bandwidth $=$ 1.5 years (———) bandwidth $=2.0$ years $(-\cdot--)$

§6.3 Estimation of excess mortality

- Given data: $\left(T_{i}, \delta_{i}\right), i=1, \ldots, n$.
- Goal: to compare the mortality risk of a group of subjects (observed) to that of a standard/reference population.
- Example 6.3: compare 26 psychiatric patients in Iowa with the Iowa population.
- Recall: standardized mortality ratio (SMR) $S M R=\frac{\# \text { obs'ed deaths }}{\# \text { exp'ed deaths }}$, a constant.
- Now generalize SMR to time-dependent cases: $\beta(t)=\frac{h(t)}{\theta(t)}$, relative (excess) mortality.
$h(t)$: hazard of the (sub)population of interest; $\theta(t)$: hazard of the reference population.
- From $\left(T_{i}, \delta_{i}\right), i=1, \ldots, n \Longrightarrow t_{i}, d_{i}, y_{i}$.

$$
\hat{\beta}\left(t_{i}\right)=\frac{d_{i}}{\# \text { Exp'ed given } y_{i}}=\frac{d_{i}}{\theta\left(t_{i}\right) y_{i}} .
$$

- Cumulative relative excess mortality:
$\hat{B}(t)=\sum_{t_{i} \leq t} \hat{\beta}\left(t_{i}\right)$.
$\widehat{\operatorname{Var}}[\hat{B}(t)]=\sum_{t_{i} \leq t} \frac{d_{i}}{\theta\left(t_{i}\right)^{2} y_{i}^{2}}$.
- can be generalized to a heterogeneous population:
$Q\left(t_{i}\right)=\#$ Exp'ed given $y_{i}=\sum_{j} \theta_{j}\left(t_{i}\right) y_{i j}$,
$\sum_{j} y_{i j}=y_{i} ; j$: subpopulation j.
- Example 6.3.

Table 6.2.
$h_{F}(t)=\log S_{F}(t+1)-\log S_{F}(t)$
$h_{M}(t)=\log S_{M}(t+1)-\log S_{M}(t)$
Table 1.7 on p. 16.

Gender	Age at admission	Time/status
F	51	1
F	58	1
F	55	2
F	28	22
M	21	$30+$
$\ldots \ldots$.		
$t_{i}=1: d_{i}=2$,		
$Q\left(t_{i}\right)=\sum_{j} \theta_{j} y_{j}=$		
$h_{F}(52)+h_{F}(59)+h_{F}(56)+h_{F}(29)+h_{M}(22)+\ldots$		
$t_{i}=2: d_{i}=1$,		
$Q\left(t_{i}\right)=\sum_{j} \theta_{j} y_{j}=h_{F}(57)+h_{F}(30)+h_{M}(23)+\ldots$		
$\hat{B}(t)=\sum_{t_{i} \leq t} \frac{d_{i}}{Q\left(t_{i}\right)}$.		
$\widehat{\operatorname{Var}[\hat{B}(t)]=\sum_{t_{i} \leq t} \frac{d_{i}}{Q\left(t_{i}\right)^{2}} .}$		

Table 6.3 and Fig 6.8.

Females

Age	Survival Function	Hazard Rate	Age	Survival Function	Hazard Rate
$18-19$	0.97372	0.00057	$48-49$	0.93827	0.00352
$19-20$	0.97317	0.00056	$49-50$	0.93497	0.00381
$20-21$	0.97263	0.00055	$50-51$	0.93141	0.00414
$21-22$	0.97210	0.00054	$51-52$	0.92756	0.00448
$22-23$	0.97158	0.00054	$52-53$	0.92341	0.00481
$23-24$	0.97106	0.00056	$53-54$	0.91898	0.00509
$24-25$	0.97052	0.00059	$54-55$	0.91431	0.00536
$25-26$	0.96995	0.00062	$55-56$	0.90942	0.00565
$26-27$	0.96935	0.00065	$56-57$	0.90430	0.00600
$27-28$	0.96872	0.00069	$57-58$	0.89889	0.00633
$28-29$	0.96805	0.00072	$58-59$	0.89304	$0.00-2-$
$29-30$	0.96735	0.00075	$59-60$	0.88660	0.00812
$30-31$	0.96662	0.00079	$60-61$	0.87943	0.00912
$31-32$	0.96586	0.00084	$61-62$	0.87145	0.01020
$32-33$	0.96505	0.00088	$62-63$	0.86261	0.01132
$33-34$	0.96420	0.00095	$63-64$	0.85290	0.01251
$34-35$	0.96328	0.00103	$64-65$	0.84230	0.0156
$35-36$	0.96229	0.00110	$65-66$	0.83079	0.01515
$36-37$	0.96123	0.00121	$66-67$	0.81830	0.01671
$37-38$	0.96007	0.00130	$67-68$	0.80474	0.01846
$38-39$	0.95882	0.00140	$68-69$	0.79002	0.02040
$39-40$	0.95748	0.00152	$69-70$	0.77407	0.02299
$40-41$	0.95603	0.00162	$70-71$	0.75678	$0.0249+$
$41-42$	0.95448	0.00176	$71-72$	0.73814	0.02754
$42-43$	0.95280	0.00193	$20-172-73$	0.71809	0.0306
$43-44$	0.95096	0.00216	$73-74$	0.69640	0.03446
$44-45$	0.94891	0.00240	$74-75$	0.67281	0.03890
$45-46$	0.94664	0.00268	$75-76$	0.64714	0.0436
$46-47$	0.94411	0.00296	$76-77$	0.61943	0.04902
$47-48$	0.94132	0.00325	$77-78$	0.58980	0.05499

TABLE 6.3
Computation of Cumulative Relative Mortality for 26 Psychiatric Patients

t_{i}	d_{i}	$Q\left(t_{i}\right)$	$\hat{B}(t)$	$\hat{V}[\hat{B}(t)]$	$\sqrt{\hat{V}[\hat{B}(t)])}$
1	2	0.05932	33.72	568.44	23.84
2	1	0.04964	53.86	974.20	31.21
11	1	0.08524	65.59	1111.84	33.34
14	1	0.10278	75.32	1206.51	34.73
22	2	0.19232	85.72	1260.58	35.50
24	1	0.19571	90.83	1286.69	35.87
25	1	0.18990	96.10	1314.42	36.25
26	1	0.18447	101.52	1343.81	36.66
28	1	0.19428	106.67	1370.30	37.02
32	1	0.18562	112.05	1399.32	37.41
35	1	0.16755	118.02	1434.94	37.88
40	1	0.04902	138.42	1851.16	43.03

20-2

Figure 6.8 Estimated cumulative relative mortality (solid line) and 95% pointwise confidence interval (dashed line) for Iowa psychiatric patients

