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§7.2 One-sample tests

H()Z S(t) — Sg(t) for ¢ <T
or, Hy: h(t) = ho(t) for t <7
typically, 7 = T(n)

Given: a censored sample from S(t); So(t) or ho(t).
From the data —t;, d; and y;, 1 =1, ..., D.

Idea: compare h(t) or H(t) with .

= X0 [ hols)ds = () — Ho(r) = O(r) ~ B(7).
More generally, use a Welght function Wi(t):

Z(1) = Zz Wt fo s)ds.

Assuming that the terms are mdependent and d; has a Poisson
distribution, we have

Var(Z(7)) = 322, W (t:)* 5 = Vi,

Under Hy, replace d;/y; by its estimand hg(t;), so




Var(Z(1)) ~ [ W(s)? hO(S) ds = V5s.
y(s)= # of subJects at rlsk at s7; y(t;) = y;; a step function.

e Test statistic

Z(7)
\/Var(Z T

e Choice of V7 vs V5: where did we have a similar issue?
1) if h(t) = ho(t), then ...
2) if h(t) > ho(t), then ...
3) if h(t) < hg(t), then ...

~ N(0,1) under Hy.

e Most popular W( ) = y(t) one—sample log-rank test.
Z(1) = — J u( s)ds = #(obs’ed events) -
#(exp’ed events) =0 — E.

Vi=..




For left truncated data (L;, T;, 5-) i =1,.

fo s)ds =>"" 1 [yi(s)ho(s)ds = >, fLT ho(s)ds =
Z¢:1[HO(Tz) HO(Lz)]-

Table 7.1.

(15 — 4.4740)?
4.4740

= (0~ BP/E =

= 24.8 ~ X3

with d =7 under Hy — p = ...

Fleming-Harrington family:

W(t) = So(t)P[1 — Sp(t)]?, p >0, q>0.
early departure: p > ¢;

late departure: p < q;

middle departure: p = ¢q > 0.




TABLE 7.1

Computation of One-Sample, Log-Rank Test

Subject Status Age at Entry Age at Exit
i Sex 4 I T, Hy(L) H(T) Hy(T) — HyL)
1 f 1 51 52 0.0752 0.0797 0.0045
2 f 1 58 59 0.1131 0.1204 0.0073
3 f 1 55 57 0.0949 0.1066 0.0117
4 f 1 28 50 0.0325 0.0711 0.0386
5 m 0 21 51 0.0417 0.1324 0.0907
6 m 1 19 47 0.0383 0.1035 0.0652
7 f 1 25 57 0.0305 0.1066 0.0761
8 f 1 48 59 0.0637 0.1204 0.0567
9 f 1 47 61 0.0606 0.1376 0.0770
10 f 1 25 61 0.0305 0.1376 0.1071
11 f 0 31 62 0.0347 0.1478 0.1131
12 m 0 24 57 0.0473  0.1996 0.1523
13 m 0 25 58 0.0490 0.2150 0.1660
14 f 0 30 67 0.0339 0.2172 0.1833
15 f 0 33 68 0.0365 0.2357 0.1992
16 m 1 36 61 0.0656 0.2704 0.2048
17 m 0 30 61 0.0561 0.2704 0.2143
18 m 1 41 63 0.0776  0.3162 0.2386
19 f 1 43 69 0.0503 0.2561 0.2058
20 f 1 45 69 0.0548 0.2561 0.2013
21 f 0 35 4_ 1 65 0.0384 0.1854 0.1470
22 m 0 29 63 0.0548 0.3162 0.2614
23 m 0 35 65 0.0638 0.3700 0.3062
24 m 1 32 67 0.0590 0.4329 0.3739
25 f 1 36 76 0.0395 0.4790 0.4395
26 m 0 32 71 0.0590 0.5913 0.5323
Total 15 4.4740




§7.3 K-sample tests
Given data: (Tﬂ, 5@'1)7 cony (Tz’Ka 5@'K)7 1= 1, L NE.

Goal: Test Hy: hi(t) = ... = hg(t) for all t <7

vs Hq: at least one equality does not hold for some ¢ < 7.
Assumption: nonparametric; X;; and Cj; are independent.
T =min; I, ;-

Distributions of Cj1, ..., C;k are identical?

A key: you are comparing ...

General idea: assuming Hy true, then compare h;(t) to ...

Notation: pool the samples together
1. Define t; <ty < ... < tp as distinct event times;
2. d;; = # events at ¢; from sample j;
di =) ; dij;
3. yi; = 7 subjects at risk at ¢, from sample j;




Yi = Zj Yij -

e Components of test statistics:

for j =1, ..., K.
o Under Hy, let W,(t;) = W (t:)yi;,

Var(Z;(r)) = | —y—) (y“di

Yi y; — 1

—d
yi — 1

Cov(Z;(1), Z4(T)) . )2 Yij Yig (yz

Yi Yi

for 5 # g.
Idea of the derivation: 1) (y; — d;)/(y; — 1) is a correction for




ties; 2) other terms related to

(di1, ..., d;irc)" ~ Multinomial(d;, (pi1, ..., Pix)")
Wlth ﬁz’j — yij/yia j — 1, ,K
VCL?“(dz'j) = dzpzj(l — pij)-
Cov(dij, dig) = —dipijpig.
Use just any (K — 1) Z;’s because Zfil Z;(1) = ...,
Test statistic:

Z(T) = (Zl(T), ceny ZK_l(T))/,
¥ =Cov(Z(71)),
X2 = Z(1)Y71Z(1) X x%_, under Hy.

o K =2: Wi(t;) = W(ti)yi1,

Yi

X = ) ~ N(0,1) under Hy.
D . . - d.
\/E i—1 M/ (tz)Q Yil Yi2 Yi zdz

Yi Yi Yi—1




e Various choices of weight leads to various tests:

1.
2.

W (t) = 1: log-rank test;
W (t;) = y;: Gehan’s generalization of
Mann-Whitney-Wilcoxon test;

3. W(t;) = \/y;: Tarone-Ware class;

4. Peto-Peto and Kalbfleisch-Prentice’s generalization of

M-W-W test:

S(t) = Htigt (1 o yidjrl)7
) = S(t;).
: Fleming—Harrington class:

() =Tl (1- %),
W (t:) = S(ti—1)P[L = S(ti-1)]" , p >0, 4 > 0.
Technicality: W (t;) is known prior to ;.

p = q = 0: log-rank test;
p=1,q=0: a version of M-W-M test;




g =0, p > 0: give more weights to ...
p=20,1 > 0: give more weights to ...

Choice of (p, q) reflects one’s emphasis on ...

e Example 7.2: SAS
Fig 7.2: relative weight W (t;)/ Zi’il Wi(t;).




¢+ LogRank Fleming-Harrington tests
A Gehan ® p=1,q=0
e Tarone-Ware B p=0,g=1
m Peto-Peto B p=1,g=l
m  Modified Peto-Peto ® p=54=5
¢ p=5,q=2
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Figure 7.2  Relative weights for comparison of observed and expected numbers
of deatbs for kidney dialysis patients.



e Log-rank test: optimal for proportional hazards

hi(t) = ho(t)exp(6;),  j =12

also called Lehmann alternative.
optimal: asymptotically most powerful; related to a score test.

Log-rank test: another derivation for K = 2.
Group/Event | Dead | Alive | total

Grp 1 di1 Uil
Grp 2 dio Yi2 = Yi — Yil

d; Yi

Hj ;: No association b/w group and event at t;
< Pr(Death at t;|given alive at ¢, , Grp 1)
=Pr(Death at ¢;|given alive at ¢, , Grp 2)

& hy(t;) = ha(t;).




N(0,1).

Yi1Yi2d: (y;—d;)
i=1  yZ(y;—1)

Gehan’s test: generalization of M-W-W test with K = 2.

Review of M-W-W test: no censoring
Wilcoxon test:

X1, 00, X1 ~ B

X192, .00, Xpo ~ Fy

Hy: Fy = F5 vs Hy: 1 # F5.

Define R;; = rank of X;; in the pooled sample.
Test stat: Ry = ..~ Ri

Decision rule: reject Hg if Rq is too small or too large.




M-W form:

/

1 if X, > ng;
U(XilanQ) — < 0 if Xil = ng;
—1 if X;1 < ng.

\

Test stat: U = Z:)il Z?:l U(Xz‘l, ng)
Decision rule: reject Hy if |U| is too large.
The two tests are equivalent because

Ry = 5 +

m(m+n+1) U
5

e Now, with right-censored data
Sample 1: (T31,0;1), 1 =1,...,n1.
Sample 2: (T;2,0;2), 1 =1,...,no.




¢1(Ti1,9i1), (The, On2)]

y

1 if (T;1 < Tha, 6i1 =1, dpo =0)
or (Ti;1 < Tho, 0,1 =1, dp2 = 1) ;
if (T51 > Tha, 0i1 =0, dp2 = 1)
or (157 > Tha, 01 =1, dpa = 1) ;

\ 0 otherwise.

Zy(1) = 22 2ot Ol(Tin, 061), (Tha, On2)].




87.4 Test for trend

Hy: hi(t) = ho(t) = ... = hg(t) for all t <7
vs Hi: hi(t) < ho(t) < ... < hg(t) for all t < 7 and at least one
strict inequality holds.

Use previous tests: fine?
Yes, ...
No,

Choose score a1 < az < ... < ag, often a; = j.

S a;Zy(r)

A
K K
\/Zj:l Zg:l ajagg?‘g

~ N(0,1) under Hy,

where 0% = Cov(Z;(7), Z4(T)) as given before.

Note: Zj(aj — C_l)Zj = Zj CLij




e Corr coef for (x;,y;), i

— > —2)(yi — Y)
Voo — )2y (yi — y)?
o y; = by + b1x; + €,
D M)

Zi(mi_i)Q
So, Z is testing Hg: by = 0 with (z;,y;) replaced by ....

e Example 7.6: SAS.




§7.5 Stratified tests

e Why to stratify?
Short answer:
assoc(X,Y) # assoc(X,Y|Z) = Z is ...
Example: StarTribune, Oct 16, 2005
Birth type

Race Out of wedlock Others
Black 69%

others 35%
—> assoc b/w ...
Q: Is it really due to race or ...7

Other examples: earning difference b/w genders; mortality

rates of newborns in USA and Swede; mortality rates of the

general populations in USA and Japan;...

e How to handle?




for a binary outcome and a binary risk factor, use ... then ...

A deep understanding of confounding:
Z is a confounder iff 1) Z is associated with the outcome and 2)

7, is associated with the risk factor.

Back to the current context: M strata and K groups.
H()Z hls(t) = hgs(t) = ... = hKS(t), S = 1, ,M
Hli not H().

Approach:

1) form M strata.

2) for each stratum s, get Z;5 and X, as before, j =1,..., K
and s =1,..., M.

3) Z; =S  Zio, Z.=(Zh, s Zr 1), 8. =30

4) Test stat

X2 — Z/E_:[Z ~ X%{—l under H().




e Example 7.4: SAS and R.

e Application to matched data: each matched set is a ...
read Example 7.8.




§7.6 Renyi type tests

Consider the logrank test for K = 2: hq(t) going down while
hao(t) going down in t; they cross.

Z1 = 2.(0i — Ej)

In early times, O; > E;; in later times, O; < E;

— early (O; — E;) > 0 terms cancel out with late

(O; — E;) < 0 terms

— small | 71| = ...

The strategy used so far:

An alternative: an analog of the Kolmogorov-Smirnov test

KS = max |7 (t) — Ey(2)]

Generalized linear rank tests:
Z(t) =) . o W(ti) (dz'l — Yi1 Z—),
It is a function of t¢;




Fig 7.4: W(t) = 1.

o Var(Z(1)) = o?(1).
Q = supi<.{|Z(t)|}/o () ~ some distribution (see Table C.5 in
Appendix C) under Hy.

e Example 7.9
Fig 7.5: Log-rank test: Z(7) = —2.15, o(7) = 4.46, p = 0.6295;
Q = 2.20, p = 0.053.
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Figure 7.5 Estimated survival fupiyiéns for the gastrointestinal tumor study.
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§7.7 Other tests

e Cramer-von Mises test: no censoring,

[1E1(8) - Ba(6)PdEy ), A
where F; is eCDF for sample j, and F), is eCDF from the

pooled sample.

For censored data,

Jo [51(8) = S2(1)]*d[ =S, (1)),

but its asymptotic distribution is hard to derive

) [T [Hi(t) — Ha(t))?do?(t) = ... ~ some
distribution given in Table C.6 in Appendix C.




e Weighted K-M test:

Wi = W/O W (t)[S1(t) — Sa(t)]dt = ...

Wi /VVar ~ N(0,1); see (7.7.8) on p.230 for the formula for
Var.
A special case: W(t) =1 = Wk = c|i1(7) — j12(7)].




§7.8 Test survival difference at a given ¢t

Hy: Si(tg) = ... = Sk (tg) vs Hi: at least one equality does not
hold.

Given data = Sj — Sj (to), ‘/] - VCL’I“(Sj).

Y

5%, a
= s ~ N0,

K > 2’ HO < H(/) LS == b’ S = (Sly-"ysK)/’

X% = (LS —b)(LVL)"Y(LS — b) ~ x? under Hy,

k=rank(L), V = Cov(S) = ...

Examples:

1. Hy: Si(tg) =S
2. Hy: Si(tg) =S
3. Hy: S1(tg) = Sof




