Chapter 7 Hypothesis Testing

PubH 7450

©Wei Pan

Email: weip@biostat.umn.edu

Http: www.biostat.umn.edu/~weip

§7.2 One-sample tests

- H_0 : $S(t) = S_0(t)$ for $t \le \tau$ or, H_0 : $h(t) = h_0(t)$ for $t \le \tau$ typically, $\tau = T_{(n)}$
- Given: a censored sample from S(t); $S_0(t)$ or $h_0(t)$. From the data $\Longrightarrow t_i$, d_i and y_i , i = 1, ..., D.
- Idea: compare $\hat{h}(t)$ or $\hat{H}(t)$ with ... $Z(\tau) = \sum_{i=1}^{D} \frac{d_i}{y_i} \int_0^{\tau} h_0(s) ds = \hat{H}(\tau) H_0(\tau) = O(\tau) E(\tau).$
- More generally, use a weight function W(t): $Z(\tau) = \sum_{i=1}^{D} W(t_i) \frac{d_i}{y_i} \int_0^{\tau} W(s) h_0(s) ds$.
- Assuming that the terms are independent and d_i has a Poisson distribution, we have $Var(Z(\tau)) \approx \sum_{i=1}^{D} W(t_i)^2 \frac{d_i}{y_i^2} = V_1.$
- Under H_0 , replace d_i/y_i by its estimand $h_0(t_i)$, so

 $Var(Z(\tau)) \approx \int_0^{\tau} W(s)^2 \frac{h_0(s)}{y(s)} ds = V_2.$ y(s) = # of subjects at risk at s^- ; $y(t_i) = y_i$; a step function.

• Test statistic

$$\frac{Z(\tau)}{\sqrt{Var(Z(\tau))}} \stackrel{a.}{\sim} N(0,1) \text{ under } H_0.$$

- Choice of V_1 vs V_2 : where did we have a similar issue?
 - 1) if $h(t) = h_0(t)$, then ...
 - 2) if $h(t) > h_0(t)$, then ...
 - 3) if $h(t) < h_0(t)$, then ...
- Most popular: W(t) = y(t); one-sample log-rank test. $Z(\tau) = \sum_{i=1}^{D} d_i \int_0^{\tau} y(s)h_0(s)ds = \#(\text{obs'ed events}) \#(\text{exp'ed events}) = O E.$ $V_1 = \dots$

- For left-truncated data (L_i, T_i, δ_i) , i = 1, ..., n, $\int_0^{\tau} y(s) h_0(s) ds = \sum_{i=1}^n \int y_i(s) h_0(s) ds = \sum_{i=1}^n \int_{L_i}^{T_i} h_0(s) ds = \sum_{i=1}^n [H_0(T_i) H_0(L_i)].$
- Table 7.1.

$$\chi^2 = (O - E)^2 / E = \frac{(15 - 4.4740)^2}{4.4740} = 24.8 \sim \chi_d^2$$

with d = ? under $H_0 \Longrightarrow p = ...$

• Fleming-Harrington family:

$$W(t) = S_0(t)^p [1 - S_0(t)]^q, p \ge 0, q \ge 0.$$

early departure: p > q;

late departure: p < q;

middle departure: p = q > 0.

TABLE 7.1Computation of One-Sample, Log-Rank Test

Subject	_	Status	Age at Entry	Age at Exit	/->		
<i>j</i>	Sex	d_i	L_i	T_j	$H_0(L_j)$	$H_0(T_j)$	$H_0(T_j) - H_0(L_j)$
1	f	1	51	52	0.0752	0.0797	0.0045
2	f	1	58	59	0.1131	0.1204	0.0073
3	f	1	55	57	0.0949	0.1066	0.0117
4	f	1	28	50	0.0325	0.0711	0.0386
5	m	0	21	51	0.0417	0.1324	0.0907
6	m	1	19	47	0.0383	0.1035	0.0652
7	f	1	25	57	0.0305	0.1066	0.0761
8	f	1	48	59	0.0637	0.1204	0.0567
9	f	1	47	61	0.0606	0.1376	0.0770
10	f	1	25	61	0.0305	0.1376	0.1071
11	f	0	31	62	0.0347	0.1478	0.1131
12	m	0	24	57	0.0473	0.1996	0.1523
13	m	0	25	58	0.0490	0.2150	0.1660
14	f	0	30	67	0.0339	0.2172	0.1833
15	f	0	33	68	0.0365	0.2357	0.1992
16	m	1	36	61	0.0656	0.2704	0.2048
17	m	0	30	61	0.0561	0.2704	0.2143
18	m	1	41	63	0.0776	0.3162	0.2386
19	f	1	43	69	0.0503	0.2561	0.2058
20	f	1	45	69	0.0548	0.2561	0.2013
21	f	0	35	4- 1 ⁶⁵	0.0384	0.1854	0.1470
22	m	0	29	63	0.0548	0.3162	0.2614
23	m	0	35	65	0.0638	0.3700	0.3062
24	m	1	32	67	0.0590	0.4329	0.3739
25	f	1	36	76	0.0395	0.4790	0.4395
26	m	0	32	71	0.0590	0.5913	0.5323
Total		15					4.4740

$\S7.3$ K-sample tests

- Given data: $(T_{i1}, \delta_{i1}), ..., (T_{iK}, \delta_{iK}), i = 1, ..., n_K$.
- Goal: Test H_0 : $h_1(t) = ... = h_K(t)$ for all $t \le \tau$ vs H_1 : at least one equality does not hold for some $t \le \tau$. Assumption: nonparametric; X_{ij} and C_{ij} are independent. $\tau = \min_j T_{(n),j}$. Distributions of $C_{i1}, ..., C_{iK}$ are identical?
- A key: you are comparing ...
- General idea: assuming H_0 true, then compare $\hat{h}_j(t)$ to ...
- Notation: pool the samples together
 - 1. Define $t_1 < t_2 < ... < t_D$ as distinct event times;
 - 2. $d_{ij} = \#$ events at t_i from sample j; $d_i = \sum_j d_{ij}$;
 - 3. $y_{ij} = \#$ subjects at risk at t_i^- from sample j;

$$y_i = \sum_j y_{ij}$$
.

• Components of test statistics:

$$Z_j(\tau) = \sum_{i=1}^{D} W_j(t_i) \left(\frac{d_{ij}}{y_{ij}} - \frac{d_i}{y_i} \right)$$

for j = 1, ..., K.

• Under H_0 , let $W_j(t_i) = W(t_i)y_{ij}$,

$$Var(Z_{j}(\tau)) = \sum_{i=1}^{D} W(t_{i})^{2} \frac{y_{ij}}{y_{i}} \left(1 - \frac{y_{ij}}{y_{i}}\right) \left(\frac{y_{i} - d_{i}}{y_{i} - 1}\right) d_{i},$$

$$Cov(Z_j(\tau), Z_g(\tau)) = -\sum_{i=1}^{D} W(t_i)^2 \frac{y_{ij}}{y_i} \frac{y_{ig}}{y_i} \left(\frac{y_i - d_i}{y_i - 1}\right) d_i$$

for $j \neq g$.

Idea of the derivation: 1) $(y_i - d_i)/(y_i - 1)$ is a correction for

ties; 2) other terms related to

$$(d_{i1}, ..., d_{iK})' \sim Multinomial(d_i, (p_{i1}, ..., p_{iK})')$$

with
$$\hat{p}_{ij} = y_{ij}/y_i, j = 1, ..., K$$
.

$$Var(d_{ij}) = d_i p_{ij} (1 - p_{ij}).$$

$$Cov(d_{ij}, d_{ig}) = -d_i p_{ij} p_{ig}.$$

- Use just any (K-1) Z_j 's because $\sum_{j=1}^K Z_j(\tau) = ...$,
- Test statistic:

$$Z(\tau) = (Z_1(\tau), ..., Z_{K-1}(\tau))',$$

 $\Sigma = Cov(Z(\tau)),$
 $Z(\tau) = \frac{1}{2} Z(\tau) = \frac$

$$\chi^2 = Z(\tau)' \Sigma^{-1} Z(\tau) \stackrel{a.}{\sim} \chi^2_{K-1} \text{ under } H_0.$$

•
$$K = 2$$
: $W_1(t_i) = W(t_i)y_{i1}$,

$$\chi = \frac{\sum_{i=1}^{D} W(t_i) \left(d_{i1} - d_i \frac{y_{i1}}{y_i} \right)}{\sqrt{\sum_{i=1}^{D} W(t_i)^2 \frac{y_{i1}}{y_i} \frac{y_{i2}}{y_i} \frac{y_{i-1}}{y_i - 1} d_i}} \stackrel{a.}{\sim} N(0, 1) \text{ under } H_0.$$

- Various choices of weight leads to various tests:
 - 1. W(t) = 1: log-rank test;
 - 2. $W(t_i) = y_i$: Gehan's generalization of Mann-Whitney-Wilcoxon test;
 - 3. $W(t_i) = \sqrt{y_i}$: Tarone-Ware class;
 - 4. Peto-Peto and Kalbfleisch-Prentice's generalization of M-W-W test:

$$\tilde{S}(t) = \prod_{t_i \le t} \left(1 - \frac{d_i}{y_i + 1} \right),$$

$$W(t_i) = \tilde{S}(t_i).$$

5. Fleming-Harrington class:

$$\hat{S}(t) = \prod_{t_i \le t} \left(1 - \frac{d_i}{y_i} \right),$$

$$W(t_i) = \hat{S}(t_{i-1})^p [1 - \hat{S}(t_{i-1})]^q, \ p \ge 0, \ q \ge 0.$$

Technicality: $W(t_i)$ is known prior to t_i .

$$p = q = 0$$
: log-rank test;

p = 1, q = 0: a version of M-W-M test;

 $q=0,\,p>0$: give more weights to ... $p=0,\,1>0$: give more weights to ... Choice of (p,q) reflects one's emphasis on ...

• Example 7.2: SAS Fig 7.2: relative weight $W(t_i)/\sum_{i=1}^D W(t_i)$.

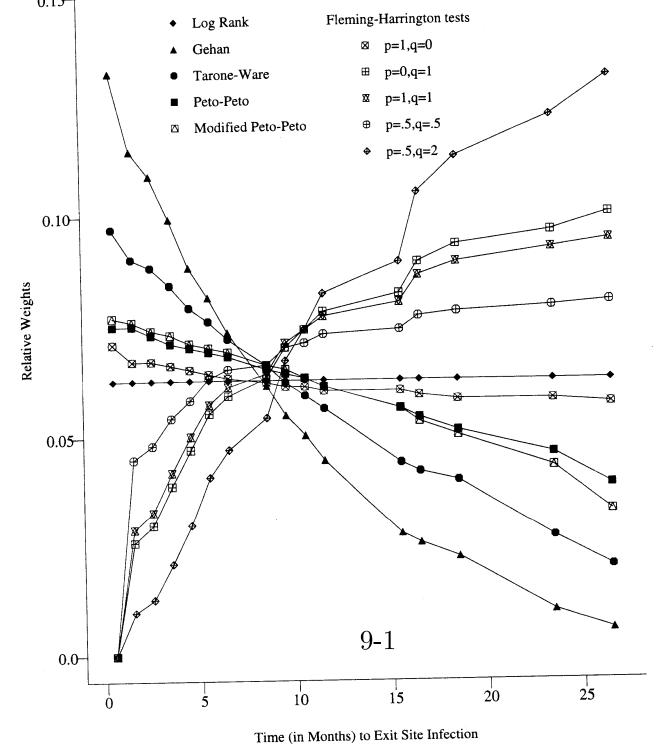


Figure 7.2 Relative weights for comparison of observed and expected numbers

of deaths for kidney dialysis patients.

• Log-rank test: optimal for proportional hazards

$$h_j(t) = h_0(t) \exp(\theta_j), \qquad j = 1, 2.$$

also called Lehmann alternative.

optimal: asymptotically most powerful; related to a score test.

• Log-rank test: another derivation for K = 2.

At t_i :

Group/Event	Dead	Alive	total
Grp 1	d_{i1}		y_{i1}
Grp 2	d_{i2}		$y_{i2} = y_i - y_{i1}$
	d_i		y_i

 $H_{0,i}$: No association b/w group and event at t_i

- $\Leftrightarrow \Pr(\text{Death at } t_i|\text{given alive at } t_i^-, \text{ Grp } 1)$
- =Pr(Death at t_i |given alive at t_i^- , Grp 2)

$$\Leftrightarrow h_1(t_i) = h_2(t_i).$$

$$MH = \frac{\sum_{i=1}^{D} (d_{i1} - E(d_{i1}|H_{0,i}))}{\sqrt{\sum_{i=1}^{D} \frac{y_{i1}y_{i2}d_{i}(y_{i} - d_{i})}{y_{i}^{2}(y_{i} - 1)}}} \stackrel{a.}{\sim} N(0, 1).$$

Note: $E(d_{i1}|H_{0,i}) = d_i y_{i1}/y_i \Longrightarrow MH = \chi \text{ with } W(t) = 1.$

- Gehan's test: generalization of M-W-W test with K=2.
- Review of M-W-W test: no censoring

Wilcoxon test:

$$X_{11},...,X_{m1} \sim F_1$$

$$X_{12},...,X_{n2} \sim F_2$$

$$H_0$$
: $F_1 = F_2$ vs H_1 : $F_1 \neq F_2$.

Define $R_{i1} = \text{rank of } X_{i1} \text{ in the pooled sample.}$

Test stat:
$$R_1 = \sum_{i=1}^m R_{i1}$$

Decision rule: reject H_0 if R_1 is too small or too large.

M-W form:

$$U(X_{i1}, X_{j2}) = \begin{cases} 1 & \text{if } X_{i1} > X_{j2}; \\ 0 & \text{if } X_{i1} = X_{j2}; \\ -1 & \text{if } X_{i1} < X_{j2}. \end{cases}$$

Test stat: $U = \sum_{i=1}^{m} \sum_{j=1}^{n} U(X_{i1}, X_{j2})$

Decision rule: reject H_0 if |U| is too large.

The two tests are equivalent because

$$R_1 = \frac{m(m+n+1)}{2} + \frac{U}{2}.$$

• Now, with right-censored data

Sample 1: $(T_{i1}, \delta_{i1}), i = 1, ..., n_1$.

Sample 2: $(T_{i2}, \delta_{i2}), i = 1, ..., n_2$.

$$\phi[(T_{i1},\delta_{i1}),(T_{h2},\delta_{h2})]$$

$$\begin{cases}
1 & \text{if } (T_{i1} \leq T_{h2}, \, \delta_{i1} = 1, \, \delta_{h2} = 0) \\
& \text{or } (T_{i1} < T_{h2}, \, \delta_{i1} = 1, \, \delta_{h2} = 1) ; \\
-1 & \text{if } (T_{i1} \geq T_{h2}, \, \delta_{i1} = 0, \, \delta_{h2} = 1) \\
& \text{or } (T_{i1} > T_{h2}, \, \delta_{i1} = 1, \, \delta_{h2} = 1) ; \\
0 & \text{otherwise.}
\end{cases}$$

$$Z_1(\tau) = \sum_{i=1}^{n_1} \sum_{h=1}^{n_2} \phi[(T_{i1}, \delta_{i1}), (T_{h2}, \delta_{h2})].$$

§7.4 Test for trend

- H_0 : $h_1(t) = h_2(t) = ... = h_K(t)$ for all $t \le \tau$ vs H_1 : $h_1(t) \le h_2(t) \le ... \le h_K(t)$ for all $t \le \tau$ and at least one strict inequality holds.
- Use previous tests: fine?
 Yes, ...
 No,
- Choose score $a_1 < a_2 < ... < a_K$, often $a_j = j$.

$$Z = \frac{\sum_{j=1}^{K} a_j Z_j(\tau)}{\sqrt{\sum_{j=1}^{K} \sum_{g=1}^{K} a_j a_g \sigma_{jg}^2}} \stackrel{a.}{\sim} N(0, 1) \text{ under } H_0,$$

where $\sigma_{jg}^2 = Cov(Z_j(\tau), Z_g(\tau))$ as given before.

• Note: $\sum_{j} (a_j - \bar{a}) Z_j = \sum_{j} a_j Z_j$,

• Corr coef for (x_i, y_i) , i = 1, ..., n

$$r = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2} \sum_{i} (y_{i} - \bar{y})^{2}}}.$$

• $y_i = b_0 + b_1 x_i + \epsilon_i$, $\hat{b}_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2}.$

So, Z is testing H_0 : $b_1 = 0$ with (x_i, y_i) replaced by

• Example 7.6: SAS.

§7.5 Stratified tests

• Why to stratify?

Short answer:

 $\operatorname{assoc}(X,Y) \neq \operatorname{assoc}(X,Y|Z) \Longrightarrow Z \text{ is } \dots$

Example: StarTribune, Oct 16, 2005

Birth type

Race Out of wedlock Others
Black 69%

others 35%

 \implies assoc b/w ...

Q: Is it really due to race or ...?

Other examples: earning difference b/w genders; mortality rates of newborns in USA and Swede; mortality rates of the general populations in USA and Japan;...

• How to handle?

for a binary outcome and a binary risk factor, use ... then ...

- A deep understanding of confounding:
 Z is a confounder iff 1) Z is associated with the outcome and 2)
 Z is associated with the risk factor.
- ullet Back to the current context: M strata and K groups.

 $H_0: h_{1s}(t) = h_{2s}(t) = \dots = h_{Ks}(t), s = 1, \dots, M.$

 H_1 : not H_0 .

- Approach:
 - 1) form M strata.
 - 2) for each stratum s, get Z_{js} and Σ_s as before, j = 1, ..., K and s = 1, ..., M.
 - 3) $Z_{j.} = \sum_{s=1}^{M} Z_{js}, Z_{.} = (Z_{1.}, ..., Z_{K-1,.})', \Sigma_{.} = \sum_{s=1}^{M} \Sigma_{s}$
 - 4) Test stat

$$\chi^2 = Z'_{\cdot} \Sigma^{-1}_{\cdot} Z_{\cdot} \stackrel{a.}{\sim} \chi^2_{K-1} \text{ under } H_0.$$

- Example 7.4: SAS and R.
- Application to matched data: each matched set is a ... read Example 7.8.

§7.6 Renyi type tests

• Consider the logrank test for K = 2: $h_1(t)$ going down while $h_2(t)$ going down in t; they cross.

$$Z_1 = \sum_i (O_i - E_i)$$

In early times, $O_i > E_i$; in later times, $O_i < E_i$

 \implies early $(O_i - E_i) > 0$ terms cancel out with late

$$(O_i - E_i) < 0 \text{ terms}$$

- \implies small $|Z_1| \implies ...$
- The strategy used so far:
- An alternative: an analog of the Kolmogorov-Smirnov test

$$KS = \max_{t} |\hat{F}_1(t) - \hat{F}_2(t)|$$

• Generalized linear rank tests:

$$Z(t) = \sum_{t_i < t} W(t_i) \left(d_{i1} - y_{i1} \frac{d_i}{y_i} \right);$$

It is a function of t;

Fig 7.4: W(t) = 1.

- $Var(Z(\tau)) = \sigma^2(\tau)$. $Q = \sup_{t \leq \tau} \{|Z(t)|\}/\sigma(\tau) \stackrel{a.}{\sim} \text{ some distribution (see Table C.5 in Appendix C) under } H_0$.
- Example 7.9 Fig 7.5: Log-rank test: $Z(\tau) = -2.15, \, \sigma(\tau) = 4.46, \, p = 0.6295;$ $Q = 2.20, \, p = 0.053.$

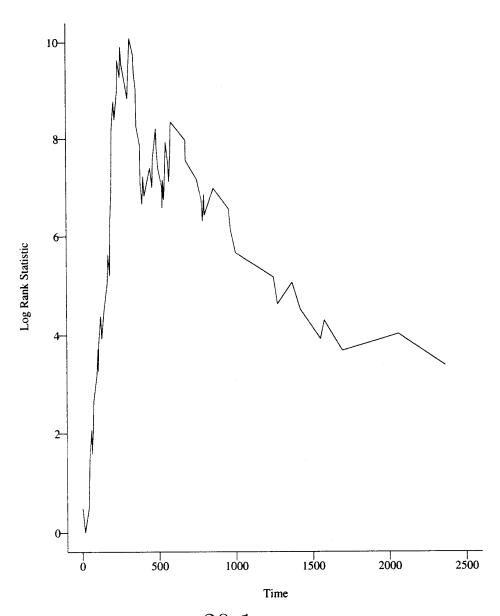


Figure 7.4 Values of $|Z(t_i)|$ for the g astrointestinal tumor study

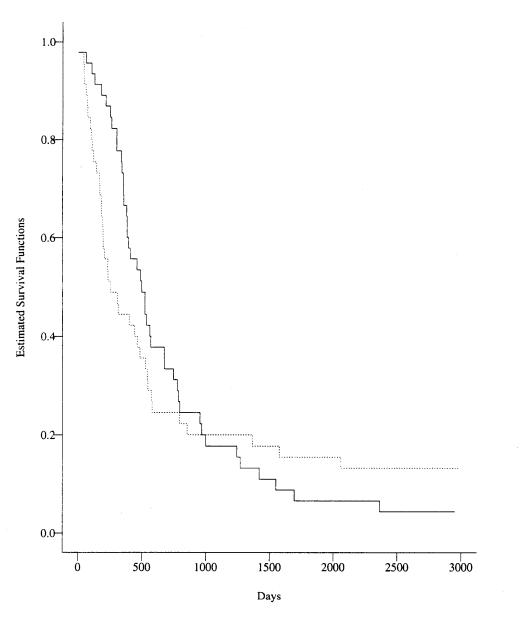


Figure 7.5 Estimated survival functions for the gastrointestinal tumor study. Chemotherapy only (———) Chemotherapy plus radiation (-----)

w.A

§7.7 Other tests

- Cramer-von Mises test: no censoring, $\int [\hat{F}_1(t) \hat{F}_2(t)]^2 d\hat{F}_p(t),$ where \hat{F}_j is eCDF for sample j, and \hat{F}_p is eCDF from the pooled sample.
- For censored data, $\int_0^{\tau} [\hat{S}_1(t) \hat{S}_2(t)]^2 d[-\hat{S}_p(t)].$ but its asymptotic distribution is hard to derive
- Use $\tilde{H}_{j}(t) = \sum_{t_{i} \leq t} \frac{d_{ij}}{y_{ij}}, j = 1, 2.$ $\sigma_{j}^{2}(t) = \sum_{t_{i} \leq t} \frac{d_{ij}}{y_{ij}^{2}} \text{ or } \dots$ $\sigma^{2}(t) = \sigma_{1}^{2}(t) + \sigma_{2}^{2}(t).$ $Q_{1} = \left(\frac{1}{\sigma^{2}(\tau)}\right)^{2} \int_{0}^{\tau} [\tilde{H}_{1}(t) \tilde{H}_{2}(t)]^{2} d\sigma^{2}(t) = \dots \stackrel{a.}{\sim} \text{ some distribution given in Table C.6 in Appendix C.}$

• Weighted K-M test:

$$W_{KM} = \sqrt{\frac{n_1 n_2}{n}} \int_0^{\tau} W(t) [\hat{S}_1(t) - \hat{S}_2(t)] dt = \dots$$

 $W_{KM}/\sqrt{Var} \stackrel{a.}{\sim} N(0,1)$; see (7.7.8) on p.230 for the formula for Var.

A special case: $W(t) = 1 \Longrightarrow W_{KM} = c[\hat{\mu}_1(\tau) - \hat{\mu}_2(\tau)].$

§7.8 Test survival difference at a given t_0

- H_0 : $S_1(t_0) = ... = S_K(t_0)$ vs H_1 : at least one equality does not hold.
- Given data $\Longrightarrow \hat{S}_j = \hat{S}_j(t_0), V_j = Var(\hat{S}_j).$
- K = 2, $Z = \frac{\hat{S}_1 - \hat{S}_2}{\sqrt{V_1 + V_2}} \stackrel{a.}{\sim} N(0, 1)$.
- K > 2, $H_0 \Leftrightarrow H'_0$: LS = b, $S = (S_1, ..., S_K)'$, $X^2 = (L\hat{S} - b)'(LVL')^{-1}(L\hat{S} - b) \sim \chi_k^2 \text{ under } H_0$, k = rank(L), $V = Cov(\hat{S}) = ...$
- Examples:
 - 1. H_0 : $S_1(t_0) = S_2(t_0) = S_3(t_0)$; L = ..., b = ..., k = ...
 - 2. H_0 : $S_1(t_0) = S_2(t_0) = S_3(t_0) = 0.5$; L = ..., b = ..., k = ...
 - 3. H_0 : $S_1(t_0) = S_2(t_0) = 2S_3(t_0) + 0.1$; L = ..., b = ..., k = ...